Manual

TC3 C++

TwinCAT 3

Version: 1.7
Date: 2019-01-17
Order No.: TC1300

BEGCKHOFF

BEGKHOFF Table of contents

Table of contents

T oY =11 oY PR 7
1.1 Notes on the doCUMENTAtIONo e e e e 7
1.2 SAftY INSITUCHIONS ..eeeiiiiie et e et e e e e e e e e e e e et a e e eeeaaeeeeeesannnsbenaeees 8

7 =Y T 9

B 41 o T LW 1 oY o Y 10
3.1 From conventional user mode programming to real-time programming in TwWinCAT 12

N = o 1111 = 0T 0L 18

LI o (=Y o F= T = Lo o T 11 T3 o o 1o = 20
5.1 Installation "Microsoft Windows Driver Kit 7 (WDK)"oiiiiiiee e 20
5.2 Visual Studio - TWINCAT XAE Base t00IDANcccuuiiiiiiiiieie ettt 22
5.3 Prepare Visual Studio - Configuration and Platform toolbar................ccccciiiiiiiiiiee e 23
I (ST e 1V g1 o 11 o o TP PRPP 23

5.4.1 ST Te 11 Te I [AY/= Y =S PPT 24
54.2 TEST SIGNING .ttt e et e et e e e e e e e e e nnneee 24
543 Delete test CertifiCcate 26
5.4.4 Customer CertifiCatesouuiiiiii e 28
5.5 SecureBOOt: DIiVEr SIGNINGciiueiiiieiiiiiie et e e et e e e e e e e e e nbee e e e e annaes 29
L 1 oo L |- 30
6.1 The TwinCAT Component Object Model (TCCOM) CONCEPLoeveviiiiiiieeiiiiiiee e 30
6.1.1 TWINCAT MOdUIE PrOPEITIES .cceeeeeeiiieiiteeeee et e e e e e e e e 32
6.1.2 TwinCAT module state MacChiNeccociiiiiiiii e 39
6.2 Module-to-module COMMUNICAtION ... e e e e e e eas 41

B " Lo Yo [01 L=T- e o B T T |3 T T OO 44
4% B =5 o Yo o 8 3T Yo [] = S SS 44
7.2 IMPOME MOAUIES e e e e e e e e e e e e e e e e et et et ee e e e aeaebe s s e e e eeaeaaeaaeaeaeaeeeseseennnnnns 45

LI VY710 L0970 I 0% 2 o [=0Y =Y o o 3 1= o | Y 48

L O T 1o =3 - S SPT 50
9.1 Create TWINCAT 3 PrOJECT ...oooiiiiiiiie ittt e e e e e annes 50
9.2 Create TWINCAT 3 Crt PrOJECE ..oiiiiiie ittt e et e e e e e e e e e e e e eee s 51
9.3 Implement TWINCAT 3 CH+ PrOJECEeviiiiiiiiiiee ettt e e e e e e e 55
9.4 Compiling/building @ TWINCAT 3 CH+ PrOJECTceiiiiiiieiiiee e 56
9.5 Create TWINCAT 3 C++ MOAUIE INSTANCEoviiiiiiiiiiic i 57
9.6 Create a TwinCAT task and apply it to the module instance..........cccciiiiii e, 59
9.7 TwinCAT 3 enable CH+ AEDUGGETuieiiiiiiiiiie ettt e e e e e e e nbte e e e e s 61
9.8 Activating @ TWINCAT 3 PrOJECEcoeiiiiiiieeiiee ettt e e e e e e e nbee e e e e anneeas 62
9.9 Debug TWINCAT 3 CH+ PrOJECT.ciiiiiiiiiie ittt e b e e 63

L0 1= ¢ 10T 13 N 68
10.1 Details of Conditional BreaKpoiNtS........oooiiiiiieeee e 71
10.2 ViSUAI STUAIO TOOISeeiiiiiiiiiie et e et e e e et e e e e e ettt e e e e e nbee e e e e snseeeeeeennees 73

LI L7 T o = 76
11.1 TWINCAT CH+ ProjeCt WIZAId.......ccooiiiieiiii et e e e e e e e e e e 76

TC3 C++ Version: 1.7 3

Table of contents BEGKHGFF

11.2 TWIiNCAT Module Class WiIZardc.uuiiiiiiiiiie ettt tee e e et e e e e 77
11.3 TwinCAT Module Class Editor (TIMC).........eii et ee ettt e e e e e e sneeeenneeeesnneeens 79
I R T © Y=Y oSSR PPPPRPR 82
11.3.2 Basic INfOrmMationcoo i 83
IR R T B = | = Y o= SRR OTPRRP PRSP 83

R X /T To [S UPTR PP 101

11.4 TwinCAT Module Instance ConfigUrator.ooiiiiiiiiiiiiie e 124
L T O | o =Y o2 SRS 125
L ©70)11 (=Y« SO 126
11.4.3 Parameter (INQt)ooooeieie et 126
L B = = 1 = PSSP 127

L T 101 1= 4 7= Lo RSO RRS 127
11.4.6 INTErface POINTET ... et e e e e e e e 127
L A B - c= I o o (= P UPRR PP 128

11.5 Customer-specific projeCt tEMPIAtEScooiiiiiiiiii e 128
I Tt B © Y=Y V1= PSP 128
T1.5.2 FleS INVOIVEA ...ttt ettt e e e e e e e e e e 129
T T = 1S o] 4 = [o 1 SRS 130
11.5.4 NOtES ON NANAIINGeiiiiiiiiiii e 131

12 Programming RefEreNCe ...t 134
T2.1 File DESCIIPLON ...ttt e e e e e e e e e e e e e aeeeeeeeeeeeeesesebenbasnnnanns 135
12.1.1 Compilation ProCEAUIE.........oceeeteeeeee e e e e e e e e e e eee s 137

P22 N 1 011 = 1o o =PSRRI 137
ARG T \V =T 0 T YA Y [To o= 1o o PP EEUPURR 138
LA 1 (=1 = o= PRSPPI PPPPSRN 139
1241 INEErface ITCCOYCHC ...eeieiieeiii ettt 140
12.4.2 Interface ITCCYCICCAIIEr.........c..uuiiiiieieeeee e 141
12.4.3 INterface ITCFIEACCESScooo ettt e e e e e e e e e e e eeeees 143
12.4.4 Interface ITCFIIEACCESSASYNC. it e e e e e 151
12.4.5 INterface ITCIOCYCIC ..ooviiie et e e e e e e 153
12.4.6 Interface ITCIOCYCHCCAIEN..........eeiiiiiiiiie e 154
12.4.7 Interface ITCOMODJECE.......ciiiiiiiiiie it e e aee e e s ennneee s 156
12.4.8 ITComObject interface (C++ CONVENIENCE)uuviiiiiiiiiiee e 160
12.4.9 Interface ITCPOSICYCIICeiiiiiiiiiee e 161
12.4.10 Interface ITCPOSICYCICCAIIET.........coiiuiiiiie e 162
12.4.11 Interface ITCRTIMETASKccooiiiiiieiiee et e e e e e e e e eeeees 164
12,412 INterface ITCTASK ...eeiiiiiiiee ettt e e e e e e e e e e e 165
12.4.13 Interface ITCTasSkNOLIfICAtIoONcoiiiiiiiiiiiii e 168
12.4.14 Interface ITCUNKNOWNoo it e e e e e e e e e e e e nnneeeeeees 169

12.5 Runtime Library (RURD.N) ...oeiiiiiieie ettt e e et e e e e entee e e e s anseeaeeeanes 171
12.6 ADS COMMUNICALION ..eiiiiitiiii ettt e ettt e e e ettt e e e s enbe e e e e e sbbe e e e e e anbeeeeeesanbeeaeeeane 173
12.6.1 AdSREadDEVICEINTO ...coiiiiee e e e 173
12.6.2 AASREAAeeiiiiiiiiiii e e et e e e e e e nnaeeas 175
T T o EY 1LY 4 (- PR PPPR 177
12.6.4 AdSREAAWIIEE ...ttt e et e e e e e e e e e e e e e eeees 179
12.6.5 AdSREAASIALE. ... 181

Version: 1.7 TC3 C++

BECKHUFF Table of contents

12.6.6 AdSWIHEECONIIOL.ttt e e e et e e e e e e e s annneeeeas 183
12.6.7 AdsAAADeVICENOLIICAtIONuviiiiiieiiie e 185
12.6.8 AdsDelDeVICENOLIfICAtIONeeiiiiiiiiie e 187
12.6.9 AdSDeVIiCENOIfICAtIONoiiiiiiiiie e 189

12.7 Mathematical FUNCLONSt e e e e e e e e e e e e e e e e e annnnnes 190
12.8 TIME FUNCHONS ...ttt e e et e ettt et e e e e e e e e e e e nen et eeeeeaaeaeeaeaannnnnes 192
(S N I A 0o 4 =1 = = PP EEUPRR 192
12.10 Error Messages - COMPIENENSIONuuiiiiiiiiie ettt e et e e e e abre e e e e aae 193
12.11 Module messages for the Engineering (Iogging / tracing)eeeeeiieeeiiiiiiiiiieeeeeee e 193
B o o T T 197
13.1 Using the AUtomMation INTEIACEooiiiiiiiiieeee e e e e 197
13.2 Windows 10 as target system up to TWinCAT 3.1 Build 4022.2...........c.coooiiiiiiiiiieeeee 197
13.3 Publishing Of MOAUIES ...ttt et e e e e e e e e e e e annnnnes 197
13.4 Publishing modules on the command liNEoooiiiiiiiiiiiii e 198
L IRC 78 T 7 (o o = PSR 198
13.6 Renaming TWINCAT Crt PrOJECES ..oeiiiiiiiii ittt et e e e e ente e e e s anaeeaeeenes 199
13.7 ACCESS Variables Via ADSttt e e e r e e e e e e e e e e e e aaaaaeaeeaeannnane 201
13.8 TcCallAfterOutputUpdate for C++ MOAUIESeueiiiiiiiee e 201
13.9 Ordering EXecution iN 0NE TaSKciiiiiiiiiiieeee e e e e e 201
13.10 USE StACK SIZE > 4KBottt e e e e e e et e e e et e e e e e e aaeeaaaes 202
13.11 Setting version/vendor iNfOrmMationoooi e 203
1312 DIt MOTUIE ...ttt ettt e e e e e e e e st ettt e e e e e e e e e aannees 204
13.13 Initialization of TMC-member variables ... 205
13.14 Using PLC Strings as Method-Parameter ... 205
13.15 Third Party LIDFAri©Sccooii ittt e e e e e e e e e e e e s st n e e eeaaaeaeeeeannnnnnes 206
13.16 Linking via TMC editor (TCLINKTO)....ci ittt e e 207
L I (o101 ¢ 1T e o3 1 4T 209
14.1 Build - "Cannot open include file ntddk.h"....... ... e 209
14.2 Build - "The target ... does not exist in the project” ..., 209
14.3 Debug - "Unable to attach"oiii e 210
14.4 Activation — “invalid 0bject id” (1821/0X71d)ueiieiiiiiiee et e e e eeeeenes 211
14.5 Error Message — VS2010 and LNK1123/COFFoooi oo 211
14.6 Using C++ classes in TWINCAT CH+ MOAUIEcoouiiiiiiiiiiiicce e 211
TA.7 USING @FXIES. Nttt e e e sttt e e e e e st e e e e e aanbe e e e e e abteeeeeeanraeaee e e 211
BT 00 o T4 0T o] =TT 213
LR TR I O Y o1 RSP PRSPPPRR 213
15.2 Sample01: Cyclic Module With TOuiiii e e 215
15.3 Sample02: Cyclic C++ logic using 1O from [O-1askcceviiiiiiiiiiiiii e 216
15.4 Sample03: CH+ @S ADS SEIVEL ...uoveiiiiiie e e ettt e e e e e e e e e e e et e e e eeaaaeeeeeeaeannnes 216
15.4.1 Sample03: TC3 ADS Server written in CH+.. ..o 217
15.4.2 Sample03: ADS client ULIn CH ...t 221

15.5 Sample05: C++ CoE access VIa ADS ...t e e e e e e e s e 225
15.6 Sample06: UI-C#-ADS client uploading the symbolic from moduleccoceeiiiiiiiiiiii 226
15.7 Sample07: Receiving ADS NOtfiCAtIONS.......c.uuiiiiiiiiiie e 231
15.8 Sample08: provision of ADS-RPCcooiiiiiieeee et a e e e e e e e e e e e e s e e anannnes 232

TC3 C++ Version: 1.7 5

Table of contents BEGKHGFF

15.9 Sample10: module communication: Using data pointercccceeveiieiiiiiiiiiieeeeee e 235
15.10 Sample11: module communication: PLC module invokes method of C-module........................... 236
15.10.1 TwinCAT 3 C++ module providing Methodscooviiiiiiiiiiii e 237
15.10.2 Calling methods offered by another module via PLC ..o, 251

15.11 Sample11a: Module communication: C module calls a method of another C module 263
15.12 Sample12: module communication: Using 1O Mapping..........ccccceveeiiiiiieeeiiiiiee e 264
15.13 Sample13: Module communication: C-module calls PLC methods...........ccccoviiiiiiieeiiiiiie 265
15.14 Sample19: SYNChroNOUS File ACCESSciiiiiiiiiie it 268
15.15 SamPpIe20: FIlElO-WIILE ...ttt ettt e aeannnes 269
15.16 Sample20a: FilelO-Cyclic Read / WLoouuiiiie it 269
15.17 Sample22: Automation Device Driver (ADD): Access DPRAM ..o 270
15.18 Sample23: Structured Exception Handling (SEH)ccooiiiiiiiiieee e 272
15.19 Sample25: StatiC LIDIaryoooo ittt et e e et e e e s b e e e e ane 274
15.20 Sample26: Execution order at 0Ne task..............uuiviiiiiiiiiiiiicceee e 275
15.21 Sample30: Timing MEASUIEMENT.uiiiii ettt et e e e et e e e s snreeaeeaanes 277
15.22 Sample31: Functionblock TON in TWINCAT3 CH+ ..o 278
15.23 Sample35: ACCESS EtNEIMETuvieiiiiiiiie e e e e e e 279
15.24 Sample37: Archive dataoooiiiiiiii e 280
15.25 TCCOM SAMPIES ...ttt e e e e e et e e st ettt eeaeaaaeeaeaaannneeneeeeeaaaaaeaaeaaannnnes 281
15.25.1 TCcCOM_Sample01 _PICTOPICuuiiiiiiiiee ettt 281
15.25.2 TcCOM_Sample02_PICTOCPD -.eeeeeiiiiiiiieiiiiiie e e ittt e ettt ettt e s e e snneeeee s 291
15.25.3 TcCOM_Sample03 PICCreateSCPPcccoviiieiititieiee e 295

B C I o o =Y o ' | ST 300
16.1 ADS REIUMN COUESeeiiiiiiiiie ettt e ettt e e e ettt e e e e sttt e e e e asbeeeeeessbeeeeeesnseeeeesaasteeaeenanes 300
(L A =Y =T o e = | = RSP PPRPSRN 304
16.3 Creating and handling C++ projects and MOdUIESc..oeiiiiiiiiiiiiii e 307
16.4 Creating and handling TCCOM MOQUIESoiiiiiiiiiiie it e s eraeeaeeenes 311

6 Version: 1.7 TC3 C++

BECKHUFF Foreword

1 Foreword

1.1 Notes on the documentation

This description is only intended for the use of trained specialists in control and automation engineering who
are familiar with the applicable national standards.

It is essential that the documentation and the following notes and explanations are followed when installing
and commissioning the components.

It is the duty of the technical personnel to use the documentation published at the respective time of each
installation and commissioning.

The responsible staff must ensure that the application or use of the products described satisfy all the
requirements for safety, including all the relevant laws, regulations, guidelines and standards.

Disclaimer

The documentation has been prepared with care. The products described are, however, constantly under
development.

We reserve the right to revise and change the documentation at any time and without prior announcement.
No claims for the modification of products that have already been supplied may be made on the basis of the
data, diagrams and descriptions in this documentation.

Trademarks

Beckhoff®, TwinCAT®, EtherCAT®, Safety over EtherCAT®, TWinSAFE®, XFC® and XTS® are registered
trademarks of and licensed by Beckhoff Automation GmbH.

Other designations used in this publication may be trademarks whose use by third parties for their own
purposes could violate the rights of the owners.

Patent Pending

The EtherCAT Technology is covered, including but not limited to the following patent applications and
patents:

EP1590927, EP1789857, DE102004044764, DE102007017835

with corresponding applications or registrations in various other countries.

The TwinCAT Technology is covered, including but not limited to the following patent applications and
patents:
EP0851348, US6167425 with corresponding applications or registrations in various other countries.

—
EtherCAT.

EtherCAT® is registered trademark and patented technology, licensed by Beckhoff Automation GmbH,
Germany

Copyright

© Beckhoff Automation GmbH & Co. KG, Germany.

The reproduction, distribution and utilization of this document as well as the communication of its contents to
others without express authorization are prohibited.

Offenders will be held liable for the payment of damages. All rights reserved in the event of the grant of a
patent, utility model or design.

TC3 C++ Version: 1.7 7

Foreword BEGKHOFF

1.2 Safety instructions

Safety regulations

Please note the following safety instructions and explanations!
Product-specific safety instructions can be found on following pages or in the areas mounting, wiring,
commissioning etc.

Exclusion of liability

All the components are supplied in particular hardware and software configurations appropriate for the
application. Modifications to hardware or software configurations other than those described in the
documentation are not permitted, and nullify the liability of Beckhoff Automation GmbH & Co. KG.

Personnel qualification

This description is only intended for trained specialists in control, automation and drive engineering who are
familiar with the applicable national standards.

Description of symbols

In this documentation the following symbols are used with an accompanying safety instruction or note. The
safety instructions must be read carefully and followed without fail!

A DANGER

Serious risk of injury!

Failure to follow the safety instructions associated with this symbol directly endangers the life and health of
persons.

Risk of injury!
Failure to follow the safety instructions associated with this symbol endangers the life and health of per-
sons.

A CAUTION

Personal injuries!
Failure to follow the safety instructions associated with this symbol can lead to injuries to persons.

NOTE

Damage to the environment or devices

Failure to follow the instructions associated with this symbol can lead to damage to the environment or
equipment.

® Tip or pointer
1 This symbol indicates information that contributes to better understanding.

Version: 1.7 TC3 C++

0]

BECKHUFF Overview

2

Overview

This chapter is all about TwinCAT 3 implementation in C/C++. The most important chapters are:

Start from scratch
Which platforms are supported? Additional installations to implement TwinCAT 3 C++ modules?

Find all answers in Requirements [P 18] and Preparation [P 20]. Limitations are documented here
»1371.

Quick start [P 50]

This is a “less than five minutes sample” to create a simple incrementing counter in C++ being
executed cyclically. Counter value will be monitored and overwritten, debugging capabilities will be
presented etc.

MODULES [» 32]

Modularization the basic philosophy of TwinCAT 3. Especially for C++ Modules it is required to
understand the module concept of TwinCAT 3.

Minimum is to read one article about the architecture of TwinCAT modules.

Wizards [» 76]

Documentation of visual components of the TwinCAT C++ environment.

This includes on the one hand tools for creating projects and on the other hand tools for editing module
and configuring instances of modules.

Programming Reference [P 134]

This chapter contains detailed information for programming in TwinCAT C++. For Example Interfaces
as well as other TwinCAT provided functions for ADS communication and helper methods are located
here.

The How to ...? [» 197] Chapter contains useful hints while working with TwinCAT C++.
Samples [P 213

Some Interfaces and their usage is best described by working code, which is provided as download
including source code and solution.

TC3 C++ Version: 1.7 9

Introduction BEGKHOFF

3 Introduction

The approach of emulating classic automation devices such as programmable logic controllers (PLCs) and
numeric controllers (NC) in software on a powerful standard hardware has been the state of the art for many
years and is now pursued by many suppliers.

There are many advantages; however the most important advantage is certainly that the software is
independent of the hardware to a very great extent. This means both that the performance capacity of the
hardware can be adapted to the particular application and that it will be possible to benefit automatically from
its general further development.

This applies in particular to PC hardware, where increases in performance are still continuing at a dramatic
rate. The relative independence from a supplier which also results from this separation of software and
hardware is also important to the user.

Since the PLC and the motion controller — and possibly other automation components — continue to exist as
independent, logical units with this approach, there are very few changes in the application architecture in
comparison with classic automation technology.

The PLC determines the logical operational sequence of the machine and assigns the motion controller to
implement certain axis functions. Due to the increased performance of the controllers and the possibility to
use higher-level programming languages (IEC 61131-3), complex machines can also be automated in this
way.

Modularization

In order to master the complexity of modern machines and at the same time to reduce the necessary
engineering expenditure, many machine manufacturers have begun to modularize their machines. Individual
functions, assemblies or machine units are thereby regarded as modules, which are as independent as
possible and are embedded into the overall system via uniform interfaces.

Ideally a machine is then structured hierarchically, whereby the lowest modules represent the simplest,
continually reusable basic elements. Joined together they form increasingly complex machine units, up to the
highest level where the entire machine is created. Different approaches are followed when it comes to the
control system aspects of machine modularization. These can be roughly divided into a decentralized and a
centralized approach.

In the local approach, each machine module is given its own controller, which determines the PLC functions
and possibly also the motion functions of the module.

The individual modules can be put into operation and maintained separately from one another and scaled
relatively independently. The necessary interactions between the controllers are coordinated via
communication networks (fieldbuses or Ethernet) and standardized via appropriate profiles.

The central approach concentrates all control functions of all modules in the common controller and uses
only very little pre-processing intelligence in the local I/O devices. The interactions can occur much more
directly within the central control unit, as the communication paths become much shorter. Dead times do not
occur and use of the control hardware is much more balanced, which reduces overall costs.

However, the central method also has the disadvantage that the necessary modularization of the control
software is not automatically specified. At the same time, the possibility of being able to access any
information from other parts of the program in the central controller obstructs the module formation and the
reusability of this control software in other applications. Since no communication channel exists between the
control units, an appropriate profile formation and standardization of the control units frequently fall by the
wayside.

Best of both worlds

The ideal controller for modular machines borrows from both the local and the central control architecture. A
central, powerful and as general as possible computer platform is “naturally” used as the control hardware.

The advantages of central control technology:

* |lower overall costs
* available

10 Version: 1.7 TC3 C++

BEGKHOFF Introduction

« fast, and modular field bus systems (keyword EtherCAT)

+ and the possibility of being able to access all the information of the entire system without loss of
communication

are decisive arguments.

The advantages of the local approach already outlined above can also be put into practice in the central
controller by means of appropriate modularization of the control software.

Instead of allowing a large, complex PLC program and an NC with many axes to run, many small
“controllers” can co-exist in a common runtime on the same hardware with relative independence from one
another. The individual control modules are encapsulated and offer their functions to the outside via
standardized interfaces or use appropriate functions of other modules or the runtime.

A meaningful profile formation takes place by the definition of these interfaces and the standardization of the
appropriate parameters and process data. Since the individual modules are implemented within one runtime,
direct calls to other modules are also possible — in turn via appropriate standardized interfaces. The
modularization can therefore take place at meaningful limits, without having to give consideration to
communication losses.

During the development or commissioning of individual machine modules, the associated control modules
can be created and tested on any control hardware with the appropriate runtime. Missing connections to
other modules can be emulated during this phase. On the complete machine they are then instanced
together on the central runtime, which only needs to be dimensioned such that the requirements of all
instanced modules (memory, tasks and computing power) are fulfilled.

TwinCAT 3 Run-Time

The TwinCAT runtime offers a software environment in which TwinCAT modules are loaded, implemented
and managed. It offers additional basic functions so that the system resources can be used (memory, tasks,
fieldbus and hardware access etc.). The individual modules do not have to be created using the same
compiler and can therefore be independent of one another and can originate from different manufacturers.

A series of system modules is automatically loaded at the start of the runtime, so that their properties are
available to other modules. However, access to the properties of the system modules takes place in the
same way as access to the properties of normal modules, so that it is unimportant to the modules whether
the respective property is made available by a system module or a normal module.

TC3 C++ Version: 1.7 1

Introduction BEGKHOFF

Windows User-Mode Libraries

User Mode

Kernel Mode

TwinCAT PLC Runtime
Environment TwinCAT C++

Windows Kernel-Mode Libraries

In contrast to the PLC, where customer code is executed within a runtime environment, TwinCAT C++
modules are not within such a hosted environment. As a consequence TwinCAT C++ modules are executed
as Kernel Modules (.sys) — thus they are built with the kernel mode libraries.

3.1 From conventional user mode programming to real-
time programming in TwinCAT
This article describes the conceptual differences between standard user mode programming in a

programming language such as C++, C# or Java, and real-time programming in TwinCAT.

The article particularly focuses on real-time programming with TwinCAT C++, because this is where previous
knowledge with C++ programming comes to the fore and the sequence characteristics of the TwinCAT real-
time system have to be taken into account.

12 Version: 1.7 TC3 C++

BECKHOFF Introduction

Windows

OS Scheduler

Program

Program does
not recognize
interruption

Continue

With conventional user mode programming, e.g. in C#, a program is created, which is then executed by an
operating system.

The program is started by the operating system and can run independently, i.e. it has full control over its own
execution, including aspects such as threading and memory management. In order to enable multitasking,
the operating system interrupts such a program at any time and for any period. The program does not
register such an interruption. The operating system must ensure that such interruptions remain unnoticed by
the user. The data exchange between the program and its environment is event-driven, i.e. non-deterministic
and often blocking.

The behavior is not adequate for execution under real-time conditions, because the application itself must be
able to rely on the available resources in order to be able to ensure real-time characteristics (response
guarantees).

TC3 C++ Version: 1.7 13

Introduction BEGKHOFF

TwinCAT
TwinCAT XAR

TcCOM
Module

Task

CycleUpdate()

[}
£
=
i
o
>
Q

CycleUpdate()

Cycletime

CycleUpdate()

CycleUpdate()
is called
cyclically

The basic idea of PLC is therefore adopted for TwWinCAT C++: The TwinCAT real-time system manages the
real-time tasks, handles the scheduling and cyclically calls an entry point in the program code. The program
execution must be completed within the available cycle length and return the control. The TwinCAT system
makes the data from the 1/0 area available in the process images, so that consistent access can be
guaranteed. This means that the program code itself cannot use mechanisms such as threading.

14 Version: 1.7 TC3 C++

BECKHOFF

Introduction

Concurrency

OS Scheduler

Program

—— Thread

Event-driven,
asynchronous
communication

With conventional programming in user mode, concurrency is controlled by the program. This is where
threads are started, which communicate with each other. All these mechanisms require resources, which
have to be allocated and enabled, which can compromise the real-time capability. The communication

between the threads is event-based, so that a calling thread has no control over the processing time in the
called thread.

TC3 C++ Version: 1.7 15

Introduction BEGKHOFF

In TwinCAT, tasks are used for calling modules, which therefore represents concurrency. Tasks are
assigned to a core; they have cycle times and priorities, with the result that a higher-priority task can interrupt
a lower-priority task. If several cores are used, tasks are executed concurrently in practice.

TwinCAT
TwinCAT XAR

TcCOM TcCOM
Task 2 Module Module

CycleUpdate()

CycleUpdate() |:|

Method(X)

Cycletime

CycleUpdate()

@
S
=
o
3]
>
@]

CycleUpdate()

Context Context
Task 1 , Task 2

Modules can communicate with each other, so that data consistency has to be ensured in concurrency

mode.
Data exchange across task boundaries is enabled through mapping, for example. When direct data access

via methods is used, it must be protected through Critical sections, for example.

Startup/shutdown behavior

The TwinCAT C++ code is executed in the so-called "Windows kernel context" and the "TwinCAT real-time
context", not as a user mode application.

During startup/shutdown of the modules, code for (de)initialization is initially executed in the Windows kernel
context; only the last phase and the cyclic calls are executed in the TwinCAT real-time context.

Details are described in the "Module state machine [»_39]" section.

Memory management

TwinCAT has its own memory management, which can also be used in the real-time context. This memory is
obtained from what is referred to as the "non-paged pool", which is provided by the operating system. In this
memory the TcCOM modules are instantiated with their memory requirement.

16 Version: 1.7 TC3 C++

BEGKHUFF Introduction

In addition, the so-called "router memory" is provided by TwinCAT in this memory area, from which the
TcCOM modules can allocate memory dynamically in the real-time-context (e.g. with the New operator).

TwinCAT

TwinCAT XAR Nonpaged Pool

alloc
Router

. . Memory
instanciate

Task 1

CycleUpdate()
new X ()

TcAlloc

If possible, memory should generally be allocated in advance, not in the cyclic code. During each allocation a
check is required to verify that the memory is actually available. For allocations in the cyclic code, the
execution therefore depends on the memory availability.

TC3 C++ Version: 1.7 17

Requirements BEBKHOFF

A Requirements

Overview of minimum requirements
The implementation and debugging of TwinCAT 3 C++ modules requires:

The following must be installed on the engineering PC:
* Microsoft Visual Studio 2010 (with Service Pack 1), 2012, 2013 or 2015
Professional, Premium or Ultimate

o When installing Visual Studio 2015, the Visual C++ development option must be manually
selected, as this option is not selected with the automatic installation:

Professional 2015

Features Languages

Select features

1 (New)

) (New)

o When installing Visual Studio 2017, the "Desktop development with C++" option must be manually
selected, as this option is not selected with the automatic installation:

Meodifying — Visual Studio Professional 2017 — 15.6.6
Workloads Individual components Language packs
Windows (3)
m M Universal Windows Platform development m .NET desktop development
Hl Create applications for the Universal Windows Platform 'J Build WPF, Windows Forms, and consale applications using
with C# VB, JavaScript, or optionally C++. C#, Visual Basic, and F#,

"‘I +J Desktop development with C++

Build Windows desktop applications using the Microsoft
C++ toolset, ATL, or MFC.

» Microsoft "Windows Driver Kit" (WDK)
To implement and debug C++ modules, Microsoft "Windows Driver Kit" (WDK) must be installed:

Installing "Windows Driver Kit" (WDK) [» 20]
« TwinCAT 3 installation (XAE engineering)

On the runtime PC:
* IPC or Embedded CX PC with Microsoft operating system (Windows XP or Windows 7 or higher)
* Microsoft Visual Studio does not have to be installed

* Microsoft "Windows Driver Kit" (WDK) does not have to be installed.
(No additional installation is required for the integration and application of existing binary C++ modules
in a TwinCAT 3 PLC environment.)

» TwinCAT 3 installation (XAR runtime)

Limitations on the runtime PC

« TwinCAT 3.0 only supports 32-bit operating systems as target platform (runtime PC).
TC3.0 can be used as engineering platform on x64 PCs. The program can be transferred to a 32bit
(x86) remote PC over the network and executed there.

18 Version: 1.7 TC3 C++

BECKHUFF Requirements

» TC3.1 also supports x64-bit operating systems as target platform (runtime PC) The drivers have to be
signed, as documented here [P 23], which requires a certificate [P 28] for productive operation.
* The target runtime must be based on "Windows NT Kernel", such as Windows XP, Windows 7 or the

embedded versions Windows XP Embedded, Windows Embedded Standard 2009, Windows
Embedded Standard 7

TC3 C++ Version: 1.7 19

Preparation - just once! BEGKHOFF

5 Preparation - just once!
A PC for the engineering of TwinCAT C++ modules must be prepared. These steps only have to be
performed once:

* Microsoft Windows Driver Kit (WDK) [20] must be installed and

« TwinCAT Basis [»_22] and the configuration and platform [P 23] toolbar have to be configured

+ On x64 PCs modules have to be signed, in order to be able to be executed.
See Documentation for the setup of a test signing [P 23].

+ If the operating system of the target system requires enhanced validation for drivers, for example
through a SecureBoot, a corresponding signing [»_29] has to be performed at Microsoft.

5.1 Installation "Microsoft Windows Driver Kit 7 (WDK)"

Overview
The implementation of TwinCAT 3 C++ modules requires parts of the "Windows Driver Kit" (WDK).

The installation is only necessary for the TwinCAT 3 engineering environment in order to be able to create
and edit C++ modules. It is not required for the target platform of the TwinCAT 3 runtime.

1. Download "Windows Driver Kit 7.1" from the Microsoft Download Center http://www.microsoft.com/
downloads/en/details.aspx?displaylang=en&FamilyID=36a2630f-5d56-43b5-b996-7633f2ec14ff

== Windows Driver Kit Version 7.1.0

The Windows Driver Kit (WDK) Version 7.1.0 is an update to the WDK 7.0.0 release and
contains the tools, code samples, documentation, compilers, headers and libraries with
which software developers create drivers for Windows 7, Windows Vista, Windows XP,

Windows Server 2008 R2, Windows Server 2008, and Windows Server 2003.

@ Details

@ System Requirements

@ Install Instructions

2. Following the download, either burn a CD of the downloaded ISO image or use a virtual (software-based)
CD drive.

3. Start "KitSetup.exe" on CD/downloaded ISO image (start the installation with "Run As Administrator..."
on Windows 7 PCs)

20 Version: 1.7 TC3 C++

http://www.microsoft.com/downloads/en/details.aspx?displaylang=en&FamilyID=36a2630f-5d56-43b5-b996-7633f2ec14ff
http://www.microsoft.com/downloads/en/details.aspx?displaylang=en&FamilyID=36a2630f-5d56-43b5-b996-7633f2ec14ff

BECKHGFF Preparation - just once!

4. Select the option "Build Environment" - none of the other components are required by TwinCAT 3 - and
click on "OK" to continue.

¥ Microsoft Windows Driver Kit 7.1.0.7600 I |
Features - check to instal, uncheck to remove Pending setup tasks:
Microsoft Windows Driver Kit 7.1.0.7600 18. Install: pfd_x86fre »
] Full Development Environment 19. Install: vistalibs_iat4fre
20. Install: vistalibs_xo4fra
[Samples 21. Install: *.fism_libs_xﬁﬁfre
[JTook 22. Install: weoinstallers
. ; 23. Install: wnetlbs_iat4fre
[C]Help (Documentation Collection) 24. Install: wnetlibs_x64fre
[] bebugging Tools for Windows 25. Install: wnetlibs_xB86fre
] Device Simulation Framework 26. Install: wxplibs_x86fre

[C] windows Device Testing Framework
Click the OK button to execute these fasks |=

and update the configuration of this
computer.

Feature Status - dick feature node above for details
KIT FEATURE: Build Environments -

Includes Windows headers and libraries and a complete set of build toals for buiding Windows drivers
and device oriented applications. Build Support is provided for Itanium-based, x64, and x86 CPU's, and
for Windows 7, Windows Vista, Windows Server 2008, Windows Server 2003, and Windows XP.

STATUS: This feature is instalzble.

Help Undo oK Cancel '

5. After accepting the Microsoft EULA license, select the destination folder for the installation.
By default the root folder "C:\" will be selected - therefore "C:\WinDDK\7600.16385.1" will be suggested
The digits "7600...." may be different in the case of a newer version of the "Windows Driver Kit".

6. Start the installation with "OK"

i Select Kit Install Location [

Select Install Path

Edit the install path and click OK to proceed with install, or select Cancel to return
to the Kit Configuration Diglog. Use the browse button to select an installation path
or the default button to set the default instaltion path.

C:\WinDDKA/600.16385.1

Browse Default oK Cancel

-

7. In future TwinCAT 3 will take care of the following step. Now it needs to be done manually once.
8. Navigate to "Start" -> "Control Panel" -> "System" and select "Advanced system settings"
9. Select the "Advanced" tab and then click on "Environment Variables..."

TC3 C++ Version: 1.7 21

Preparation - just once!

BECKHOFF

10. In the lower area of "System variables", select "New..." and enter the following information:

Variable name WINDDKY7
Variable value C:\WinDDK\7600.16385.1

The path may differ with a different version of the Windows Driver Kit or if a different installation path is

specified.

Environment Variables

S

Liser variables for StefanH

Variable Value

path suCommenProgramFiles 3e\Microsoft Sh...
TEMP SLlISERPROFILES:\AppDataLocaliTemp
T™MP SLlISERPROFILESR\AppDataiLocaliTemp

New.. || Edt. || Delete

System variables

Variable Value

VS0COMMTOOLS C:\Program Files\Microsoft Visual Studio. ..
WINDDEF C:\WinDDK\7500, 16385, 1
windir C:Wwindows L 4

| mew.. || Edt. || Deete |

[oK] [Cancel

)

11. Following the installation, log in again or restart the PC to confirm the new environment variable settings.

5.2

Visual Studio - TWinCAT XAE Base toolbar

Add the "TwinCAT XAE Base" toolbar for efficient engineering

For better efficiency, TwinCAT 3 integrates own toolbar into the Visual Studio menu, which will support you
in creating C++ projects. This toolbar should be added automatically to the Visual Studio menu by TwinCAT
3 Setup. However, if you would like to add it manually, you need to perform the following step:

1. Open the "View" menu and select "Toolbars\TwinCAT XAE Base"

22 Version: 1.7

TC3 C++

BECKHUFF Preparation - just once!

= The selected toolbar should now appear below the menu

Dq TwinCAT I0-Project - Microsoft Visual Studio (Administrator)

File Edit View Project Build Debug TwinCAT TwinSAFE PLC Team Tools Test Scope Analyze Win

Ce-0 @ -2 el Y - | Release ~ | TwinCAT RT (x64) - P Attach.. =

S 'lil "2 (& |)] '."._| <Local> i |

Soluf%n Explorer
@ o-5d|lp-=

Sear Solution Explorer (Ctrl+) L~

fad S_'.olution ‘TwinCAT I0-Project’ (1 project)
4 ai[| TwinCAT I0-Project

L |

W'l Modulel.cpp 7 X
Untitledl ~ =2 CModulel

HRESULT hr = S_OK;
m_Trace.Log{tlVerbose, FENTERA);

ﬂ SYSTEM /7 TODO: Add deinitialization code
’:‘LOCHON m_Trace.Log(tlVerbose, FLEAVEA "hr=8x%a8x", hr
& return hr;
5.3 Prepare Visual Studio - Configuration and Platform
toolbar

Add the "Solution Configuration and Solution Platform" toolbar

The "Configuration and Platform" toolbar will enable you to select the target platform for building your project.
This toolbar should be added automatically to the Visual Studio menu by TwinCAT 3 Setup. However, if you
would like to add this toolbar manually, you need to perform the following steps:

. Open the "View" menu and select "Toolbars\Customize"

. Navigate to the tab "Commands"

. Check the option box "Toolbar" and then select "Standard" in the list of toolbars

Click on "Add Command..."

Choose the "Build" category, select the command "Solution Configurations" and click on "Ok"
Repeat the last step for the command "Solution Platforms"

NS ok o=

Finally, click on "Close"
= Both commands should now appear below the menu bar

o TwinCAT Project3 - Microsoft Visual Studio (Administrator)
File Edit View Project Build Debug TwinCAT PLC Team Data Tools Architecture Test Analyze
: 0 ey

=220 E G 3 RIS
@|l§d‘ ."_||<Lor_aI> '|

= B

e jHﬂH: EeiRel i o el e » [Debug « || TwinCAT RT (@

54 x64: driver signing

TwinCAT C++ modules must be signed so that they can be executed on x64 PCs.

® Engineering requires no signing

Only the execution requires certificates - engineering on an x64 machine with execution on an x86
machine requires no signing.

Since a published module should be executable on various PCs, signing is always necessary for publishing.

TC3 C++ Version: 1.7 23

Preparation - just once! BEGKHGFF

5.4.1 Signing drivers

Overview
Implementing TwinCAT 3 C++ modules for x64 platform requires signing the driver with a certificate.

The signature, which is generated by the TwinCAT3 build process automatically, is used by 64bit Windows
operating systems for authentication of the drivers to execute.

For signing a driver, a certificate is required._This documentation by Microsoft describes the process and
background knowledge on how to retrieve a test and release certificate, which will be accepted by the 64bit
Windows operating systems.

For using such a certificate in TwinCAT 3, configure the post-compile step of your x64 build target as
documented in the How to create a test certificate for test mode? [» 24]

Test Certificates

For testing purpose it is possible to create and use self-signed test certificates without any technical
limitation.

The following tutorials describe the process on how to enable this capability.
Please make sure that you disable the capability and provide drivers signed by real certificates for production
machines.

* How to create a test certificate for test mode? [P 24]
» How to delete (test-) certificates? [P 26]

Further References:

MSDN, Test Certificates (Windows Drivers),
http://msdn.microsoft.com/en-us/library/windows/hardware/ff553457(v=vs.85).aspx

MSDN, MakeCert Test Certificate (Windows Drivers),
http://msdn.microsoft.com/en-us/library/windows/hardware/ff548693(v=vs.85).aspx

5.4.2 Test signing

Overview
Implementing TwinCAT 3 C++ modules for x64 platforms requires signing the driver with a certificate.

This article describes how to create and install a test certificate for testing a C++ driver.

® Note the procedure when creating test certificates

Developers may have a wide range of tools for creating certificates. Please follow this description
exactly, in order to activate the test certificate mechanism.

One of the following commands must be executed

» Visual Studio 2010 / 2012 prompt with administrator rights. (via: All Programs -> Microsoft Visual
Studio 2010/2012 -> Visual Studio Tools -> Visual Studio Command Prompt, then right-click on "Run
as administrator")

» normal prompt (Start->Command Prompt) with administrator rights, then change to directory
%WINDDK7%\bin\x86\, which contains the corresponding tools.

24 Version: 1.7 TC3 C++

http://msdn.microsoft.com/en-us/library/windows/hardware/ff544865(v=vs.85).aspx

BEGKHOFF Preparation - just once!

1. On XAE:
In the engineering system enter the following in the Visual Studio 2010 / 2012 prompt with administrator
rights (see note above):
makecert -r -pe -ss PrivateCertStore -n CN=MyTestSigningCert
MyTestSigningCert.cer

= This is followed by creation of a self-signed certificate, which is stored in the file
"MyTestSigningCert.cer" and in the Windows Certificate Store

= The result can be verified with mmc (Use File->Add/Remove Snap-in->Certificates):

File Action View Help
=% 7@ = H

Eﬁ‘ Certificates - Current User Issued To = Issued By Expiration Date Intended Purposes Friendly Mar

b [Persanal Tl My TestSigningCert MyTestSigningCert ~ 01.01.2040 <All> <None>
[+ || Trusted Root Certification Authorities

[+ [Other People
|| PC-Doctor, Inc.
4 || PrivateCertStore
|| Certificates
|+ [Certificate Enrollment Requests
i+ | Smart Card Trusted Roots

2. On XAE:
Configuring the certificate such that it is recognized by TwinCAT XAE on the engineering system.
Set the environment variable "TWINCATTESTCERTIFICATE" to "MyTestSigningCert" in the
engineering system or edit the post-build step of "Debug|TwinCAT RT (x64)" and "Release|TwinCAT
RT (x64)".
The name of the variable is NOT the name of the certificate file, but the CN name (in this case
MyTestSigningCert).

System Properties

| Computer Name | Hardware | Advanced |Sy5tern Protection | Remate|

Environment Variables | P

t your computer
User variables for StefanH

Variable Value
TEMP o4USERPROFILE %:\AppDataiLocal {Temp [New System Varisble ﬁ’
TMP %ol SERPROFILE ¥ \AppDataLocal Temp I
Variable name: TWINCATTESTCERTIFICATE
New. ..] [Edit...] [Delete Variable value: MyTestSigningCert |
System variables [1.3] [et
Variable Value G
w?ndlr) C#\Windows Windows Experience Index
windows_tracin... 3 A
windows_tracin... C:\BVTBin\Testslinstalpackage\csilogfile. .. L R} Care(TM) i5-2520M CPU @ 2.50GHz 2.50 GHz
= GEB (7,89 GB usable)
| mew.. || Edt. || Delete | ft Operating System
and Touch Input Available with 2 Touch Points
- OK Cancel i
[] [] [Jroup settings
rh = AefanH-MNB

3. On XAR (and XAE, if local test)
Activate signing mode, so that Windows can accept the self-signed certificates. This is possible on all
systems, which can start the modules, i.e. engineering system or XAR (runtime) systems.

TC3 C++ Version: 1.7 25

Preparation - just once! BEGKHOFF

Use

a command prompt to execute the following:

bcdedit /set testsigning yes

and
=

restart the target system.
If test signing mode is enabled, this is displayed at the bottom right of the desktop.

The PC now accepts all signed drivers for execution.

Test Mode
Windows 7

Build 7601

DE - E S al [F i

4. Test whether a configuration with a TwinCAT module implemented in a TwinCAT C++ driver can be
enabled and started on the target system.

= Compilation of the x64 driver generates the following output:

Show output from: Build = £ ra
1s------ Build started: Project: Untitled2, Configuration: Debug TwinCAT RT (x64) ------
1> header file << C:\TWwinCAT\3.1I\SDK_products\TwinCAT RT (x64)\DebugilUntitled2\\Untitled2Version.h »> is up-to-date!
1> TcPch.cpp
1> Modulel.cpp
1> Untitled2ClassFactory.cpp
1> Untitled2Driver.cpp
1> Untitled2.vexproj - C:A\TwinCATA\3.I1\SDK_products\TwinCAT RT (x64)\Debug\Untitled2.sys
1> The following certificate was selected:
1> Issued to: MyTestSigningCert
1>
1> Issued by: MyTestSigningCert
1>
1> Expires: Sun Jan 81 88:59:59 2848
1>
1> SHAL1 hash: E27ABBEBABCTBCRC36DFDDR@93DDF2486D1EESR2E
1>
1>
1> Done Adding Additional Store
1> Successfully signed and timestamped: C:\TwinCAT\3.1\SDK_products\TwinCAT RT (x64)\Debug\Untitled2.sys
1>
1>
1> MNumber of files successfully Signed: 1
1>
1* MNumber of warnings: 8
1>
1*> MNumber of errors: @
1>
========== Build: 1 succeeded, @ failed, 8 up-to-date, 8 skipped ==========
References:

MSDN, test certificates (Windows driver)

MSDN, MakeCert test certificates (Windows driver),

54.3

Delete test certificate

This article is about how to delete a test certificate.

26

Version: 1.7 TC3 C++

http://msdn.microsoft.com/en-us/library/windows/hardware/ff553457(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/hardware/ff553457(v=vs.85).aspx

BEGKH“FF Preparation - just once!

Overview

Deleting a certificate can be handled with the Microsoft Management Console:

1. Start the Management console MMC.exe via start menu or shell

@ Fle Action View Fawontes Window Melp -igix
&= = BE
| Conele oot Hame Actions
There are no items 1o show in this vigw, Eeisole foot =
More Actions k

2. In the menu click "File" -> "Add/Remove Snap-in.." and select the certificate snap-in for the current user -
finish with "OK"

You can select snap-ins for this console from those avaiable on your computer and configure the selected set of snap-ns. For

extensible snap-ins, you can configure which extensions are enabled,

Avalable snap-ns: _ Selected snap-ins: ——
SnagHn Vendo a | Console Root Edit Extensions. ..]
#0 NET Framework 2.0... Microsoft Cor... W Certficates - Curent User
= | ActiveX Control Micresoft Cor...
ﬁmﬂ'roﬁzamr"lmagﬂ Microsoft Cor... |E
I Certificates Microsoft Cor.., Ly
:#-tmpufmtm Microsoft Cor, .. TF =
2 Comouter Mansgem... Mirosoft Cor... | [Tﬂl—]: m—.
8 Device Manager Micresaft Cor... -
a4 Disk Management Microsoft and. ..
B_|E'-\=nr Viewer Micresoft Cor,..
| Folder Microsoft Cor. ..

] Group Policy Object ... Microsafft Cor...
M 1P Security Monitor Microsoft Cor...

| @ 1P Seaurity Polcy M... Mgosoft Cor... | [Advanced...

Description:
The Certificates snap-in alows you to browse the contents of the certificate stores for yourself, a service, or & computer.

I’ ook || cance

= The certificates should be listed in the node below "PrivateCertStore/Certificates"

TC3 C++ Version: 1.7 27

Preparation - just once!

BECKHOFF

3. Select the certificate to be deleted.

Enterpnze Trust
Intermediate Certification Authosties
Active Directory User Object

| Trusted Pubhishers
Untrusted Centificates

= Third-Party Root Certification Autharities
Trusted People
Other Pecple

& PrivateCenStone
* Certificates
_ Certificate Enrollment Requests
| Semart Caed Trusted Raots

@ File Action Wiew Fmortes Window Help
«o s[olc= BE :
{ Console Root Issued To Issued By Expiration Date Intended Pusposes Actions |
a GF C:ﬂ:ldalul-CmrenEUur ol Beckholf.comiTest) Backhol.com{Test) 17172080 <Alls Cetificates -
i L MyTestiigningCert My TestSigningCen 1/71/2080 <Al (BT :
T ification A i ik g ¥ gning g Maore Actions 3
= Trusted Root Centification Authorities T TanCent TeiTastCent LLi2040 <All>

ProvateCertStare store contsins 3 certificates.

5.4.4

Customer Certificates

By using the TwinCAT C++ Class Wizard, the projects will be prepared using the prior described test

certificate procedure on x64 targets.

This test signing system could be used for the whole engineering and testing process.

If one would like to establish an infrastructure and sign the kernel drivers with official Microsoft trusted
certificates, the project properties’ postbuild procedure provides the entry point:

|-

Untitled] Property Pages

(% |[=]

Browse Infermation

=

4 Build Events
Pre-Build Event
Pre-Link Event
Post-Build Event

Custom Build Step

7

Configuration: | Active(Release) * | Platform: |Active(TwinCAT RT (x64)) *] ’ Configuration Manager...]
> Commen Properties Command Line "SOWINDDKT\bin'xB6\signtool” sign /v /s PrivateCertStore /n ST\
4 Configuration Properties Description

General Use In Build Yes

Debugging

VC++ Directories .

Command Line @

s CfC++
> Linker "S(WINDDKT\bin'x88\signtool” sign /v /s PrivateCertStore /n S(TWINCATTESTCERTIFICATE) "S(TargetPath)” =
> Manifest Tool
» Resources
> MIDL
> XML Document Genel

F

Macros=»

l OK l [Cancel l
LB
Specifies a command line for the post-build event teol to run.
4 n | »
oK] [Cancel Apply
28 Version: 1.7 TC3 C++

BECKHUFF Preparation - just once!

The customer could either simply replace the value of the environment variable
TWINCATTESTCERTIFICATE or identify another certificate to use.
The customer could also modify the whole signing procedure using the sign tool.

5.5 SecureBoot: Driver signing

Systems may require enhanced validation of the Windows drivers. This is usually the case with systems with
enabled SecureBoot.

In this case, the TwinCAT C++ drivers must also be signed by the "Attestation Signing" established by
Microsoft in the same way as all other drivers that the operating system is to load. The procedure for this is

documented in MSDN.

For development purposes, a shutdown of SecureBoot can simplify the development process on
corresponding test systems.

TC3 C++ Version: 1.7 29

https://technet.microsoft.com/en-us/library/hh824987.aspx
https://docs.microsoft.com/en-us/windows-hardware/drivers/dashboard/attestation-signing-a-kernel-driver-for-public-release

Modules BEGKHOFF

6 Modules

The TwinCAT module concept is one of the core elements for the modularization of modern machines. This
chapter describes the modular concept and working with modules.

The modular concept applies to all TwinCAT modules, not just C++ modules, although most details only
relate to the engineering of C++ modules.

6.1 The TwinCAT Component Object Model (TcCOM)
concept

The TwinCAT Component Object Model defines the characteristics and the behavior of the modules. The
model derived from the "Component Object Model" COM from Microsoft Windows describes the way in
which various independently developed and compiled software components can co-operate with one
another. To make that possible, a precisely defined mode of behavior and the observation of interfaces of
the module must be defined, so that they can interact. Such an interface is also ideal for facilitating
interaction between modules from different manufacturers, for example.

To some degree TcCOM is based on COM (Component Object Model of the Microsoft Windows world),
although only a subset of COM is used. In comparison with COM, however, TcCOM contains additional
definitions that go beyond COM, for example the state machine module.

Overview and application of TcCOM modules
This introductory overview is intended to make the individual topics easier to understand.

One or several TcCOM modules are consolidated in a driver. This driver is created by TwinCAT Engineering
using the MSVC compiler. The modules and interfaces are described in a TMC (TwinCAT Module Class) file.
The drivers and their TMC file can now be exchanged and combined between the engineering systems.

TwinCAT XAR

TcCOM_1
Instance St

TcCOM_n

Instance

Instances of these modules are now created using the engineering facility. They are associated with a TMI
file. The instances can be parameterized and linked with each other and with other modules to form the 10. A
corresponding configuration is transferred to the target system, where it is executed.

Corresponding modules are started, which register with the TwinCAT ObjectServer. The TwinCAT XAR also
provides the process images. Modules can query the TwinCAT ObjectServer for a reference to another
object with regard to a particular interface. If such a reference is available, the interface methods can be
called on the module instance.

The following sections substantiate the individual topics.

30 Version: 1.7 TC3 C++

BECKHUFF Modules

ID Management

Different types of ID are used for the interaction of the modules with each other and also within the modules.
TcCOM uses GUIDs (128 bit) and 32 bit long integers.

TcCOM uses
« GUIDs for: ModullDs, ClassIDs and InterfacelDs.
» 32 bit long integers are used for: ParameterIDs, ObjectIDs, ContextlDs, CategoryID.

Interfaces
An important component of COM, and therefore of TcCOM too, is interfaces.

Interfaces define a set of methods that are combined in order to perform a certain task. An interface is
referenced with a unique ID (InterfacelD), which must never be modified as long as the interface does not
change. This ID enables modules to determine whether they can cooperate with other modules. At the same
time the development process can take place independently, if the interfaces are clearly defined.
Modifications of interfaces therefore lead to different IDs. The TcCOM concept is designed such that
InterfacelDs can superpose other (older) InterfacelDs ("Hides" in the TMC description / TMC editor). In this
way, both versions of the interface are available, while on the other hand it is always clear which is the latest
InterfacelD. The same concept also exists for the data types.

TcCOM itself already defines a whole series of interfaces that are prescribed in some cases (e.g.
ITComObiject), but are optional in most. Many interfaces only make sense in certain application areas. Other
interfaces are so general that they can often be re-used. Provision is made for customer-defined interfaces,
so that two third-party modules can interact with each other, for example.

« All interfaces are derived from the basic interface ItcUnknown which, like the corresponding interface of
COM, provides the basic services for querying other interfaces of the module (TcQuerylnterface) and
for controlling the lifetime of the module (TcAddRef and TcRelease).

» The ITComObiject interface, which must be implemented by each module, contains methods for
accessing the name, ObjectID, ObjectID of the parent, parameters and state machine of the module.

Several general interfaces are used by many modules:

» ITcCyclic is implemented by modules, which are called cyclically ("CycleUpdate"). The module can
register via the ITcCyclicCaller interface of a TwinCAT task to obtain cyclic calls.

» The ITcADI interface can be used to access data areas of a module.
» ITcWatchSource is implemented by default; it facilitates ADS device notifications and other features.

» The ITcTask interface, which is implemented by the tasks of the real-time system, provides information
about the cycle time, the priority and other task information.

» The ITComObjectServer interface is implemented by the ObjectServer and referenced by all modules.

A whole series of general interfaces has already been defined. General interfaces have the advantage that
their use supports the exchange and recycling of modules. User-defined interfaces should only be defined if
no suitable general interfaces are available.

Class Factories

"Class Factories" are used for creating modules in C++. All modules contained in a driver have a common
Class Factory. The Class Factory registers once with the ObjectServer and offers its services for the
development of certain module classes. The module classes are identified by the unique ClassID of the
module. When the ObjectServer requests a new module (based on the initialization data of the configurator
or through other modules at runtime), the module selects the right Class Factory based on the ClassID and
triggers creation of the module via its ITcClassFactory interface.

Module service life

Similar to COM, the service life of a module is determined via a reference counter (RefCounter). The
reference counter is incremented whenever a module interface is queried. The counter is decremented when
the interface is released. An interface is also queried when a module logs into the ObjectServer (the
ITComObiject interface), so that the reference counter is at least 1. The counter is decremented on logout.

TC3 C++ Version: 1.7 31

Modules BEGKHOFF

When the counter reaches 0, the module deletes itself automatically, usually after logout from the
ObjectServer. If another module already maintains a reference (has an interface pointer), the module
continues to exist, and the interface pointer remains valid, until this pointer is released.

TwinCAT XAR

TcCOM_1
Implements Interface

TcQuerylnterface

TcCOM _2

Interface Pointer
TcRelease

6.1.1 TwinCAT module properties

A TcCOM module has a number of formally defined, prescribed and optional properties. The properties are
sufficiently formalized to enable interchangeable application. Each module has a module description, which
describes the module properties. They are used for configuring the modules and their relationships with each
other.

If a module is instantiated in the TwinCAT runtime, it registers itself with a central system instance, the
ObjectServer. This makes it reachable and parameterizable for other modules and also for general tools.
Modules can be compiled independently and can therefore also be developed, tested and updated
independently. Modules can be very simple, e.g. they may only contain a basic function such as low-pass
filter. Or they may be very complex internally and contain the whole control system for a machine
subassembly.

There are a great many applications for modules; all tasks of an automation system can be specified in
modules. Accordingly, no distinction is made between modules, which primarily represent the basic functions
of an automation system, such as real-time tasks, fieldbus drivers or a PLC runtime system, and user- or
application-specific algorithms for controlling a machine unit.

The diagram below shows a common TwinCAT module with his main properties. The dark blue blocks define
prescribed properties, the light blue blocks optional properties.

32 Version: 1.7 TC3 C++

BEGKHUFF Modules

TwinCAT XAR

TwinCAT Module [TcCOM)]

Module Description
State Machine
TComObject Interface

Interface

Interfaces Parameters Pointars

Comtexts

Data Area

Data Areas Categories Pointers

ADS Port

Module description

hModule Description
. ITComObject Interface
. :

o :
T
)
R
e
i

#h

il

Each TcCOM module has some general description parameters. These include a ClassID, which
unambiguously references the module class. It is instantiated by the corresponding ClassFactory. Each
module instance has an ObjectID, which is unique in the TwinCAT runtime. In addition there is a parent
ObjectID, which refers to a possible logical parent.

The description, state machine and parameters of the module described below can be reached via the
ITComObject interface (see "Interfaces").

Class description files (*.tmc)

The module classes are described in class description files (TwinCAT Module Class; *.tmc).

These files are used by developers to describe the module properties and interfaces, so that others can use
and embed the module. In addition to general information (vendor data, module class ID etc.), optional
module properties are described.

TC3 C++ Version: 1.7 33

Modules BEGKHOFF

» Supported categories

* Implemented interfaces

« Data areas with corresponding symbols
» Parameter

* Interface pointers

» Data pointers, which can be set

The system configurator uses the class description files mainly as a basis for the integration of a module
instance in the configuration, for specifying the parameters and for configuring the links with other modules.

They also include the description of all data types in the modules, which are then adopted by the configurator
in its general data type system. In this way, all interfaces of the TMC descriptions present in the system can
be used by all modules.

More complex configurations involving several modules can also be described in the class description files,
which are preconfigured and linked for a specific application. Accordingly, a module for a complex machine
unit, which internally consists of a number of submodules, can be defined and preconfigured as an entity
during the development phase.

Instance description files (*.tmi)

An instance of a certain module is described in the instance description file (TwinCAT Module Instance;
*.tmi). The instance descriptions are based on a similar format, although in contrast to the class description
files they already contain concrete specifications for the parameters, interface pointers etc. for the special
module instance within a project.

The instance description files are created by TwinCAT Engineering (XAE), when an instance of a class
description is created for a specific project. They are mainly used for the exchange of data between all tools
involved in the configuration. However, the instance descriptions can also be used cross-project, for example
if a specially parameterized module is to be used again in a new project.

State machine

State Machine

Each module contains a state machine, which describes the initialization state of the module and the means
with which this state can be modified from outside. The state machine describes the states, which occur
during starting and stopping of the module. This relates to module creation, parameterization and production
in conjunction with the other modules.

Application-specific states (e.g. of the fieldbus or driver) can be described in their own state machines. The
state machine of the TcCOM modules defines the states INIT, PREOP, SAFEOP and OP. Although the state
designations are the same as under EtherCAT fieldbus, the actual states differ. When the TcCOM module
implements a fieldbus driver for EtherCAT, it has two state machines (module and fieldbus state machine),
which are passed through sequentially. The module state machine must have reached the operating state
(OP) before the fieldbus state machine can start.

The state machine is described [P_39] in detail separately.

34 Version: 1.7 TC3 C++

BEGKHOFF Modules

Parameter

TwinCAT XAR

TwinCAT Module (TcCOM)

Module Description
State Machine
ITComObject Interface

interface

Interfaces Parameters -
E Pointers

Contexts

Data Area

Data Areas Categories et e

ADS Port

Modules can have parameters, which can be read or written during initialization or later at runtime (OP

state). Each parameter is designated by a parameter ID. The uniqueness of the parameter ID can be global,
limited global or module-specific. Further details can be found in the "ID Management" section. In addition to

the parameter ID, the parameter contains the current data; the data type depends on the parameter and is
defined unambiguously for the respective parameter ID.

Interfaces

TwinCAT XAR

TwinCAT Module (TcCOM)
Module Description
State Machine

MComObject Inte
Interfaces Parameters
Contexts

Data Area
Pointers

Data Areas Categories

ADS Port

TC3 C++ Version: 1.7

35

Modules BEGKHOFF

Interfaces consist of a defined set of methods (functions), which offer modules through which they can be
contacted by other modules. Interfaces are characterized by a unique ID, as described above. A module
must support at least the ITComObiject interface and may in addition contain as many interfaces as required.
An interface reference can be queried by calling the method "TcQuerylnterface" with specification of the
corresponding interface ID.

Interface pointers

Interface
Painters.

Interface pointers behave like the counterpart of interfaces. If a module wants to use an interface of another
module, it must have an interface pointer of the corresponding interface type and ensure that it points to the
other module. The methods of the other module can then be used.

Interface pointers are usually set on startup of the state machine. During the transition from INIT to PREOP
(IP), the module receives the object ID of the other modules with the corresponding interface; during the
transition from PREOP to SAFEOP (PS) or SAFEOP to OP (SO), the instance of the other modules is
searched with the ObjectServer, and the corresponding interface is set with the Method Query interface.
During the state transition in the opposite direction, i.e. from SAFEOP to PREOP (SP) or OP to SAFEOP
(OS), the interface must be enabled again.

Data areas

Data Areas

Modules can contain data areas, which can be used by the environment (e.g. by other modules or the 10
area of TwinCAT). These data areas can contain any data. They are often used for process image data
(inputs and outputs). The structure of the data areas is defined in the device description of the module. If a
module has data areas, which it wants to make accessible for other modules, it implements the ITcADI
interface to enable access to the data. Data areas can contain symbol information, which describes the
structure of the respective data area in more detail.

36 Version: 1.7 TC3 C++

BEGKHOFF Modules

Data area pointer

TwinCAT XAR

TwinCAT Module (TeCOM)

Interface

Interfaces Parameters :
Pointers

Contexts

If a module wants to access the data area of other modules, it can contain data area pointers. These are
normally set during initialization of the state machine to data areas or data area sections of other modules.
The access is directly to the memory area, so that corresponding protection mechanisms for competing
access operations have to be implemented, if necessary. In many cases it is preferable to use a
corresponding interface.

Context

TwinCAT XAR

TwinCAT Module {TcCOM)
Module Description
State Machine
MComObject Interface

Interface

Interfaces Parameters : .
Pointers

Contexts

Data Area
Pointers

Data Areas Categories

ADS Port

The context should be regarded as real-time task context. Context is required for the configuration of the
modules, for example. Simple modules usually operate in a single time context, which therefore requires no
detailed specification. Other modules may partly be active in several contexts (e.g. an EtherCAT master can
support several independent real-time tasks, or a control loop can process control loops of the layer below in
another cycle time). If a module has more than one time-dependent context, this must be specified the in the
module description.

TC3 C++ Version: 1.7 37

Modules BEGKHOFF

Categories

TwinCAT XAR

TwinCAT Module {TcCOM)

Module Description
State Machine
MComObject Interface

interface

interfaces Parameters -
Pointers

Contexts

Data Area

Data Areas ateoories :
o Pointers

ADS Port

Modules can offer categories by implementing the interface ITComObjectCategory. Categories are
enumerated by the ObjectServer, and objects, which use this to associated themselves with categories, can
be queried by the ObjectServer (ITComObjectEnumPtr).

ADS

TwinCAT XAR

TwinCAT Module {TcCOM)
Module Description
State Machine
MComObject interface

Interface

interfaces Parameters D
Pointers

Contexis

Data Area

Categories

ADS Port

Each module that is entered in the ObjectServer can be reached via ADS. The ObjectServer uses the
ITComObject interface of the modules in order to read or write parameters or to access the state machine,
for example. In addition, a dedicated ADS port can be implemented, through which dedicated ADS
commands can be received.

38 Version: 1.7 TC3 C++

BECKHUFF Modules

System module

In addition, the TwinCAT runtime provides a number of system modules, which make the basic runtime
services available for other modules. These system modules have a fixed, constant ObjectID, through which
the other modules can access it. An example for such a system module is the real-time system, which makes
the basic real-time system services, i.e. generation of real-time tasks, available via the ITcRTime interface.
The ADS router is also implemented as a system module, so that other modules can register their ADS port
here.

Creation of modules

Modules can be created both in C++ and in IEC 61131-3. The object-oriented extensions of the TwinCAT
PLC are used for this purpose. Modules from both worlds can interact via interfaces in the same way as pure
C++ modules. The object-oriented extension makes the same interfaces available as in C++.

The PLC modules also register via the ObjectServer and can therefore be reached through it. PLC modules
vary in terms of complexity. It makes no difference whether only a small filter module is generated or a
complete PLC program is packed into a module. Due to the automation, each PLC program is a module
within the meaning of TwinCAT modules. Each conventional PLC program is automatically packed into a
module and registers itself with the ObjectServer and one or several task modules. Access to the process
data of a PLC module (e.g. mapping with regard to a fieldbus driver) is also controlled via the defined data
areas and ITcADI.

This behavior remains transparent and invisible for PLC programmers, as long as they decide to explicitly
define parts of the PLC program as TwinCAT modules, so that they can be used with suitable flexibility.

6.1.2 TwinCAT module state machine

In addition to the states (INIT, PREOP, SAFEOP and OP), there are corresponding state transitions, within
which general or module-specific actions have to be executed or can be executed. The design of the state
machine is very simple. In any case, there are only transitions to the next or previous step,

resulting in the following state transitions: INIT to PREOP (IP), PREOP to SAFEOP (PS) and SAFEOP to OP
(SO). In the opposite direction there are the following state transitions: OP to SAFEOP (OS), SAFEOP to
PREOP (SP) and PREOP to INIT (PI). Up to and including the SAFEOP state, all states and state transitions
take place within the non-real-time context. Only the transition from SAFEOP to OP, the OP state and the
transition from OP to SAFEOP take place in the real-time context. This differentiation is relevant when
resources are allocated or activated, or when modules register or deregister with other modules.

TC3 C++ Version: 1.7 39

Modules BEGKHOFF

TwinCAT XAR
TcCOM State Machine
INIT

P Pl

PREOP

g
=
g
5

P5 5P

SAFEOP

05

Real-Time

State: INIT

The INIT state is only a virtual state. Immediately after creation of a module, the module changes from INIT
to PREOP, i.e. the IP state transition is executed. The instantiation and the IP state transition always take
place together, so that the module never remains in INIT state. Only when the module is removed does it
remain in INIT state for a short time.

Transition: INIT to PREOP (IP)

During the IP state transition, the module registers with the ObjectServer with its unique ObjectID. The
initialization parameters, which are also allocated during object creation, are transferred to the module.
During this transition the module cannot establish connections to other modules, because it is not clear
whether the other modules already exist and are registered with the ObjectServer. When the module
requires system resources (e.g. memory), these can be allocated during the state transition. All allocated
resources have to be released again during the transition from PREOP to INIT (PI).

State: PREOP

In PREOP state, module creation is complete and the module is usually fully parameterized, even if further
parameters may be added during the transition from PREOP to SAFEOP. The module is registered in the
ObjectServer, although no connections with other modules have been created yet.

Transition: PREOP to SAFEOP (PS)

In this state transition the module can establish connections with other modules. To this end it has usually
received, among other things, ObjectIDs of other modules with the initialization data, which are now
converted to actual connections with these modules via the ObjectServer.

The transition can generally be triggered by the system according to the configurator, or by another module
(e.g. the parent module). During this state transition further parameters can be transferred. For example, the
parent module can transfer its own parameters to the child module.

State: SAFEOP

The module is still in the non-real-time context and is waiting to be switched to OP state by the system or by
other modules.

40 Version: 1.7 TC3 C++

BEGKHOFF Modules

Transition: SAFEOP to OP (SO)

The state transition from SAFEOP to OP, the state OP, and the transition from OP to SAFEOP take place in
the real-time context. System resources may no longer be allocated. On the other hand, resources can now
be requested by other modules, and modules can register with other modules, e.g. in order to obtain a cyclic
call during tasks.

State: OP

In OP state the module starts working and is fully active in the meaning of the TwinCAT system.

Transition: OP to SAFEOP (OS)

This state transition takes place in the real-time context. All actions from the SO transition are reversed, and
all resources requested during the SO transition are released again.

Transition: SAFEOP to PREOP (SP)

All actions from the PS transition are reversed, and all resources requested during the PS transition are
released again.

Transition: PREOP to INIT (PI)

All actions from the IP transition are reversed, and all resources requested during the IP transition are
released again. The module signs off from the ObjectServer and usually deletes itself (see "Service life").

6.2 Module-to-module communication
TcCOM modules can communicate with one another. This article is intended to provide an overview of the
various options. There are four methods of module-to-module communication:

» 10 Mapping (linking of input/output symbols)

« 10 Data Pointer

* Method calls via interface

« ADS

These four methods will now be described.

10 Mapping (linking of input/output symbols)

The inputs and outputs of TcCOM modules can be linked by IO Mapping in the same way as the links to

physical symbols in the fieldbus level. To do this, data areas are created in the TMC editor [P 112] that
describe the corresponding inputs/outputs. These are then linked in the TwinCAT solution.

Through mapping, the data are provided or accepted at the task beginning (inputs) or task end (outputs)
respectively. The data consistency is ensured by synchronous or asynchronous mapping.

The implementing language (PLC, C++, Matlab) is unimportant.

TwinCAT XAR

TcCOM TcCOM TocCOM
(PLC) (C++) (10}

Mapping Mapping

TC3 C++ Version: 1.7 41

Modules BEGKHOFF

The following sample shows the realization:

Samplel2: Module communication: IO mapping used [» 264]

10 Data Pointer

Direct memory access is also possible within a task via the Data Area Pointers, which are created in the
TMC Editor.

If several callers of a task or callers from other tasks occur, the user must ensure the data consistency
through appropriate mechanisms. Data pointers are available for C++ and Matlab.

TwinCAT XAR

TcCOM) . TcCOM

Outputs Outputs

The following sample shows the realization:

Samplel0: Module communication: Use of data pointers [P 235]

Method calls via interfaces

As already described, TcCOM modules can offer interfaces that are also defined in the TMC editor. If a
module implements them ("Implemented Interfaces" in the TMC editor [»_103]), it offers appropriate methods.
A calling module will then have an "Interface Pointer" to this module in order to call the methods.

These are blocking calls, meaning that the caller blocks until the called methods come back and the return
values of the methods can thus be directly used. If several callers of a task or callers from other tasks occur,
the user must ensure the data consistency through appropriate mechanisms.

TwinCAT XAR

TcCOM —(.— TeCOM

The following samples show the realization:

Samplell: Module communication: PLC module calls a method of a C-module [P 236]

Samplella: Module communication: C-module cites a method in the C-module [» 263]

Further samples exist for the communication with the PLC. [P 281]

ADS

As the internal communication of the TwinCAT system in general, ADS can also be used to communicate
between modules. Communication in this case is acyclic, event-controlled communication.

42 Version: 1.7 TC3 C++

BEGKHUFF Modules

At the same time ADS can also be used to collect or provide data from the UserMode and communicate with
other controllers (i.e. via the network). ADS can also be used to ensure data-consistent communication, e.g.
between tasks/cores/CPUs. In this case TcCOM modules can be both clients (requesters) and servers
(providers). The implementing language (PLC, C++, Matlab) is unimportant.

Windows Windows

OPC-UA HMI saL Mail

" ADS Router : " ADS Router

Matlab,
Simulink.

PLC PLC C++

TwinCAT TwinCAT

The following samples show the realization:

Sample03: C++ as ADS server [P 216]

Sample06: UI-C#-ADS client uploads the symbols from the module [P 226]

Sample07: reception of ADS notifications [» 231]

Sample08: provision of ADS-RPC [P 232]

TC3 C++ Version: 1.7 43

Modules - Handling BEGKHGFF

7

Modules - Handling

TcCOM Modules are defined and implemented. Afterwards they could be

» Exchanged: Export modules [P 44], Import modules [P 45]
Started

So this section describes handling of the Modules.

7.1

Export modules

This article covers how to export a TwinCAT 3 module, which could be used on any other TwinCAT machine.

The steps to be done are

1. Implementation of a TwinCAT 3 C++ project on one engineering PC equipped with Visual Studio version.

Please refer to the quick start sample [P 50] Create a TwinCAT 3 project, implement the TwinCAT
modules as described, compile and test the module before exporting.

. Since the resulting module should be capable of being used on any machine, TwinCAT will generate
32bit as well as 64bit versions of the module.
Since x64bit modules need to be signed, the machine exporting the module needs to have a certificate
installed. Please see x64: driver signing [P 23] about how to generate and install a certificate.
(Step 3 could be left out on an engineering or 32bit system)

3. To export a TC 3 C++ module just right click the module-project in the solution tree and select “TwinCAT

Publish Modules"
= As a result the module will be compiled (Rebuild) - the successfully export is shown in the output

view "Build"

Output
Show output from: |Euw|d '|| _9 | "‘_'J —:'$| ‘ El

==========| TwinCAT Publish Modules started at @4.89.2812 12:11:23 ===
Project "TempContr.vcxproj"™ (TcPublishModule target(s)):

Project "TempContr.vcxproj” (TcPublishModuleBinaries target(s)):

O TwinCAT3\SDK AW Bin \ExtractVersionInfo" "TempContr" "C:\TwinCAT3\SDK_products\TwinCAT RT (x86)\Release‘\TempContri\TempContr"

:VCEnd

Could not open header file << C:\TwinCAT3\SDK_products\TwinCAT RT (x86)\Release\TempContri\TempContrVersion.h >»!

c:WProgram Files (x86)\Microsoft Visual Studio 18.8\WCibinWCl.exe /c /IC:A\TwinCAT3A\SDK\\Include /IC:\TwinCAT3\SDK\\Include\Io /IC:\TwinC!
TcPch.cpp

c:WProgram Files (x86)\Microsoft Visual Studio 1@.@\VCibin\Cl.exe /c /IC:\TwinCAT3\SDK\\Include /IC:\TwinCAT3\SDK\\Include\Io /IC:\TwinC!
TempContrClassFactory.cpp

TempContrDriver.cpp

TempContrDrv.cpp

C:%WProgram Files (x86)\Microsoft SDKs\Windows\v7.8A\bin\rc.exe /1"@x8489" /nologo /Fo"C:\TwinCAT3\SDK\'_products\TwinCAT RT (x86)%Releas:

Most important is the success report at the end:

44

Version: 1.7 TC3 C++

BECKHOFF Modules - Handling

Output

Show output from: |Bui|d '| | _ﬁ | "a'ﬂ _:'lb | =X | =
TePch.cpp

c:%WProgram Files (x86)%\Microsoft Visual Studic 18.@°\VCO.binWCL.exe fc JIC:\TwinCAT3\5DK\%\Includ
TempContrClassFactory.cpp

TempContrltrl.cpp

TempContrDrv.cpp

TempContrW32.cpp

C:“\Program Files (x86)\Microsoft SDKs\Windows\v7.@&\binyrc.exe /D _UNICODE /D UNICODE /1"BxB848
c:%\Program Files (x86)\Microsoft Visual Studioc 1@.en\VC\binilink.exe JERRORREPORT:QUEUE /OUT:™C
"CATWinCATISDE Y _productsi\TwinCAT UM (x86)\Release\TempContr\TcPch.obj"

"CiATwinCAT3ASDKY _products \TwinCAT UM (xB86)\Release\TempContriTempContrClassFactory.obj”
"CoATwinCAT3WSDEA_products \TwinCAT UM (x86)%\Release‘\TempContri\TempContrCtrl.obj"
"CoATwinCAT3WSDEN_products \TwinCAT UM (x86)%\Release\TempContri\TempContrDrv.obi"
"CoATwinCAT3WSDEN_products\TwinCAT UM (x86)%\Release\TempContriTempContri32.obj"

Creating library C:3\TwinCAT3%SDKA_products \TwinCAT UM (x86)%Release‘\TempContrkW32.1lib and ol
TempContr.vcxproj -> CoA\TwinCAT345DKV_products)\TwinCAT UM (x86)%\Release\TempContri32.dll
C:"Program Files (x86)\Microsoft SDKs‘\Windowsw7.@A%bin\mt.exe /nologo fverbose Jout:™C:4TwinC
Done building project "TempContr.vcxproj™.

Project “TempContr.wcxproj™ (TcPublishAdditionalFiles target(s)):

Done building project "TempContr.vexproj™.

Done building project "TempContr.vexproj™.

========== TwinCAT Publish Modules finished at ©4.89.2812 12:11:29 ==========

The binary files and the TMC module description are exported into folder "TempContr" under "C:
\TwinCAT\3.x\CustomConfig\Modules"

4. Just copy folder "TempContr" to any other TwinCAT 3 machine for import.

@Uv| ;v Computer » O5(C:) » TwinCAT » 31 » CustomConfig » Modules » TestDriver »

Organize * Include in library + Share with - Burn Mew folder
MName 2 Date modified Type Size
TwinCAT RT (x64) 29.04.2014 10:14 File folder
, TwinCAT RT (x86) 29.04.2014 10:14 File folder
 TwinCAT UM (x54) 29042014 10:14 File folder
TwinCAT UM (x86) 29.04.2014 10:14 File folder
| 7| TestDrivertmc 29.04.2014 10:14 TMC File TEB
7.2 Import modules

This article describes how a binary TC3 module can be imported and integrated into a "PC/IPC" controller
with TwinCAT 3 XAE (without the full version of Visual Studio).
The binary TC3 module was implemented on another PC and exported beforehand.

The following steps have to be carried out

TC3 C++ Version: 1.7 45

Modules - Handling BEGKHOFF

1. Copy the binary module to the destination folder ". \TwinCAT\3.x\CustomConfig\Modules" on the second
IPC with TwinCAT XAE without the full version of Visual Studio. The "TestDriver.zip" archive is unpacked
in this example.

@Qv| W v Computer » O50(C) » TwinCAT » 31 » CusternConfig » Modules »

Organize = & Open - Burn Mew folder
Mame . Date modified Type Size
. AdsCommunicationModule 04.11.2014 16:49 File folder
. IncrementerCpp 12.09.2014 08:40 File folder
| PublishDrrvertdod 01.09.2014 12:33 File folder
. SortCrder 05.09.2014 12:33 File folder
. TecDataTypeProvider 07.01.201511:58 File folder
. TcpClient 01.10.201512:34 File folder
. TempContr_Stateflow 29.04.201513:28 File folder
. Untitledl 01.06.2015 07:56 File folder
. VersionVendorlnfo 01.09.2014 12:54 File folder
| 1 TestDriver.zip 28.10.201514:23 Compressed (zipp... 2.606 KB

= After that the "TestDriver" module provides the binary modules (in the RT and UM subfolders) and
the corresponding TwinCAT Module Class *.tmc file "TestDriver.tmc".

@Uv| W v Computer » O5(C) » TwinCAT » 31 » CustomConfig » Modules » TestDriver »

Organize = Include in library - Share with = Burn Mew folder
MName Date modified Type Size
. TwinCAT RT (x54) 29.04.2014 09:14 File folder
- TwinCAT RT (x86) 29.04.2014 09:14 File folder
) TwinCAT UM (x54) 29.04.2014 09:14 File folder
o TwinCAT UM (x36) 29.04.2014 09:14 File folder
| 7] TestDrivertrmc 29.04.2014 09:14 TMC File TKB

2. Start the TwinCAT XAE environment and create a TwinCAT 3 project.

46 Version: 1.7 TC3 C++

BECKHOFF

Modules - Handling

3. Right-click on "System->TcCOM Objects" and select "Add New Item...".

Solution Explorer
ARRCRE-
Search Solution Explorer (Ctrl+a)
& Solution TwinCAT I0-Project’ (1 project)
4 o] TwinCATIO-Project
4] SYSTEM
% License
@ Real-Time

& Tasks
sf= Routes
¥ Type System

MOTION

[pLC

4 E C++
4 [Gd Untitledl
I [Untitledl Project

b Fro

- 7

o

] TcCOM Objects

Insert TeCom Object

Search: M arne: Object] [Clncrementi odule)

Type: -- Beckhoff Automation GrabH
(- (] Cr+ Module Vendar
- Er{E] e+ Madules

Clncrementtd odule [Module]

; E CModulel [Module]
|i8] CModulel [Moduls]
[E8] TE1400 Module Vendor

7

Ak

=
£
=%
@

Ingert Instance..

Reload

File: C:ATwinCAT 3.1\ CustomConfightModuleshIncrementerCoptlncrementerCpp. tme

4. The new CTestModule module is listed in the dialog box that appears. Create a module instance by
selecting the module name and continue with "OK".

5. The instance of the TestModule module now appears under "TcCom Objects™.
6. The next steps as before: generate a new task and

7. go to "Context" of the module instance and link the C++ module instance with the previously added

"Task 1".
8. Activate configuration

TC3 C++

Version: 1.7

47

TwinCAT C++ development BEGKHOFF

8 TwinCAT C++ development

Overview of the development environment

Dd TwinCAT I0-Project - Microsoft Visual Studio (Administrator) ¥ & | QuickLaunch (
File Edit View Project Build Debug TwinCAT TwinSAFE PLC Team Tools Test Scope Analyze Window Help

Release ~ TwinCAT RT (x04) = P TwinCAT Debugger ~ 3 B AddMed

<Local> -

Modulel.cpp + X
Untitledl = 2 CModulel ~ @ CycleUpdate(ITcTask * ipTask, [TcUnknow +

e
4
al

Solution Explorer
@B|lo-sam £ =
Search Solution Explorer (Ctrl+) D~

fal Solution TwinCAT IO-Project’ (1 project)
4] TwinCAT I0-Project

HRESULT hr = 5_0K;
m_Trace.Log{t1Verbose, FENTERA);

4 (8 svsTEM 1 2 /7 TODD: Add deinitialization code
1
License m_Trace.Log{t1Verbose, FLEAVEA "hr=@x%238x", hr);
@ Real-Time return hrj
E] Tasks b
=% Routes

i

¥5 Type System
EHRESULT CModulel::CycleUpdate{ITcTask® ipTask, ITcUnknown* ipCaller, ULONG_PTR context)

[&] TcCOM Objects
MOTION
PLC
(&3 SAFETY
4 [C++
4 Untitledl
4 [%] Untitled1 Project
> =B References
I 15 External Dependencies
3 Header Files
4

HRESULT hr = 5_0K;
// TODO: Replace the sample with your cyclic code
m_counter+=m_Inputs.Value;

m_Outputs.Value=m_counter;

return hr;

Source Files

++ Modulel.cpp

++ TcPch.cpp
[Untitled!.rc Show output from: Build
++ Untitled] ClassFactory.cpp 13 :
3 TMC Files 1> Number of errors: @

3 TwinCAT RT Files
3 TwinCAT UM Files

Team Explorer

Exception Settings Error List mm

The layout of Visual Studio is flexible and adaptable, so that only a brief overview of a common configuration
can be provided here. The user is free to configure windows and arrangements as required.

1. In the TwinCAT solution, a TwinCAT C++ project can be created by right-clicking on the C++ icon.
This project contains the sources (“Untitled Project”) of perhaps several modules [»_30], and module
instances ("Untitled1_Obj1 (CModule1)") can be created. The module instances have inputs/outputs,
which can be linked in the usual way ("Link"). There are further options [P 41] for module interaction.

2. The Visual Studio editor for Visual C++ is used for programming. Note in particular the drop-down
boxes for fast navigation within a file. In the lower section the result of the compile process is output.

The user can switch to TwinCAT messages (cf. Module messages for the Engineering (logging / trac-

ing) [»_193]).
The usual features such as breakpoints (cf. Debugging [»_68]) can be used in the editors.

3. The freely configurable toolbar usually contains the toolbar for TwinCAT XAE Base. "Activate Configu-
ration", "RUN", "CONFIG", Choose Target System (here "<Local>") and some other buttons offer
quick access to frequently used functions. "TwinCAT Debugger" is the button for establishing the con-
nection with the target system with regard to C++ modules (the PLC uses a separate debugger). Like
in other C++ programs, and in contrast to PLC, in TwinCAT C++ a distinction has to be made between
"Release" and "Debug". In a build process for "Release", the code is optimized to such an extent that
a debugger may no longer reliably reach the breakpoints, and incorrect data may be displayed.

Procedure
This section describes the processes for programming, compiling and starting a TwinCAT C++ project.

It provides a general overview of the engineering process for TwinCAT C++ projects with reference to the
corresponding detailed documentation. The quick start [P _50] guide describes the individual common steps.

1. Type declaration and module type:
The TwinCAT Module Class Editor (TMQ) [»_79] and TMC code generator is used for the definition of
data types and interfaces, and also for the modules that use these.

48 Version: 1.7 TC3 C++

BEGKHOFF TwinCAT C++ development

The TMC code generator generates source code based on the processed TMC file and prepares data
types / interfaces for use in other projects (like PLC).

The code generator can be started over and over again: The code generation takes note of and
preserves the programmed user code.

2. Programming

The familiar Visual Studio C++ programming environment is used for the development and debugging
[»_68] of the user-defined code within the code template.

3. Instantiating modules [»_30]
The program describes a class, which is instantiated as objects. The TwinCAT Module Instance
Configurator [P _124] is used for configuring the instance. General configuration elements are: allocate
task, download symbol information for runtime (TwinCAT Module Instance (TMI) file), or specify
parameter/interface pointers.

4. Mapping of variables
The input and output variables of an object can be linked with variables of other objects or PLC projects,
using the standard TwinCAT System Manager.

5. Building

During the building (compilation and linking) of the TwinCAT C++ project, all components are compiled
for the selected platform. The platform is determined automatically when the target system is selected.

6. Publishing (see Export modules [P 44] / Import modules [P 45])
During publishing of a module, the drivers for all platforms are created, and the module is prepared for
distribution. The created directory can be distributed without the need to transfer the source code. Only
binary code with the interface description is transferred.

7. Signature (see x64: driver signing [»_23])
The TwinCAT drivers must be signed for x64 run times, since 64-bit Windows versions require that
kernel modules are signed. This therefore applies to the x64 development and to publishing of modules,

since these modules contain the x64 binary code (if not disabled, as described here [P 197]).
The signature process can be user-defined, as described here [P _28].

8. Activation
The TwinCAT C++ driver can be activated like any other TwinCAT project via "Activate Configuration".
The dialog then requests to switch TwinCAT to RUN mode.
Debugging [P_68] in real-time (which is familiar from IEC61131-based systems) and the setting of
(conditional) breakpoints is possible for TwinCAT C++ modules.

= The module runs under real-time conditions.

TC3 C++ Version: 1.7 49

Quick start BEGKHOFF

9 Quick start

This quick start shows how you can familiarize yourself with the TwinCAT C++ module engineering in a short
time.

Each step in the creation of a module that runs in a real-time context is described in detail.

Before the quick start, please pay attention to the Preparation - just once! [P 20]

9.1 Create TwinCAT 3 project

Start the TwinCAT Engineering Environment (XAE)

"Microsoft Visual Studio" can be started via the TwinCAT SysTray icon.

¢ About TwinCAT...

@m TwinCAT XAE (VS 2010)
[F] TwinCAT XAE (VS 2012)
64 TwinCAT XAE (V5 2013)
g

TwinCAT XAE (V5 2015)

Tools »

Router k
System 3

The Visual Studio versions recognized during the installation and supported by TwinCAT are thereby offered.
Alternatively, Visual Studio can also be started via the Start menu.

TwinCAT 3 C++ - Create project

Carry out the following steps to create a TwinCAT C++ project:
1. Select "New TwinCAT Project ..." via the Start page.

M Start Page - Microsoft Visual Studio (Administrator) Y [QuickLaunch (Ctr+Q) P - O x
FILE EDIT VIEW DEBUG TWINCAT PLC TEAM TOOLS TEST SCOPE ADS ANALYZE WINDOW HELP Signin B
|~ o-2 ke | 9 - @ -] » Attach.. + |2

Solution Explorer ¥ 1 X | ISeldeEl ERETEPS

TwinCAT 3

.ﬂ New TwinCAT Project.. I Get Started | Beckhoff News

1210)dx3 Janiag RS

New Messurement Project...

@ New Project...
@ Open Project...

+ - .
Connect Te Team Foundation Server
—

"~ What's New in TwinCAT 3
= Learn about the new features of TwinCAT 3.

TwinCAT 3 Overview
Tv 3 Documentation
TwinCAT 3 Help Viewer

Recent Projects

TwinCAT Projectl

2. Alternatively, a new project can be created by clicking on File -> New -> Project.
= All existing project templates are displayed.
3. Select "TwinCAT XAE Project"; a suitable project name can optionally be entered.

50 Version: 1.7 TC3 C++

BEGKHOFF Quick start

4. Click on "OK". From now on you cannot select or change the name of the directory. Retain the default
settings (selected option "Create directory for solution").

MNew Project @
P Recent |.NET Framework 4.5 -| Sort by: |Defau|t -| 7= Search Installed Templates (Ctrl+E) P~
4 [nstalled . .
=i TwinCAT XAE Project (XML format) TwinCAT Project Type: TwinCAT Project

4 Templates TwinCAT XAE SysternManager

I+ Visual Basic Configuration

I Visual C#

I Visual C++

I Visual F#

EtherCAT AP Project
I JavaScript
Python
I TypeScript
I Other Project Types
& TwinCAT Measurement

TwinCAT Project
Samples
P Online
Click here to go online and find templates.
Name: TwinCAT Projectl
Location: |C:\tmp\ '|
Solution name: TwinCAT Projectl Create directory for solution

[[] Add to source control

[QK] [Cancel

= The Visual Studio Solution Explorer then displays the TwinCAT 3 project.

Dd TwinCAT Projectl - Microsoft Visual Studio (Ad
FILE EDIT VIEW PROJECT BUILD DEBU
ic-o|B-o-U WY
e E.| n # @| " "_| <Local>
Solution Explorer * 1 X
@S o-a| & =
Search Selution Explorer (Ctrl+a) P~

fal Solution ‘TwinCAT Projectl’ (1 project)
4 o TwinCAT Projectl
b SYSTEM

MOTION
PLC
| SAFETY
E C++
Vo

9.2 Create TwinCAT 3 C++ project

After creating a TwinCAT 3 project, open the "C++" node and carry out the following steps:

TC3 C++ Version: 1.7 51

Quick start

BECKHOFF

. Right-click on "C++" and select "Add New ltem...".

If the green C++ symbol is not listed, this means that either a target device is selected that doesn't
support TwinCAT C++ or the TwinCAT solution is currently open in a version of Visual Studio that is not

C++-capable (cf. Requirements [P_18]).

* 0

Solution Explorer
@ o-a & -
Search Solution Explorer (Ctrl+ Q) P~
fa] Solution TwinCAT Projectl' (1 project)
4 gl TwinCAT Projectl
b SYSTEM
MOTION
PLC
(| SAFETY

Ins

Shift+Alt+ 4

I ‘O AddNewltem...
'O Add Existing Item...

= The "TwinCAT C++ Project Assistant [P_76]" is shown and all existing project templates are listed.

2. A) Select "TwinCAT Driver Project", optionally enter a related project name and click on "OK".
B) Alternatively, use the "TwinCAT Static Library Project", which provides an environment for the

programming of static TC-C++ libraries (see Example 25 [P 274])

Add Mew Itern - TwinCAT Projectl

4 Installed Sortby:|DefauIt ~| s 1=

TwinCAT C++ Driver

TwinCAT Driver Project TwinCAT C++ Driver

£

(7 =]

Search Installed Templates (Ctrl+E) P~

Type: TwinCAT C++ Driver

P Online Creates a TwinCAT driver project.
TwinCAT Static Library Project TwinCAT C++ Driver
Click here to go enline and find templates.
MName: Untitled2
Location: |C:\temp\TwinCAT Projectl\TwinCAT Projectl’, '|
[add || Cancel
= The "TwinCAT Module Assistant [»_77]" is displayed.
52 Version: 1.7 TC3 C++

BEGKHOFF Quick start

3. In this case select "TwinCAT Module Class with Cyclic I/O" and click on "OK". A name is not necessary
and also cannot be entered here.

Add New Item - Untitledl %=
4 Installed Sort by: |Defau|t Search Installed Templates (Ctrl+E) P~
TWinCAT G+ Module @ TwinCAT Module Class TwinCAT C++ Module Type: TwinCAT C+ Module
I Online Creates a new TwinCAT module class.
@ TwinCAT Module Class with ADS port TwinCAT C++ Module
@ TwinCAT Module Class with Cyclic Caller TwinCAT C++ Module
@ Customer Module Class with Cyclic IO TwinCAT C++ Module
@ TwinCAT Module Class with Cyclic I0 TwinCAT C++ Module
@ TwinCAT Module Class with Data Pointer TwinCAT C++ Module
@ TwinCAT Module Class for RT Context TwinCAT C++ Module
Click here te go online and find templates.
MName:
Location: C:htemp\ TwinCAT Project]\TwinCAT P nt

Add || Cancel

TC3 C++ Version: 1.7 53

Quick start

BECKHOFF

4. Enter a unique name in the dialog window "TwinCAT Class Wizard" or continue with the suggestion

"Object 1".

TwinCAT Class Wizard E

7,

T4

A

)

b 3

r

A\

Short name Modulel

Class name

Header file name

Source file name

54

Version: 1.7

TC3 C++

BEGKHOFF Quick start

= A TwinCAT 3 C++ project with a driver will then be created on the basis of the selected template:

Solution Explorer
®o-am o8~
Search Solution Explorer (Ctrl+) P~

fad Solution TwinCAT Projectl’ (1 project)
4 o TwinCAT Projectl
b SYSTEM
MOTION
PLC
4| SAFETY
F IE C++
4 Untitledl
4 [%] Untitled1 Project

I r5 External Dependencies
4 Header File
Resource.h
B TcPch.h
B Untitledl ClassFactory.h
B UntitledlInterfaces.h
Untitledl Services.h
4 .| Source Files
*++ TcPch.cpp
] UntitledL.re
*++ Untitled] ClassFactory.cpp

=

b 5 TMC Files
b # TwinCAT RT Files
B 5 TwinCAT UM Files
b & V0

9.3 Implement TwinCAT 3 C++ project

This article describes how the example project can be changed.

The implementation begins after creating a TwinCAT C++ project and opening
"<MyClass>.cpp"” ("Module1.cpp” in this example).

TC3 C++ Version: 1.7 55

Quick start BEGKHOFF

1.

2.

3.

The <MyClass>::CycleUpdate() method is cyclically called — this is the point where the cyclic logic is to
be positioned. The entire cyclic code is inserted at this point. The drop-down menus at the top edge of
the editor can be used for navigation as shown in the screenshot

Modulel.epp + X QUL IER
Untitledl -

Selution Explorer

Rl o-a@d o & -

= CModulel +| @ CycleUpdate([TcTask * ipTask, [TcUnkno =

. N . @ ~CMeodulel
Search Solution Explorer (Ctrl+) R - m_Trace.Log(tlVerbose, FLEAVEA "hr=8x S
. . . . turn hr: @ AddModuleToCaller()
fa] Solution ‘TwinCAT Projectl’ (1 project) re * .- P
4 “a TwinCAT Project ¥ @ CycleUpdate(ITcTask * ipTask, ITcUnknown * ipCaller, ULONG_PTR context)

. @ RemoveModuleFromCaller()

Pl SYSTEM SO0 10111
MOTION // State transition from SAFEOP to pRegp |© 3etObjState05()
PLC SIHRESULT CModulel::SetObjStateSP() @ SetObjStatePS(PTComlInitDataHdr pInitData)
(| SAFETY { @ SetObjStateSO()

HRESULT hr = 5_0K;
4 [cov =5 @ SetObjStateSP()

4 Untitledl m_Trace.log(tlverbose, FENTERA);
4 [%] Untitledl Project

b 55 Bdernal Dependencies

// TODO: Add deinitialization code

P+l Header Files m_Trace.log(tlverbose, FLEAVEA “hr=@x&asx", hr);
4 o] Source Files return hrs
++ Modulel.cpp 1!
++ TcPch.cpp
) Untitledl.rc ///<ButoGeneratedContent id="Implementation0f ITcCyclic"»

+4 Untitledl ClassFacto SJHRESULT CModulel::CycleUpdate(ITcTask* ipTask, ITcUnknown* ipCaller, ULONG PTR context)
Fl TMC Files

|7 Untitledl tmc
3 TwinCAT RT Files

TwinCAT UM Files
b [Fro

HRESULT hr = 5 0K;

// TODO: Replace the sample with your cyclic code
m_counter+=m_Inputs.Value;
m_Outputs.Value=m_counter; ol

return hrj

In this case a counter is incremented by the value of the "Value" variable in the input image (m_Inputs).
Replace a line in order to increment the counter without dependence on the value of the input image.
Replace this line:

m_counter+=m_ Inputs.Value;

by this one:

m_counter++;

Save the modifications.

9.4 Compiling/building a TwinCAT 3 C++ project

This article describes how an already implemented C++ module class is created (compiled).

1.

Select the target platform according to which the compilation should be carried out. TwinCAT checks this
setting when selecting a target system and changes it if necessary after a prompt. The project is also
deactivated if an unsupported target platform is selected.

TwinCAT RT (x54) -

TwinCAT CET (ARMVT)
TwinCAT RT (x64)
TwinCAT RT (x86)

| TwinCAT UM (x54)

7 TwinCAT UM (x86)
Configuration Manager..,

56

Version: 1.7 TC3 C++

BEGKH“FF Quick start

2. Right-click on the TwinCAT 3 C++ project and select "Build" or "Rebuild"

Solution Explorer AR Wl Modulel.cpp + 2 Modulel.h
@S o-am o F =
Search Solution Explorer (Ctrl+) P -

m_Trace.Log(tlverbose, FLEAVEA “hr=@xi¥@sx", hr);

R Solution 'TwinCAT Projectl’ (1 project) return hr;

4 7 TwinCAT Prajectl ¥
b |l SYSTEM
= SUSPILEPEPI TR TET T8 78000000 E0 T8I didididiiiiiiiiiii
MOTION // State transition from SAFEOP to PREOP
PLC SHRESULT CModulel::SetObjStateSP()
(0| SAFETY {
4 [Co+ HRESULT hr = 5_0K;
4 Untitledl m_Trace.Log(tlverbose, FENTERA);
4 [Untitledl Pro B)
b 2) tialization code
B TwinCAT TMC Code Generator
i T ? TwinCAT Publish Medules ose, FLEAVEA "hr=8x¥asx", hr);
&l S
+ & Build
+ Rebuild
O Clean nt id="ImplementationOf_ ITcCyclic™:
+{) leUpdate(ITcTask* ipTask, ITcUnknown* ipCaller, ULONG_PTR context)
3
b T View
o T Project Only 3
— b Scope to This he sample with your cyclic code
4 UO Mew Solution Explorer View s.Value;
X X . counter;
Profile Guided Ontimization .

= The compiler output window must look like this if the code has been correctly written (i.e. no syntax

errors):
Cutput
Show output from: | Build '|| | | o= |2
AUITLLLLITDHL LA LUWLLUWZLALE o«
1>
13Build succeeded.
1>

1>Time Elapsed 88:88:83.61
========== Rebuild All: 1 succeeded, @ failed, @ skipped ==========

= Following successful compilation/creation, the new TwinCAT C++ module is provided for the specific
target platform in the "_Deployment\" subfolder of the project directory.

9.5 Create TwinCAT 3 C++ Module instance

An instance of the module must be created in order to execute it. Several instances of a module can exist.

After creating a TwinCAT C++ module, open the "C++ - Configuration™ node and follow these steps to
create an instance.

TC3 C++ Version: 1.7 57

Quick start BEGKHOFF

1. Right-click on the C++ module (in this case "Untitled1") and select "Add New Item...

Solution Explorer A Bl Modulel.cpp R X Moduls
.Gj| *g_@;'@|<> 5 m
Search Solution Explorer (Ctrl+ Q) ol m Trace.log(t
fa] Sclution TwinCAT Projectl’ (1 project) return hr;
4 gl TwinCAT Projectl i
b SVSTEM ST,
MOTION |_..-"..-" State transiti
PLC EHRESULT CModulel:
SAFETY Iy
4 [Gd Cos HRESULT hr = !
4 Untitled m Trace.log(t.
4 [HlU O Add MNew Item... Ins
E TE | M Remowve Del
ac Rename
1 Save Untitled] As...

1 |8 Save Untitledl as Archive...
E _J Send Untitledl by E-Mail...

b Compare Untitledl with Target...

B

= All existing C++ modules are listed.

2. Select a C++ module. The default name can be used or alternatively a new instance name can be
entered and confirmed with "OK" (in this example the default name was selected).

™

7] = Disable

Insert TeCom Object

Search: Mame: ntitled]_0bj2 [CModule1] [(]]
Type: B-- C++ Module Wendor [Cancel]
EI-- C++ Modules
Choduled [Maodul
e el Mulple: 1 -

= The new instance "Untitled1_0Obj2 (CModule1)" becomes part of the TwinCAT 3 solution: the new node
is located precisely under the TwinCAT 3 C++ source "Untitled1 Project".

The module already provides a simple I/O interface with three variables in each case:

* Input area: Value, Status, Data
» Output area: Value, Control, Data

The description of these interfaces corresponds in two places:

58 Version: 1.7 TC3 C++

BECKHGFF Quick start

» "<Classname>Services.h" (in this example "Untitled1Services.h")

Untitledl Services.h R < JRTTaF]F BT Modulel.h

} ModulelParameter, *PModulelParameter;

Solution Explorer
@ eo-a@m o &=
Search Solution Explorer (Ctrl+) P~
fad Solution ‘TwinCAT Projectl’ (1 projec =

“ltypedef struct _ModulelInputs

4 o] TwinCAT Projectl {
b SYSTEM ULONG Value;
MOTION ULONG Status;

ULONG Data;
T ModulelInputs, *PModulelInputs;

G rLC
SAFETY
F] E C++

“ltypedef struct _ModulelOutputs

4 Untitledl I
4 [%] Untitled1 Project ULONG Value;

b r5 Bdernal Dependenc ULONG Control;

4 .| Header Files ULONG Data;
B Modulel.h b ModulelOutputs, *PModulelOutputs;
B Resourceh J </ ButoGeneratedContents
E TcPch.h
B UntitledlClassFa
B UntitledlInterfac
B UntitledlService flf<hutoGeneratedContent id="DatafrealDs">

Fl Snnree Files 1NN 2. -

* "TwinCAT Module Configuration".tmc file (in this case "Untitled1.tmc")

Untitledl.tme [TMC Editor] -+ > Uil R HT A, Modulel .cpp Modulel.h

Solution Explorer

T i -
@S o-adim| s = f__‘;,l,
Search Selution Explorer (Ctrl+) P~ P 3_.: T™MC
%] Solution ‘TwinCAT Project]’ (1 projes = 4% Data Types Add, remove and reorder Data Areas.
; ; Modules
4 “a TwinCAT Projectl < 't -
b @l svsTEM ‘MEGM‘I’“'“'I‘ﬂ . F =4 1B EHEH|
mplemented Interf
MOTION | ;: Pa?ametets Number Area Type Name Size Size X64 Context Disable Code Generation
PLC Pl Data Areas (1} Input-Destination Inputs 1]
SAFETY] Inputs 1 Output-Source Outputs 1 =
4 E C++ Fl Symbols
4 Untitledl Value
4 [%] Untitled1 Project Status
b ¢ Bxternal Dependenc Data
4 .| Header Files “ ‘g";mbol
rl Yy £
B Modulel.h & Value
B Resourceh M Control
E TcPch.h M Data
B Untitled1ClassFa I Data Pointers
B UntitledlInterfac I =% Interface Pointers
B Untitled]Service [Deployment
4 L.] Source Files
++ Modulel.
oeuiE-cpp Cutput
++ TcPch.cpp
[Untitled.rc Show output from: | Build v|| | | = | Ma
e UntitledlclassFa ;; ULl e AT PLIICA] e LR OLR L P UL LS L TILIICAT R AU) ARCLCASC UL LICUL WL L LI UL . LLUE Y
4 L. TMCFiles 1>Build succeeded.
|| Untitledl.tme 1>
b 55 TwinCAT RT Files 1>Time Elapsed ©0:80:81.53
b TwinCAT UM Files ========== Rebuild All: 1 succeeded, @ failed, @ skipped ==========
— -

9.6 Create a TwinCAT task and apply it to the module
instance

This page describes the linking of a module instance to a task, so that the cyclic interface of the module is
called by the TwinCAT real-time system.

This configuration step only has to be carried out once. No new task needs to be configured for subsequent
creations/new compilations of the C++ module in the same project.

TC3 C++ Version: 1.7 59

Quick start

BECKHOFF

Creating a TwinCAT 3 task

1. Open "System", right-click on "Tasks" and select "Add New ltem...".

2. Enter a unique name for the task (or retain the default name).
In this example the 1/0 image interface is provided by a C++ module instance, so that no image is
necessary at the task for triggering the execution of the C++ module instance.

Solution Explorer
@& o-al| s =

Search Solution Explorer (Ctrl+)

4 ol TwinCAT Projectl
4 [SYSTEM
¥ License

& Real-Time

== Routes
[E8] TcCOM Objects

MOTION

PLC

SAFETY

| o R

AR Untitled] tmc [TMC Editor] # X

2~
fad Solution TwinCAT Projectl’ (1 projec &

o &@
4 35 TMC

¥ Data Types
4 "7 Modules
4 FL’I CModulel

Untitled] Services.h

Solution Explorer SRl Lintitled] tmc [TMC Editor] & > Untitlg
@ o-a| &=)
Search Solution Explorer (Ctrl+) ol 4 :I: T™C
fad Solution ‘TwinCAT Projectl’ (1 projec = »" Data Types
4] TwinCAT Projectl 4 'fg] Modules
4 [l svsTEM 4 Ped CModule!
T License —a Implemented Interfaces
_ I ®g Parameters
Real-Time P Data Areas
=2 Tasks Liputs
Sfz Route O Add New tem.. Ins Symbols
[TeCO| f7 Add Existing Item... Shift+ Alt+ A Value
MOTION Status
F utpu
SAFETY 4 i Symbols
4 E Cer M “alue
¥ Untitledl W Control
4 [%] Untitledl Project W Data
B .@ External Dependenc B Dsta Pointers
4 | Header Files I =% Interface Pointers
B Modulel.h B Deployment
I Demrmirse b

Modulel.cpp

Add, remove and reorder C

=4 1 |seve-EHHH

—9 Implemented Interfaces |

Insert Task

Mame: Tazk 1

Type
@ TwinCAT Task

(70 TwinCAT Task 'With Image

= The new task with the name "Task 1" is created.

. The task can now be configured; double-click on the task to do this.

The most important parameters are "Auto start" and "Priority":
"Auto start" must be activated in order to automatically start a task that is to be cyclically executed. The
"Cycle ticks" define the timing of the clock in relation to the basic clock (see real-time settings).

[

60

Version: 1.7

TC3 C++

BEGKHOFF Quick start

Solution Explorer Al TwinCAT Projectl R > Untitledl trc [TMC Editor] UntitledlServices.h
T,
m | ©-a| &= Task |Or1|ine | F‘alﬁrneter{OnIine]l
Search Solution Explorer (Ctrl+) P~ <
i i i) Name: Task 1 Port: 350 =
fad Solution TwinCAT Projectl’ (1 projec =
4 o] TWinCAT Projectl [Auto start Object Id: ~ B<02010010
4 [svsTEM [C] Ao Priority Managemert Options
¥ License Priority: 1 = [Disable
@ Real-Time) “
Cycle ticks: 10 = 10.000
4 % Tasks yele ticks ms [Create symbols
% Task1 Start tick {modulo): 0 s Include extemal symbols
gfs Routes [7] Separate input update
[E5] TeCOM Objects Pre ticks: 0 B
MOTION
PLC [T Waming by exceeding
SAFETY Message box
d E Cos Floating point exceptions
4 Untitledl Watchdog Cycles: 0 =
4 [%] Untitled1 Project
b 5 Bxternal erendenc Commert:
= 4 L] Header Files

Configuring a TwinCAT 3 C++ module instance that is called from the task
1. Select the C++ module instance in the solution tree.
2. Select the "Context" tab in the right-hand working area.

3. Select the task for the previously created context in the drop-down task menu.
Select the default "Task 1" in the example.

RNV N T d RIS Untitled] .tmic [TMC Editor] Untitled1 Services.h Modulel.h

Solution Explorer Modulel.cpp

@ o-a &=

| Object | Context | P, (Init) [Data Area [Interfaces | Interface Pointer
Search Solution Explorer (Ctrl+) P~
Context: [-
-
Depend On: [Manual Config v]
[] Need Call From Sync Mapping
4 m Crr Data Areas: Interfaces:
4 Untitledl 70 Inputs
4 [%] Untitled1 Project [@]1 Outpus’
P ;5 External Dependenc
4 .| Header Files
B Modulel.h Data Pointer: Interface Pairter:
B Resource.h
B TcPch.h
B Untitledl ClassFa
B UntitledlInterfac
B Untitled] Service
4 fal Source Files o] |Task MName Priority Cycle Time (.. |Ta
++ Modulel.cpp
++ TcPeh.cpp 1 00000000] 0 0 0
[N Untitledl.rc | [ooo00000

02010010 'Task1'

++ Untitled1 ClassFa
4 | TMC Files
|7 Untitledl tmc
B ¢ TwinCAT RT Files
P o TwinCAT UM Files 1»Build succeeded.
4[] Untitled]_Objl (CModt 1>

Show output from: |Bui|d '|| | | % |

L TULLIILIE Ce A TWLIA T A L AOUR L AP DUUC LS L TALIAA T R AU ARELEESE AL L LLEUL WL L LLIEML . LLUE AL L L]

= On completion of this step the "Interface Pointer" is configured as a "CyclicCaller". The configuration is
now complete!

9.7 TwinCAT 3 enable C++ debugger

To prevent all dependencies from being loaded for debugging, this function is switched off by default
and must be activated once before the activation of the configuration.

TC3 C++ Version: 1.7 61

BECKHOFF

Quick start

1. Select the "C++ Debugger" tab on the C++ node of the solution, select "Enable C++ Debugger" and
switch on "Enable C++ Debugger"

Solution Explorer

fat | - F = C++ Debugger
Search Solution Explorer (Ctrl+ Q) P~
)))) [7] Enable C++ Debugger
fad Solution TwinCAT Projectl' (1 project)

4 o) TwinCAT Projectl
4 [SYSTEM
¥ License
@ Real-Time
B Tasks
== Routes
TcCOM Objects
MOTION

Bl rL

4 [4] Untitled1 Project
P o5 External Dependencies
[== Header Files

9.8 Activating a TwinCAT 3 project

Once a TwinCAT C++ project has been created, compiled and made available, the configuration must

be activated:
1. Click on the symbol "Activate Configuration" — all required files for the TwinCAT project are transferred to

the target system:

wfE B2 8|6 .| <ol -8

TwinCAT Projectl - X

25

Solution Explorer
{2} | o-d | A = C++ Debugger
Search Solution Explorer (Ctrl+) P~

dxg 1=

13

BAOTION . Enable C++ Debugger
405

PLC
SAFETY
Fl E C++
4 Untitledl

2. In the next step, confirm the activation of the new configuration. The previous old configuration will be

overwritten.

[TwinCAT XAE =

-”"_“‘-I Activate Configuration
s 4 (Old Configurations will be overwritten!)

| ok || Ccancel

62 Version: 1.7 TC3 C++

BECKHOFF Quick start

3. If you have no license on the target system, you will be offered the option to create a 7-day test license.
This can be repeated any number of times.

4. TwinCAT 3 automatically asks whether the mode should be switched to Run mode.

[TwinCAT XAE =

-

:_I Restart TwinCAT Systern in Run Mode

| ok || cancel

= In the case of "OK", the TwinCAT 3 project switches to Run mode.
In the case of "Cancel”, TwWinCAT 3 remains in Config mode.

= After switching to Run mode, the TwinCAT System Service symbol at the bottom in Visual Studio lights
up green.

9.9 Debug TwinCAT 3 C++ project

This article describes the debugging of the TwinCAT 3 C++ example project.

Attachment to the C++ runtime

After switching on the C++ debugging in the TwinCAT project and activating the complete project, the
TwinCAT Engineering (XAE) can now be used to connect to the target system for debugging.

TC3 C++ Version: 1.7 63

Quick start

BECKHOFF

1. A) Click on the "Attach..." button familiar from Visual Studio in order to connect to the TwinCAT debugger
on the target system:

‘e~

x| B

szi0)dxg 1anag

Solution Explorer
@ o-am| & -

4 Untitled1

4 [%] Untitledl Project

ERTrTd

| Release

~| | TwinCAT RT (64)

'||

£ | & | |<L0ca|>

| ' - I P Attach... vI

b ;5 External Dependenc
4 .| Header Files
Modulel.h
B Resource.h
B TcPch.h

AR Il TwinCAT Projectl + X

Project | Settings

Untitledl trnc [TMC Editor]

UntitledlServices.h

| & e & |

Modulel.cpp

Search Solution Explorer (Ctrl+) P~
. . Project Name:
] Iﬂa TwinCAT Projectl o
4 sYSTEM Froject Path:
' License Project Type:
@ Real-Time
4 % Tasks Project Guid:
[Z Taskl Encryption:
=iz Routes
5] TeCOM Objects
[2s]
MOTION Comment:
PLC
[SAFETY
4 E C++

Urtitled1
Urtitled1
C#+ Project

{EDFBEEV0-32CT-4FCS-ADAS-BI144C1783F0}

[I'-.Io boot project encryption {default)

Untitled1ClassFa

B) Alternatively, sel_eét '.'I-Dé_bué" -> "Attach to process..." in the Visual Studio environment:

w TwinCAT Projectl - Microsoft Visual Studic (Administrator)

FILE

ydig 12adag

=
m
1

F]

]

EDIT VIEW

Solution Explorer

PROJECT
B-o-2 W
H 2 <

Gl o-am| &~

Search Solution Explorer (Ctrl+ Q)

4 o) TwinCAT Projectl

(i sYsSTEM

¥ License

) Real-Time
4 & Tasks

[Task1

=t= Routes

[E8] TcCOM Objects
MOTION
PLC
33 SAFETY

EC++

4 G| Tln+t AT

BUILD

| 0| | [<Lod
= b

DEBUG | TWINCAT PLC TEAM TOOLS TEST
Windows]
Graphics]
Start Debugging Fa !

B Start Without Debugging Ctrl+F5

@ﬂ Attach to Process... |
Other Debug Targets Pl
Exceptions... Ctrl+Alt+E 1
Performance and Diagnostics Alt+F2 1

G. StepInto F11 -

C', Step Over F10 i
Toggle Breakpoint 3 —
Mew Breakpoint]
Delete All Breakpoints Ctrl+Shift+F9 |
Opticns and Settings...

& Startup Project Properties...

T

2. Do not select the "Default" setting of Visual Studio for the transport, use "TwinCAT XAE" instead. Target
system (or "All Routes") as qualifier and connect by "Attach".

64

Version: 1.7

TC3 C++

BECKHOFF Quick start

Attach to Process ? | =]
Lateport; TwinCAT XAE -
Qualifier: All Routes -

Transport Infermation
There is no additional infarmation available for this transport.

Attach to: TwinCAT XAE Debugger code

Available Processes

Process (o] Title Type User Mame Session
CX-1088DE 4 Metld 172.17.36.163.1.1, Version 3.1.4011 TwinCAT M. 0

[] Show processes from all users Show processes in all sessions Refresh

Attach] [Cancel l

=

Monitoring C++ member variables (without breakpoints)

The "normal" Visual Studio debugging mechanism is available — setting of breakpoints, step execution, etc.
Their usage depends on the process to be monitored:

If TwinCAT runs on a real machine with axis movements, the user will probably not wish to set any
breakpoints just for monitoring variables. On reaching a breakpoint the execution of a task would be stopped
and, depending on the configuration, the axis would immediately come to a halt or, perhaps even worse,
would continue to move in an uncontrolled fashion — a very unfortunate situation.

TwinCAT 3 therefore offers the option to monitor process variables without setting breakpoints:
1. Select "Debug" -> "Windows" -> "TwinCAT Live Watch"

FLE EDIT VIEW PROJECT BULD | DEBUG | TWINCAT PLC TEAM TOOLS TEST SCOPE ADS ANALYZE WINDOW HEI
fte-o | B-o- | Windows 3

@] Brea kpoints Ctrl+Alt+B
o | r | @ | @ Graphics * | [Output
o P Start Debuggin F5 i
If% T E D S gging E Immediate Ctrl+Alt+1
[Start Without Debugging Ctrl+F5 H TWinCAT Live W
g o - Gl i - win ive Watch
-.r-: G | a @ | - @'3 Attach to Process...
E Search Solution Explorer (Ctrl+ad) 4 Other Debug Targets » g
4 il TwinCAT Projectl Exceptions... Cirl+Alt+E
4] svSTEM
% License Performance and Diagnostics Alt+F2
@ Real-Time Gs StepInto F11 C178370)
4 E:' Tasks G Step Over F10 3

= The "TwinCAT Live Watch" windows show a list of all the variables in the module. Variables placed in
the watch list by drag & drop are monitored without setting breakpoints.

2. In order to change the value of a monitoring variable, simply enter a new value.

TC3 C++ Version: 1.7 65

Quick start

= The new value is displayed in red and in brackets.

TwinCAT Live Watch # X

A Arranged by Object ID

Fom_spSne

 m_eTcombtate

I m_ePend5State

+ m_accessiCnt

» m_Trace
m_TracelevelMax

+ m_Parameter

BECKHOFF

Fom_Inputs
P m_Outputs
Marme alue ype
4 (0id:01010010%.m_Inputs fValue=1 5tatus=0 Data=0 } | Medulellnputs
Yalue 110} unsigned leng
Status] unsigned leng
Data] unsigned leng
(01010010} m_counter 3386 unsigned int

3. Click on the green symbol
= the new value is written into the process.

TwinCAT Live Watch # X

Ehrranged by Object ID

m_sp5sre -
m_eTcombState
m_ePend5tate
m_accessi_nt
m_Trace
m_TracelevelMax
& m_Parameter

 m_Inputs
 m_Outputs -
IName alue ype
4 (0id:01010010%.m_Inputs fValue=10 Status=0 Data=0 } | MeodulelInputs
Value 10 unsigned leng
Status] unsigned leng
Data A unsigned leng
(Did:01010010).m_counter 18309 unsigned int

Setting breakpoints
The setting of breakpoints in the conventional way is also possible.
Damage to plants and personal injuries due to unexpected behavior of the machine / plant

Breakpoints change the behavior of the machine or plant. Depending on the machine being controlled, the
machine or workpieces may be damaged or the health and life of people may be endangered.

Make sure that the changed behavior of the controlled system does not cause any damage and be sure to
note the plant documentation.

66 Version: 1.7 TC3 C++

BEGKH“FF Quick start

Solution Explorer ~ B X TwinCAT Projectds [OlTaeRa Bl Objectl.h ObjectServices.h « TwinCAT Live Watch
=8 ~ CObjectl | % CycleUpdateITcTask * ipTask, TcUnknawn * ipCaller, ~|)
¢ (o External Depenc ~ [/7 TTecyclic = S—
4[5 Header Files [E/HRESULT CObjectl::Cyclelpdate(ITcTask® ipTask, ITcUnknown* ipCaller, ULONG context) . | I m_eTcomState
k] ObjectLh 11 I m_ePendsState
5] ObjectiServ HRESULT hr = S_0K; B iiaccessCat
[I Call
|h] Resourceh _ X . m_spCaller]
// TODO: Replace the sample with your cyclic code ' m_Parameter ‘
5] Tepehh m_countertt; I m_Inputs =
[Untitied1Cla__ N m_Outputs.Value=m counter; I m_Outputs L
(] Untitled1Int m_counter
[h] Untitled1Ser return hr; o K m] v
4 = ‘S_o]urce Files 1} [Wi il Fiie
€+ Objectl.cpp
o Tepeh TEERHIEEE D ER LIS EE IR R R B A0 E I T I ET AT EEI I A1 TI 1} ("(((CObject1”) 0x860D3F40))).m_counter 442 unsigned i
crenopp IDHDESIN T rkdassT s s AdAMAdnTaTArsTTand V

Detaching the debugger from the process

Click on "Debug" -> "Detach All".

w TwinCAT Projectl (Running) - Microsoft Visual Studio (Administrator)
FILE EDIT VIEW PROJECT BUILD | DEBUG | TWIMCAT PLC TEAM TOOLS TEST SCOPE AD

- | g~ WM | Windows o

Process: |[1] Localhost Graphics r
: : - i L Continue F5
win roje * Untitled] Services.h C
TwinCAT Projectl + > Untitled15 k n T tch # X
rea trl+ Alt+EBrea
PFDjECt Seﬂings u StI:IFI Debugglng Shift+F5 G’b_] ectID} | 5=
Project Name: Untitled1 X Detach Al
: tate
Untiied] Terminate All Lie
Project Path: rititle
: O Restart Ctrl+Shift+F5 |t
Project Type: C++ Project ﬂ-ﬂ Attach to Process... M
velhax
Project Guid: {EDFBEETO-32CT-4FCS-4D Other Debug Targets bber
Encrvotion: | No boot oroiect encrvotion | Exceptions... Ctrl+Alt+E

TC3 C++ Version: 1.7 67

Debugging BEGKHOFF

10 Debugging

TwinCAT C++ offers various mechanisms for debugging TwinCAT C++ modules running under real-time
conditions.

Most of them correspond to the mechanisms that are familiar from the normal C++ development
environment. The world of automation requires additional, slightly different debugging mechanisms, which
are documented here.

In addition we provide an overview of Visual Studio tools that can be used in TwinCAT 3. These were
extended, so that data from the target system are displayed.

Debugging needs to be enabled.
This could be configured by the C++ node of the solution:

Double click on the C++ node and switch to the “C++ Debugger” tab for hitting the checkbox.

Solution Explorer AR Il TwinCAT Projecil & X Modulel.cpp* Medulel .h
W o-& F C++ Debugger

Search Solution Explorer (Ctrl+) P~

4 E Trn - Enable C++ Debuager
ntrtle

4 [%] Untitledl Project
b =2 External Dependenci
4 &g| Header Files
Modulel .h
Resource.h
TePch.h
Untitledl ClassFac
UntitledlInterface
Untitledl Services.

| EZ N E= N) P PP

For using any TwinCAT C++ debugging, the TwinCAT Engineering needs to be connected to the execution
(XAR) system by the “TwinCAT Debugger” Button:

FILE EDIT VIEW PROJECT BULD DEBUG TWINCAT PLC TEAM SQL TOOLS TEST SCOPE
0 - B-o- kW 3 © - = - | p TwinCAT Debugger
wrE B2 & '.'., <Local= - _i

h

Breakpoints and step-by-step execution

In most cases when debugging a C++ program, breakpoints are set and the code is then executed step by
step while observing the variables, pointers, etc.

In the context of the Visual Studio debugging environment, TwinCAT offers options to run real-time-executed
code step by step. To set a breakpoint, you can navigate through the code and click on the gray column on
the left adjacent to the code or use the hotkey (normally F9).

Damage to plants and personal injuries due to unexpected behavior of the machine / plant

Breakpoints change the behavior of the machine or plant. Depending on the machine being controlled, the
machine or workpieces may be damaged or the health and life of people may be endangered.

Make sure that the changed behavior of the controlled system does not cause any damage and be sure to
note the plant documentation.

68 Version: 1.7 TC3 C++

BEGKHOFF Debugging

I/ <AutoGeneratedContent id="ImplementationOf ITcCyclic":
EIHRESULT CModulel::CycleUpdate(ITcTask* ipTask, ITcUnknown® ipCaller, ULONG_PTR context)

1

E HRESULT hr = 5_0K;

J/f TODO: Replace the sample with your cyclic code
m_counter+=m_Inputs.Value;

On reaching the breakpoint (indicated by an arrow), the execution of the code is stopped.

!/ /<AutoGeneratedContent id="ImplementationOf ITcCyclic":
EIHRESULT CModulel::CycleUpdate(ITcTask* ipTask, ITcUnknown* ipCaller, ULONG_PTR context)
{
HRESULT hr = 5 _0K;

J/f TODOD: Replace the sample with your cyclic code

The code can be executed step by step by pressing "Step Over" (Debug menu, toolbar or hotkey F10). The
familiar Visual Studio functions "Step in" (F11) and "Step out" (Shift + F11) are also available.

Conditional breakpoints

A more advanced technology allows the setting of conditional breakpoints: The execution of the code at a
breakpoint is only stopped if a condition is fulfilled.

TwinCAT offers the implementation of a conditional breakpoint as part of the Visual Studio Integration. To set
a condition, first set a normal breakpoint and then right-click on the red dot in the breakpoint column.

Damage to plants and personal injuries due to unexpected behavior of the machine / plant

Breakpoints change the behavior of the machine or plant. Depending on the machine being controlled, the
machine or workpieces may be damaged or the health and life of people may be endangered.

Make sure that the changed behavior of the controlled system does not cause any damage and be sure to
note the plant documentation.

//f<AutoGeneratedContent id="ImplementationOf ITecCyclic™:
EIHRESULT CModulel::CycleUpdate(ITcTask* ipTask, ITcUnknown*® ipCaller, ULONG_PTR context)

1

HRESULT hr = 5_0K;

m counter+=m Inputs.Value:

: f/f TODD: Replace the sample with your cyclic code
]

Delete Breakpoint
@ Disable Brea kpoint Ctrl+F2

U [T

i Condition... T T e e e

Hit Count...

Filter...
When Hit...
Edit labels... Alt+F2, L

& Bgport..

File Lin

Select "Condition..." to open the condition window:

TC3 C++ Version: 1.7 69

Debugging BEGKHGFF

Breakpoint Condition 7 | =2

When the breakpoint location is reached, the expression is evaluated and the breakpoint
is hit cnly if the expression is true or has changed.

[V] Condition:

m_counter <= 10000

@ Is true

(") Has changed

Ok] ’ Cancel

Details of the conditions and how they are to be formulated can be found here [» 71].

Live Watch

During engineering and development of machines, it is not always reasonable to halt the system by a
breakpoint since this influences the behavior.

TwinCAT PLC projects provide online view and manipulation of variables during RUN state without
interrupting the real time.

TwinCAT C++ projects provide similar behavior for C++ code via the “Live Watch” window.

The “Live Watch” window could be opened by Debug->Windows->TwinCAT Live Watch.
To open the window first connect to the real time system (hit the “TwinCAT Debugger” button) thus Visual
Studio switches to the Debug perspective, otherwise no data could be provided.

70 Version: 1.7 TC3 C++

BECKHOFF Debugging

TwinCAT Live Watch = X -
Eﬁkrranged by Object ID Search e

 m_eTcombtate -
I m_ePendState
I m_accessCnt
 m_Trace
m_TracelevelMax
I m_Parameter

_‘u"alue
Data
 m_Outputs
 om_spCyclicCaller
m_counter -
Mame Value Type
(Dic:01010010). m_counter unsigned int
((Dic:01010010) . _Inputs).Value § 0012) unsigned leng

2 tems1 changed
The TwinCAT Live Watch Window is divided into two parts.

In the upper part, all member variables could be explored. By double-clicking them they will be added to the
lower part, where current value is displayed.

You can edit these values in the "Value"-Field By clicking on the value. The new value is enclosed by
brackets and marked in red color. For actually writing the value, hit the icon at the upper left corner.

10.1 Details of Conditional Breakpoints

TwinCAT C++ provides conditional breakpoints. Details of the formulation of these conditions can be found
here.

TC3 C++ Version: 1.7 71

Debugging BEGKHOFF

Breakpoint Condition @

When the breakpoint location is reached, the expression is evaluated and the breakpoint
is hit cnly if the expression is true or has changed.

Condition:
m_counter <= 10000

@ Is true

(") Has changed

Ok] ’ Cancel

Unlike the Visual Studio C++ conditional breakpoints, the TwinCAT conditions are compiled and
subsequently transferred to the target system so that they can be used during short cycle times.

Damage to plants and personal injuries due to unexpected behavior of the machine / plant

Breakpoints change the behavior of the machine or plant. Depending on the machine being controlled, the
machine or workpieces may be damaged or the health and life of people may be endangered.

Make sure that the changed behavior of the controlled system does not cause any damage and be sure to
note the plant documentation.

The option buttons offer two options that are described separately.

Option: Is true

Conditions are defined by logical terms, comparable to a CNF (conjunctive normal form).
They are combined of && connected “Maxterms”:

(Maxterml && Maxterm2 && ... && MaxtermN)

where each Maxterm is a combination of || connected conditions:

(conditionl ||condition2 || ... || conditionN)
Provided relational operator: ==, '=, <=, >=, <, >

For determining the available variables see the Live Watch Window. All listed variables could be used for
formulating conditions. These are TMC-defined symbols as well as local “member” variables.

Samples:

m_counter == 123 && hr != 0

m counter == 123 || m counter2 == 321 && hr ==
m_counter == 123

Additonal notes:

* Monitoring of module instances:
The OID of the object is stored inm_ob3jId, thus monitoring the OID could be i.e. m objId ==

0x01010010

* Monitoring of tasks:
A special variable #taskId is provided to access OID of the calling task. l.e. #taskID ==
0x02010010

72 Version: 1.7 TC3 C++

BECKHUFF Debugging

Option: Has changed

The option “Has changed* is simple to understand: By providing variable names, the value will be monitored
and execution will be held, if the value has changed from the cycle before.

Samples:
m_counter

m counter && m counter?

10.2 Visual Studio tools

Visual Studio makes the usual development and debugging tools available for C++ developers. TwinCAT 3
Engineering extends these Visual Studio tools, so that debugging of C++ code that runs on a target system
is also possible with the Visual Studio tools.

The corresponding advanced tools are briefly described here. If the corresponding windows are not visible in
Visual Studio, they can be added via the menu option Debug ->Windows. The menu is context-dependent,
i.e. many of the windows described here only become configurable once a debugger is linked to a target
system.

Call stack
The call stack is displayed by the "Call Stack" tool window when a breakpoint has been reached.

CE” Stack i i R Rl
MName

© Untitledl sys!CModulelzAdd{unsigned long a, unsigned long b, unsigned long™ res) Line 227
Untitledl.sys!CModulel 2 CycleUpdate(ITcTask™ ipTask, ITcUnknown™ ipCaller, unsigned _intB4 context] Line 179
TcRtsObjects.sys!CADT:ExecTask() Line 602
TcRtsObjects.sys!CTask: CycleTask() Line 1127
TcRtsObjects.sys!CTask: TaskEntryPoint() Line 570
OufffffEE00a4a1574()

Autos / Locals and Watch

The corresponding variables and values are displayed in the Autos/Locals window when a breakpoint is
reached. Changes are shown in RED.

TC3 C++ Version: 1.7 73

Debugging BEGKHOFF
Locals @t
Mame Value Type
= & this Oufffffaliilal d57 kb0 CMadulel™®

@ ITComObject i TComObject

@ ITcADI o ITcADI

W [TcWatchSource {} [TcWatchSource

@ [TcCyclic {1 ITeCyelic

@ Calc 1 Calc

@ m_refCnt {value=2} AUTO_ULONG

@ m_chjld fvalue=16842768 } AUTO_ULONG

@ m_parentOhbjld {walue=01} AUTO_ULONG

@ m_objMame fstr={...} } AUTO_MAMESTR

@ m_spSrv {m_plnterface={...} m_oid=0} _te_com_ptr_t<_tc_com_IID<ITCo

m_eTcomState fvalue={...} } AUTO _TCOM_STATE

@ m_ePendState {value={...} } AUTO_TCOM_STATE_INVALID

@ m_accessiCnt {walue=1} AUTO_ULONG

& m_Trace {m_TracelevelMax={...} m_sp5rv={...} } CTcTrace
&, m_TracelevelMax tlAlways (0] TcTracelevel

&, m_Parameter {datal=0 data2=0 data3=0.0} _Muodulel Parameter

&, m_Inputs {Value=123 Status=0 Data=0} _Modulellnputs

&, m_Cutputs {Walue=108117 Control=0 Data=0 } _Modulel Outputs

&, m_spCyclicCaller {m_info={...} } _te_com_ptr_t_listinfo<_tc_com_II
&, m_counter 0 unsigned int

@ hr 21 HRESULT

@ 3 123 unsigned loeng

@ b 108117 unsigned leng

E @ res Dufffffalllal d5824 unsigned leng®

w 108117 unsigned long

From here, the values can be applied to the "Watch" windows by right-clicking:

Mame
@ 3
@ b

@ “(res)

Memory view

Yalue
123
108117
108117

The memory can be monitored directly. Changes are shown in RED.

74

Version: 1.7

TC3 C++

BEGKHOFF Debugging
Autos MRl | NMermory 1 * 0 x
Mamne Value Type “ W Address: OxfffffaB022cecach -
@ Status 0 unsignec exFFFFFAS022CECACE 28 1f 4f 22 88 fa ff ff 28 1f 4f 22 (.0"edyy(.0" &
@ Data 0 unsignec - Mo, FFrFFASE2ZCECADA 8@ fa TF Ff 28 1f 4 22 80 fa ff ff €Gyy(.0"€dyy
@ m_nputsValue 1 unsignet - LEG 38 ca ce 22 80 fa Tf Tf @8 80 @8 8@ BEI™eiyy....
&; m_counter 1 unsigne ABB22CECAEC @0 B9 B2 99 64 @0 B 0@ ab ab ab abd... e«
4 @ this OxfffffaBl22ceca. CModul ABB22CECAFE @b @8 @@ @@ ab ab ab ab ab ab ab abscwcawes
b @ IMComObject {} IMComO ABB22CECER4 @8 B0 B8 99 38 6c T2 22 80 fa ff ff8ld"€dyy
b @ ITcADI f TTcADI BxFEFFFAZ022CECE1G 8@ Ge 8d @8 88 f8 ff ff @0 98 00 BB €n. . €o7y....
b @ ITcWatchSourc {} TTeWatel [@xFFFFFAS022CECEIC @0 @@ 80 @@ 12 80 85 B2 54 4d 73 63 THsc
b @ ITcCyclic n McCyclic | @xFFFFFASE22CECE2E 4@ 17 ©6 84 @B f8 ff ff 60 68 08 80 @....6FV....
b @ m refCnt {value=2} AUTO U BxFFFFFABO22CECE34 @0 @@ @@ @@ 20 86 43 13 8@ fa ff ffC.€Gj¥
b @ m_objld {value=16842768 AUTOU [@*FFFFFASB22CECEI 50 c4 c2 22 88 fa Ff Ff 48 cb ce 22 PAA"enyyHEL"
b @ m_parentObjld {value=0} AUTO U (FFFFFAB@22CECBAC 80 fa ff ff @0 00 00 B0 @0 @0 B0 80 €0jy..... aas
b B m obiName | Fee AT N ABB22CECESS @9 8O @ 98 B0 88 BB 89 ad cd c2 22 AR"
Autos |JIERERETYNI) ABB22CECBE4 8@ fa ff ¥ be @6 45 13 80 fa ff ff €Gyy°.E.€iyy .
TC3 C++ Version: 1.7 75

Wizards BEGKHOFF

11 Wizards

For ease of entrance in engineering the TwinCAT C++ system provides Wizards.

* The TwinCAT Project Wizard [P 76] creates a TwinCAT C++ project. For Driver projects, the TwinCAT
Class Wizard will be started afterwards.

* The TwinCAT Module Class Wizard [»_77] is automatically started during creation of a C++ module.
This wizard provides different “ready to use” projects as entry points for own development.

* The TwinCAT Module Class Editor [P 79] (TMC) is a graphical editor for defining the data structures,
parameters, data areas, interfaces and pointers. It generates a TMC file, which will be used by the
TMC Code generator.

» From the defined Classes instances will be generated and could be configured via the TwinCAT
Module Instance Configurator [P 124]

11.1 TwinCAT C++ Project Wizard

After creating a TwinCAT project, one could add a C++ project by using the TwinCAT C++ project
wizard:

1. Right-click on the C++ icon and “Add new Item...” to start the C++ project wizard

Solution Explorer * 0 x
&lo-@| 5=
Search Solution Explorer (Ctrl+) P~

fad Solution TwinCAT Projectl’ (1 project)
4 2] TwinCAT Projectl
b SYSTEM
MOTION
PLC
i SAFETY

TwinCAT offers two C++ projects:

76 Version: 1.7 TC3 C++

BECKHOFF Wizards

Driver project: Projects, which contains one or more modules to be executed
Static Library: Projects providing C++ functions used by (different) TwinCAT C++ drivers.

Add New ltemn - TwinCAT Projectl [7[=]
p -

4 Installed Sort by: |Defau|t ~| 5 5= Search Installed Templates (Ctrl+E)

TwinCAT C++ Driver

Q TwinCAT Driver Project TwinCAT C++ Driver Type: TwinCAT C++ Driver
F Online Creates a TwinCAT driver project.
g TwinCAT Static Library Project TwinCAT C++ Driver
Click here to go online and find templates.
MName: Untitledl
Location: | Ch\Users\henningm.BECKHOFP\Documents\Visual Studio 2013\Projects!, '|

[add || cancel

2. Select one of the project templates, provide a name and location.
= The TwinCAT C++ project will be created

= For a driver, the TwinCAT C++ class wizard [» 77] will be started

11.2 TwinCAT Module Class Wizard

TwinCAT 3 offers different class templates

* TwinCAT Modules Class

» TwinCAT Modules Class with ADS port

* TwinCAT Modules Class with Cyclic Caller
* TwinCAT Modules Class with Cyclic 10

* TwinCAT Modules Class with Data Pointer
« TwinCAT Modules Class for RT Context

TC3 C++ Version: 1.7 77

Wizards BEGKHGFF

Add New Item - Untitledd [~ 5| [m2sal
4 Installed Sort by: |Defau|t .| 85I Search Installed Templates (Ctrl+E) P~
[LanCANCEsModule TwinCAT Module Class TwinCAT C++ Module Type: TwinCAT C++ Module

I Online Creates a new TwinCAT module class,

TwinCAT Module Class with ADS port TwinCAT C++ Module

TwinCAT Module Class with Cyclic Caller TwinCAT C++ Module

TwinCAT Module Class with Cyclic 10 TwinCAT C++ Module

TwinCAT Module Class with Data Pointer TwinCAT C++ Module

fu
fu
fu
fa

TwinCAT Module Class for RT Context TwinCAT C++ Module

MName:

Location:

Add || Cancel

TwinCAT Modules Class
Creates a new TwinCAT module class.

This is a template generates a basic core module. It has no cyclic caller and no data area, instead it's good
as a start point for implementing services called on demand from a caller.

For example when creating a C++ method that will be called from a PLC module or another C++ module.

See Samplell [» 236]

TwinCAT Modules Class with ADS port

This template provides both the C++ module and acts as an ADS-Server and an ADS client.

» ADS Server:
Can be run as a single instance of this template the C++ module and can be pre-configured with a
specific ADS-port number (e.g. 25023).
Allows multiple instances of this template the C++ modules will each get its own unique ADS-port
number from TwinCAT 3 assigned (e.g. 25023, 25024, 25025...).
The ADS messages being analyzed and managed can be specified by implementing the C++ module.
ADS handling to access the input / output data areas don't have to be implemented with own ADS
message handling.

» ADS Client:
This template provides sample code how to initiate an ADS call by sending out an ADS message to an
ADS partner.

As the modules is acting as ADS-client or ADS-server communicating with each other via ADS messages
the two modules (caller=client and the cally=server) can run in same or different real-time contexts on same
or different CPU-cores.

As ADS is capable to cross network the two modules can also run on different machines in the network..

See sample 03 [» 216], ADS Communication [» 173]

TwinCAT Modules Class with Cyclic Caller
It allows a C++ program to be called cyclically but with no access to the outside world.

This is not commonly used. A Module Class with cyclic caller and cyclic I/O is preferred.)

78 Version: 1.7 TC3 C++

BECKHUFF Wizards

TwinCAT Module Class with cyclic input/output

Creates a new TwinCAT module class, which implements the cyclically calling interface and has an input
and output data area.

The input and output data areas can be linked with other input/output images or with physical I/O terminals.
Important:

The C++ module has its own logical input/output data storage area. The data areas of the module can be
configured with the System Manager.

If the module is mapped with a cyclic interface, copies of the input and output data areas exist in both
modules (the caller and the called). In this way, the module can run under a different real-time context and
even on another CPU core in relation to another module.

TwinCAT will continuously copy the data between the modules.

See Quick start [P 50], sample 01 [P 215]

TwinCAT Modules Class with Data Pointer

As the “TwinCAT Module Class with Cyclic 10” this template creates a new TwinCAT module class which
implements the cyclic caller interface and which has an input and output data area for linking to other logical
input/output images or to physical 10 terminals.

Additionally, this template provides "Data Pointers" which allow to access data areas from other modules by
pointer.

Important to understand:

Unlike the Cyclic I/0O data area where the data is copied between modules cyclically, when using the C++
"Data Pointers" there is only one data area and it is owned by the target module. When writing from another
C++ module via the "Data Pointer mechanism" to the target module will effect on the target module's data
area will be immediate. (Not necessarily at the end of a cycle)

When the module is executed at runtime the call happens immediately blocking the original process (it's a
pointer...). Due to this both modules (the caller and the callee) must be in same real-time context and must
be executed on same CPU core.

The configuration of "Data Pointer" is done with the TwinCAT Module Instance Configurator [P 124].

See sample 10 [P 235]

TwinCAT Module Class for real-time context

This template creates a module, which can be instantiated in the real-time context.

As described here [P _39], the other modules have transitions for startup and shutdown in a non-real-time
context. In some cases modules have to be started when a real-time is already running, so that all transitions
are executed in the real-time context. This is a corresponding template.

The modules with this (modified) state machine can also be used for instantiation directly on startup of TC. In
this case the transitions are executed like for a normal module.

The TcCOM 03 sample [P 295] illustrates the application of such a module.

11.3 TwinCAT Module Class Editor (TMC)

The TwinCAT Module Class editor (TMC editor) is used for defining the class information for a module. It
includes data type definitions and their application, provided and implemented interfaces, and data areas
and data pointers.

To put it briefly: Everything that is visible from outside must be defined with this editor.

The basic idea is:

TC3 C++ Version: 1.7 79

Wizards BEGKHOFF

1. The TMC Editor can be used to modify the module description file (TMC file). This file contains all the
information that can be accessed in the TwinCAT system itself, including symbols, implemented inter-
faces and parameters.

2. The TwinCAT Code Generator, which can also be called from the TMC Editor, is used to generate all
the required C++ code, i.e. header and cpp files.

Start the TMC editor

Open the editor by double-clicking the TMC file of a module. The graphical editor opens:

R o-am| - o L@
Search Solution Explorer (Ctrl+) P~ 4 Ej]' TMC Medule Classes
o . g Shows the properties of the Module
1 Solution TwinCAT Project2' (1 project) 5" DataTypes
. 4 5] Modules
4] TWinCAT Project2 + Fal CMouiet
bl SYSTEM —2 Implemented Interfaces IR TITEE
MOTION 4 Sz Parameters
o pLC = TraceLevelMax Name Lorilg
(1] SAFETY I & Parameter Class ID(CLSID) cdad24ch-8af6-43ca-8728-97102672058 [T Muto generate on save
4 IE Cos 4 Data Areas Class F Untitled
4 [&] Untitted ! - 'D"PUB s Factory L
. . I utputs
4 4] Untitled1 Project I Dats P:Jimers Image D[Choose image. l [Resetimage...]
P 5 External Dependencies 4 % Interfsce Pointers
=%
b 57 HeaderFiles — CyclicCaller Init Sequence
P =B References Deployment Instantiable in RT Context
b 57 Source Files
4 5 TMC Files Define the contexts of the module
[Untitledl.trc
b & TwinCATRT Files &=
B 50 TwinCAT UM Files D
b [F o 1

Functionalities of the TMC editor:

» Create/delete/edit symbols in the data areas, e.g. the logical input or output process images of a
module

» Create/delete/edit user-defined data type definitions
» Create/delete/edit symbols in the parameter list of a module
User Help
The TMC editor offers user support for the definition of data types and C++ modules.

For example, in the event of problems (alignment, invalid standard definitions, ...) within the TMC, the user is
guided to the relevant location via red flags within the TMC tree:

80 Version: 1.7 TC3 C++

BECKHOFF

Wizards

rl 2_': T™MC
4 3" Data Types
@ DataTypel
4 —o [Interface?
4 5% Methods
M Methodl
4] Modules
4] CModulel
~9 Implemented Interfaces
F] .. Parameters
& TracelevelMax
|- [& Parameter
“ Datz Areas
« [Dats
4 [Symbols
4 [@ Value
18 Subltems
Lm Subliem?
L@ Subliem?
L@ Subltem3
[B Data Pointers
I =% Interface Pointers
Eq Deployment

Lﬂ Edit the properties of the Sub ltem_

General properties

Mame Subltem?2

Select
Descrpion

Type Information
MNamespace

Guid {18071555-0000-0000-0000-000000000006}

Optional Subltem settings

Offzet [Bits] x64 specific

Size [Bits] x64 specific
w64 spectiic

Unit

Comment

[] Hide sub items
Optional Defaults

Value ing

Wal
Min

Manx

Optional properties

|l 1|

Name Value Description

The user can nevertheless edit the TMCs directly, since they are XML files and can therefore be created and

edited by the user.

Tools

The upper section of the TMC editor contains symbols for the required operations.

VRS

4 315 TMC Module Classes
&* Data Types
4 57 Modules

g Shows the properties of the Module.

* Reloading of the TMC file and the types from the type system.
» Updating of the higher-level data types

» Enabling/disabling the user help (see above)

 Starting the TwinCAT TMC code generator:

TC3 C++ Version: 1.7 81

Wizards BEGKHOFF

The editor will store the entered information in the TMC file. The TwinCAT TMC code generator converts this
TMC description to source code, which is also available in the context menu of the TwinCAT C++ project.

4 E Lt //f<AutogeneratedContent ic
s#if !defined(TC_TYPE_41D4f

AANA I"."'ll'.l.:,‘ -

b =2 External C TwinCAT TMC Code Generator T
d §| Header Fi TwinCAT Publish Modules
Modu o)
ks Build
Resou
11.3.1 Overview
4 !'E TMC)
*® Data Types H Shows the properties of the Module.
4 B Modules
PR CModulel .
~2 Implemented Interfaced Eo el s
i Bg Parameters
| Data Areas Mame CModulel
i Wi Data Pointers Class ID (CLSID) 6aB4bffd-ddd8-463b-b910-a3dd1cc48121
I % Interface Pointers i
Eq Deployment Class Factory |Untitled
Image D[Choose image...] [Reset image...

Init Sequence

Instantiable in RT Context

Define the contexts of the module
+ =11
D

1

User interface
» TMC [»_83]: Edit the basic vendor information of the C++ module and add a picture
» Data Types [P_84]: Add, remove and reorder data types
* Modules [» 101]: Shows the modules of the driver

» Implemented Interfaces [»_103]: Shows the implemented interfaces of the module.

» Parameters [P_104]: Add, remove and reorder your parameters

o TraceLevelMax [P 111]: Parameter which controls the amount of log messages — predefined for
(nearly) every Module

e Data Areas [P 112]: Add, remove and reorder Data Areas.

» Data Pointers [» 119]: Add, remove and reorder Data Pointers.

» Interface Pointers [P 121]: Add, remove and reorder Data Pointers.

» Deployment [P 122]: Define the files which should be deployed.

82 Version: 1.7 TC3 C++

BEGKHUFF Wizards

11.3.2 Basic Information

Basic information regarding the TMC file

Untitled] tmc [TMC Editor]* -+ > 8Tl 0] FlaTs Module2.h UntitledRT.tmc [TMC Editor]*

o H®
‘ETMC

*» Data Types {[:: Edit the basic information about the TMC file.

4 5§ Modules

4 FL‘I CModulel
__% Implemented Interfaces
.. Farameters

Data Areas Mame C++ Module Vendor

W Dstz Painters

Wendor Information

~ Interface Pointers Image I:I[Choose image...] [Fesetimage...
m Deployment

Optional properbies

Generated by ||

Vendor information
Name: Edit the module name
Choose Image: Insert a 16x16 pixel bitmap icon

Reset image: Reset module image to default

Optional properties

Generated by: This field is used to indicate by whom the file was generated and will be managed. Please
note that filling this field disables changes (disables all edit operations) in the TMC editor.

11.3.3 Data Types

The user can define data types via the TwinCAT Module Class (TMC) editor.

These data types can be type definitions, structures, areas, enumerations or interfaces, e.g. methods and
their signatures.

The TwinCAT Engineering system (XAE) publishes these data types in relation to all other nested projects of
the TwinCAT project, so that they can also be used in PLC projects, for example (as described here [P 236]).

Name conflict
A name collision can occur if the driver is used in combination with a PLC module.
* Do not use any of the keywords that are reserved for the PLC as names.

This chapter describes how to use the capabilities of the TMC editor for defining data types.

TC3 C++ Version: 1.7 83

Wizards

BECKHOFF

11.3.3.1 Overview

User interface

Untitled] tme [TMC Editor]* & X

o

e
;u 2+ Data Types ‘:3 Add, remove and reorder Data Types.
@ DataTypel

I —o linterfacs2 B | - T | e ge,}qev!E Ha @

a @ CModulel Name Guid Specification Size Size X64
—2 Implemented Interfaces | DataTypel {fcIfb514-6720-4206-9d35-d421f3e4 7219} Alias
4 !E Farameters linterface? {9eci2408-51d-4b5e-814c-3294i01fb1fa} Interface
= TracelevelMax
| &= Parameter
I Data Areas
B Dats Pointers
I :f: Interface Pointers

Deployment

Symbol Function
Add a new data type

Add a new interface

Deletes the selected type

Moves the selected element down one position
Moves the selected element up one position
Finds unused types

Select byte alignment

This function loops through all used data types
(recursion). Is this is not desired, a step-by-step
approach can be adopted, by using the function within
the data types.

Reset data format of the selected data type

Copy

Byte
! Align selected data type (alignment)
-
Paste
4
Data type properties
Name: User-defined name for the data type
GUID: Unique ID of the data type
Specification: Specification of the data type
Size: Size of data type if explicitly specified
Size X64: Different size of data type for x64 platform

84 Version: 1.7

TC3 C++

BEGKHOFF Wizards

11.3.3.2 Add/ modify / delete data types

The TwinCAT Module Class (TMC) Editor allows adding, modifying, and deleting data types used by
TwinCAT C++ modules.

This article describes how to

» Step 1: Create a new data type [P 85] in the TMC file

+ Step 2: Start TwinCAT TMC Code Generator [P_88] to generate C++ code based on module description
in the TMC file

+ Make use [P 101] of the data types

Step 1: Create new data type
1. After starting the TMC editor, select the node "Data Types".

2. List of data types and interfaces will be extended with a new data type by clicking the "+" button "Add a
new data area".

= As a result a new "Data type" is listed as new entry:

reln

@
37 Add. remove and reorder Data Types.

AEMOdulB& @ |3,_ ol 4B‘,'te'!E 2 @
4[] CModulel
—2 |mplemented Interfaces TaMme Guid Specification Size Size X564
=
4 !E Parameters DataTypel {09ebebb3-1afl-47ea-987b-ccBbbfadei7d) Alizs

= TracelevelMax
| &= Parameter
I Data Areas
Il Data Pointers
I :((Interface Pointers

Deployment

3. Select the generated "Data Type1" to get details of the new data type.
oy

&
4 2_‘3 T™C
4 3 Edit the properties of the Data Type.
@ DataTypel
“ -
4 fu] CModulel General properties

:g Implemented Interfaces

4. Specify the data type.

4 = Parameters Name DataTypel
= TracelevelMax Namespace
| &= Parameter
| Data Areas GUID {09ebebb3-1af0-47e2-987b-co86bfadcf7d}
I :(‘ Interface Pointers
Deployment ch data type
Select INT

Description

Type Information
MNamespace

Guid {1807 1935-0000-0000-0000-000000000006}

See here [P 95] for details.

TC3 C++

Version: 1.7

85

Wizards

BECKHOFF

5. Rename the data type.

In this sample "stSensorData", select the specification "STRUCT" and click on "Edit Struct".

Untitledl .tmec [TMC Editor]* + X

—_g Implemented Interfaces
4 B Parameters
= TracelevelMax
| = Parameter
I [Diata Areas
By Data Pointers
I :((Interface Pointers

Deployment

d Edit the properties of the Data Type.

General properties

Name

Mamespace

GUID

Specification

db
I[Smm v]I[Ednsum._]I

Optional base type for struct data type
Select

Type Information

MNamespace

Guid

) &)

6. Insert new sub items to the structure by clicking on the "Add a new sub item button".

Untitledl .tmc [TMC Editor]* + X

o&

4 gn:TMC

4 2 oo T

e (P stSensorData

a4 2 Subltems
Ly Sublteml
Ly Subltem2
Lg Subltem3

4 [f] CModulel

—_g Implemented Interfaces

4 B Parameters
= TracelevelMax
| &= Parameter

I Data Areas

Wy Data Pointers
I :((Interface Pointers

Deployment

t: Add, remove and reorder Sub ltems.

&

t seve~ BHEH Ua @

ame Specification Type Description
Subltem1 Alias INT MNormal Type
Subltem2 Alizs INT MNormal Type

Subltem3 Alias INT MNormal Type

Guid
18071335-0000-0000-0000-000000000006
18071335-0000-0000-0000-000000000006
18071335-0000-0000-0000-000000000006

Size Size X64 Unit

86

Version: 1.7

TC3 C++

BECKHOFF

Wizards

7. By double-clicking on the sub item you can edit the properties. Rename the sub item and select an

appropriate data type

Untitledl .tme [TMC Editor]* + X

o &

4 2_'“: T™C
a %» Data Types
4 (P stSensorData
a [fp Subliems
Lg nCounter

Lg Subltem3
4 Modules
‘@ fie] CModule
—_g Implemented Interfaces
4 = Parameters
= TracelevelMax
| &= Parameter
I Data Areas
Il Datz Pointers
I :(‘ Interface Pointers

Deployment

L@ Edit the properties of the Sub ltem.

General properties

Name niCounter
Specification I3z -

Choose data type

Select INT
Description | Normal Type -

Type Information

Namespace

Guid 118071995-0000-0000-0000-000000000006}
Optional Subltem settings
Offzet [Bits] x64 specific
Size [Bits] %64 specific

%64 specific

Unit
Comment

[Hide sub items

Optional properiies

oL

Name Value Description

8. Rename the other sub items and select a data type:
9. Save your changes of the TMC file.

TC3 C++

Version: 1.7

87

Wizards

BECKHOFF

Step 2: Start TwinCAT TMC Code Generator to create code of module description

10. Right Click on your project file and select "TwinCAT TMC Code Generator" to create the source code
of your data type:

]
4 E_u TMC
a4 %% Data Types
4 (P stSensorData

Search Solution Explorer (Ctrl+) P~

fad Solution TwinCAT Projectl' (1 project)
4 [TwinCAT Projectl

t: Add. remove and re

a 2 Sub ltems — 2 Bvte -
b lﬂ SYSTEM Ly nCounter + ¢ — e
MOTION lg Subltem3 Name Specification Typs
PLC P Modules nCounter Alias INT
&3] SAFETY F @ CModulel Subltem3 Alias INT

—_g Implemented Intedfaces
4 !H Parameters

[+ TwinCAT TMC Code Generator

4 &g| Header Files
B Modulel.k i
B Resource.t I:’I Build
B TcPchh Rebuild
B UntitledlC Clean
B Untitledll Project Only .
B Untitledls

4 L] Source Files Scope to This

++ Modulel.c Mew Solution Explorer View

++ TcPch.cpr Profile Guided Optimization
ﬁ Untitledl.r))
++ UntitledlC Project Dependencies...

4 &3] TMC Files Project Build Crder...

@] Untitledl.t Build Customizations...
b Eg TwinCATRT
b B TwinCAT UM

b Evo

Add 3
References...

] Manage MuGet Packages...

= You will see the data type declaration in the module header file "Untitled1Services.h"

Solution Explorer - SRS Bl Untitled] Servicesh + X REEIEE)] Modulel.cpp Untitledl.tmc [TMC Editor]

&% e-aEm o s (Global Scope) -
P~ ST PR T IR R EIA SRR ELA LI LI L EL LT EEL P L LI P EE LI EE i iEE
[44 untitlediservices.h

Search Solution Explorer (Ctrl+a)
fa] Selution 'TwinCAT Projectl’ (1 project)
'l ﬂ TwinCAT Projectl

b @l sysTEM

#pragma once
#include "TcServices.h”

const ULONG DrvID_Untitledl = @x3FB00000;
#define SRVNAME_UNTITLEDL "Untitledl™

[f<hutoGeneratedContent id="ClassIDs">
const CTCID CID UntitledlCModulel = {@x7f7e8c25,8x1719,8x41ch, {@xas,ox2d,@x50,0xTe, Bxec,®x33,0x10,0x43}]};
A f</ButoGeneratedContent>

a Untitledl
4 [%] Untitled1 Project
b =3 External Dependencies

4 Header Files
& B Modulel.h ///<AutoGeneratedContent id="ParameterIDs">

const PTCID PID_ModulelParameter = @xB0000001;

B Resource.h /i /</putoGeneratedContent>

TecPch.h

B Untitled] ClassFactory /#/<AutofeneratedContent id="DataTypes">

T MIE (e SN E#if !defined({_TC_TYPE DG526A1E_BAGF_4BEA_A3AD_C2CACBDS56B@4_INCLUDED_)

=

Untitled] Services.h | #define _TC_TYPE_D6526ALE_BAGF_48EA_A3AD_C2CACBD56B84_INCLUDED_

packisyoh 14

++ Modulel.cop étypedef struct _stSensorData

*++ TcPch.cpp
O Untitledl.rc
*+ UntitledlClassFactory
4 &g] TMC Files
@] Untitledl.tme
b B TwinCAT RT Files
b = TwinCAT UM Files
3 0

SHORT nCounter;

unsigned int tTimeStamp;
} stSensorData, *PstSensorData;
#pragma pack(pop)

F_4B8EA_A3AD_C2CACBDS56B@4_INCLUDED)

Cltypedef struct _MedulelParameter

ULONG datal;
ULONG data2;

= If you add an additional data type or sub item, execute the TwinCAT TMC Code Generator again.

88 Version: 1.7 TC3 C++

BECKHOFF Wizards

11.3.3.3 Add/ modify / delete Interfaces

Interfaces of a TwinCAT module can be added, edited and deleted with the help of the TwinCAT Module
Class (TMC) editor.

This article describes:
« Step 1: Create a new interface [» 89] in the TMC file
Step 2: [» 89]Add methods [P _89] to the interface in the TMC file
+ Step 3: Use the interface [P 91] by adding it to the "Implemented Interfaces" of the module.
+ Step 4: Start the TwinCAT TMC [» 93] Code Generator to generate code for the module description.
Optional change of the interface [» 93]

Step 1: Create new interface
1. After starting the TMC editor, select the node "Data Types".
2. List of interfaces will be extended with a new interface by clicking the "Add a new interface".
= As a result "linterface1" is listed as new entry:

Untitledl.tmc [TMC Editor]™ ® X -

&

4 g_': ™C ®
4 %» Data Types 3? Add. remove and reorder Data Types.
I —o linterfacal
“EModules A ol SBﬂe'!E Ha @
4 fig] CModulel - S
—¢ Implemented Interfaces Name Guid Spedification Size Size X64
I !E Parameters linterface1 {79b3869d-8b94-4646-8350-a1709bf5f95] Interface
I Data Areas
Wy Datz Pointers

I j Interface Pointers

Deployment

3. Either select the corresponding node in the tree or double click on the line in the table to open the details

4 2_: TMC
a 4 Data Types —O Edit the properties of the Data Type. =l
4 —o Mylnterface
| %9 Methods =
4 Modules General properties
a4] CModulel -
—2 Implemented Interfaces I Name I5tateMachine I
| By Parameters Mamespace
I Data Areas
Iy Date Painters GUID {20bad64c-3e7a-480a-2430-d786633d0c9d}
¢ —¢ Interface Pointers Specificstion Interface v [Edit Methods. |
Deployment
Choose interface base type
Select [TComObject =)
Type Information

4. Renaming this to a more useful name - in this sample "IStateMachine".

Step 2: Add methods to the interface
5. Click "Edit Methods..." to get the list of methods of this interface:

4 §ETMC -
4 % Data Types —O Edit the properties of the Data Type w)
4 —o |StateMachine
I %¢ Methods .
iy Modules General properties
a ffg] CModulel .
=2 Implemented Interiaces Name IStateMachine
I By Parameters Namespace
I Data Areas
Iy Data Pointers GUID {ceb5764e-7804-4cpheanbl:
b ¢ Interface Pointers Specification [Interface | [(EditMethods_ |
Deployment
Choose interface base type
Select ITComObject [
Type Information
MNamespace
Guid {00000012-0000-0000-2000-000000000064}
e S,

TC3 C++ Version: 1.7 89

Wizards

BECKHOFF

6. Clicking the "+" button will generate a new default method "Method1™:

4 2_‘: TMC ®
4 5v Data Types -"' Add, remove and reorder Methods.
4 —o |StateMachine
| % Methods m 1
a g Modules el =
" @ CModulel Retum Type MName
8 Implemented Interfaces HRESULT callStart
| By Parameters HRESULT callEnd
[Data Areas HRESULT checkState
I Data Pointers
I =% Interface Pointers
Deployment

7. Double click on the method or select the node in the tree to open details
8. Renaming the default "Method1" to a more useful name".

9. After that clicking on "Add a new parameter" allows to add / modify parameters of method "SetState"
a4 I8 TMC

lau 2» Data Types o Edit the properties of the method.
4 —o |StateMachine
4 %@ Methods =
W@ seiState General properties
i callEnd
W checkState Name setState
4 Modules
'@@ CModulel RPC
=9 Implemented Interfaces. (| Enable
| By Parsmeters Include Return Value
i Data Areas
Il Datz Pointers Choose return data type
[:((Interface Pointers
Deployment Select HRESULT (]
Dascription
Type Information
MNamespace
Guid

{18071995-0000-0000-0000-000000000019}
Define the parameters of the method

L=

Mame Type

Description

Default Value RPC Direction RPC Lengthls

= By default the new parameter "Parameter1" as "Normal Type" of "INTEGER" is created.
10. Click on the name "Parameter1" allows modifying the name.

= The "Normal Type" could also be changed into Pointers etc. - also the data type itself can be
selected

Define the parameters of the method

e -

2 Description Default WValue RPC Direction RPC Lengthls B
N & O G| | (s
———
= In this case "NewState" is the new name - the other settings are not changed
+ -]
MName Type Description Default Value RPC Direction RPC Lengthls
INT]

Mot specified «

90

Version: 1.7 TC3 C++

BECKHOFF

Wizards

11. Repeating the step 2 "Add methods to interface" will list all methods - with the "up" / "down" buttons the
methods can be reordered.

4 2_'3 ™C
a 4» Data Types
4 —a |StateMachine
4 4% Methods
W setState
@ Start
W Stop
4 Modules
'@@ CModule

= Parzmeters
Datz Areas
Il Data Pointers
= Interface Peinters

Deplayment

12. The interface is ready to be implemented by your module.

—a
—% Implemented Interfaces

:" ‘Add. remove and reorder Methods.

+= 11

Return THPE—Toame
HRESULT sstState
HRESULT Start
HRESULT Stop

oh
4 I@ TNC
9_‘.1 2% Data Types :% Shows the implemented interfaces of the module
4 —o |StateMachine
4 4% Methods - 1
W setState -
@ Start Name Interface ID Diszble Code Generation
W Stop ITComObject {00000012-0000-0000-E000-000000000064}
4 figg Modules ITeCyclic: {03000010-0000-0000-E000-000000000064} [
4[] CModulel ITeADI {03000012-0000-0000-E000-000000000064)
=3 Impl d I BSourca I02000N12,0000 AN ENON.ONANANARNNESY]
v Hig Parameters IStateMachine (ceb5764e-7804-4edb-2ab8-68310286829d) [
I Data Areas
IH Data Pointers
I :cf Interface Pointers
Deployment
Choose data type...
Name MNamespace Guid Specification Size
ITcAppServices {08500102-0000-0000-2000-000000000064} |Interface 4.0 (8.0)
ITcAppServices2 {08500104-0000-0000-=000-000000000064} |Interface 4.0 (8.0)
ITcBaseClassFactory {00000018-0000-0000-£000-000000000064} |Interface 4.0 (8.0)
ITcCyclicCaller {0300001 e-0000-0000-=000-000000000064} |Interface 4.0 (8.0)
TTeFthernetAdanter {03010060-0000-0000-N00-000000000064} [Tnterface 4.0 &M

Seart

Step 3: Add the new interface to "Implemented Interfaces"

13. Select the module that is to be extended by the new interface - in this case select the destination
"Modules->CModule1".

14. The list of implemented interfaces is extended by a new interface with "Add a new interface to the
module" by clicking on the "+" button.

Untitledl.tme [TMC Editor]* ® X .

o
4 FETMC
tlu 23 Data Types :% Shows the implemented interfaces of the module
4 Modules
4 [ig] CModulet S — 1
=3 Impl d Inter - -
| B Parameters Name Interface ID Disable Code Generation
I Data Areas MComObject {00000012-0000-0000-E000-000000000064}
Il Data Pointers TeCychic {03000010-0000-0000-E000-D00000000064} [
I = Interface Pointers [TeADI {02000012-0000-0000-E000-D00000000064}
Deployment ITewatchSeurce {02000018-0000-0000-E000-000000000064}

TC3 C++ Version: 1.7 91

Wizards

BECKHOFF

15. All available interfaces are listed - select the new template "IStateMachine" and end with "OK"

o 2 e e T
[TcAppServices2 08500104 -0000-0000- 000-000000000064} Interface
ITcBaseClassFactory 00000018 -0000-0000- 000-000000000064} Interface
[TeCyclicCaller 0300001 e-0000-0000- e000-000000000064} Interface
IMelaCyelic 03000011 -0000-0000- 000-000000000064} Interface
ITcloCyclicCaller 0300001 f-0000-0000-e000-000000000064} Interface
ITComlLicense5erver {01010000-0000-0000-000-000000000064} Interface
ITComObjCon {00000016-0000-0000- e000-000000000064} Interface
[TComObjectServer {00000030-0000-0000- 000-000000000064} Interface
[TCoemChbijlnd {0000001.3-0000-0000- e000-000000000064} Interface
[TComObjReq 0000001 5-0000-0000- 000-000000000064} Interface
I[TComObjRes 00000014 -0000-0000- e000-000000000064} Interface
ITePostCyclic {03000025-0000-0000- 000-000000000064} Interface
[TcPostCyclicCaller {03000026-0000-0000- 000-000000000064} Interface
ITePrelnputCyclic 03000017 -0000-0000- 000-000000000064} Interface
[TcRTime {0200000d-0000-0000-000-000000000064} Interface
ITcRTimeTask 02000003 -0000-0000- 000-000000000064} Interface
ITcTask 02000002 -0000-0000- 000-000000000064} Interface

[C] Show hidden data types m Cancel

= As a consequence, the new interface "IStateMachine" is now part of the module description.

4 B[R TMC
a4 %% Data Types
4 —o |StateMachine

—0

—& Shows the implemented interfaces of the module.

4 4% Methods
'B Start t%- . ‘l T
M gtntgiat Mame Interface 1D Disable Code Generation
F Modulesu Eire ITComObject {00000012-0000-0000-E000-000000000064)
w @ CModulel ITeCyclic {03000010-0000-0000-E000-000000000064) [T
—5 Implemented Interfaces ITeADI {03000012-0000-0000-E000-000000000064)
| '—'-5 Farameters ITcWatchSource {03000018-0000-0000-E000-000000000064}
I Data fAreas |StateMachine [d6a23080-589-47 1b-9b0a-5e40995c0144) [T
Iy Data Pointers
| = Interface Pointers
92 Version: 1.7 TC3 C++

BEGKHOFF Wizards

Step 4: Start TwinCAT TMC Code Generator to create code of module description

16. To generate the C/C++ code out of this module descriptions right click in the C/C++ project and select
the "TwinCAT TMC Code Generator"

Solution Explorer ARl Untitledl.tme [TMC Editor]* & X

@ % o-am #R o

Search Selution Explorer (Ctrl+a) P~ 4 2_‘3 T™C ®
1 Solution TwinCAT Projectl’) 4 %» Data Types .“' Add, remove and reorder Methods.
wal outlo.n win : rojectl’ (1 project) 4 —o IStateMachine
4 aTwlnCATProjecﬂ 4 % Methads -]t
b @l SYSTEM i setState
MOTION W Start Retum Type Name
PLC @ Stop HRESULT setState
SAFETY 4 f Modules HRESULT Start
4 @] Ces 4 ff] CModulel HRESULT Stop
4 :g Implemented Interfaces
= T o roremerrs
[TwinCAT TMC Code Generator
b HY TwinCAT Publish Modules
b Sotrg X
p Sl ™ ki Build
@) Rebuild
b Tw Clean
b Tw Project Only ’
[= e
Scope to This
B New Solution Explorer View

= As a result the module "Module1" contains the new interfaces
CModule1: Start()
CModule1: Stop()
CModule1: SetState(SHORT NewState)

Solution Explorer R Modulel.cpp + X UntitledLtmc [TMC Editor] -4
&% e-am , (Global Scope) - - s
CyclicCall = NULL; +
Search Solution Explorer (Ctrl+ i) P~ mspeychictalien = E
T Solution ‘TwinCAT Projectl’ (1 project) m_Trace.log(t1Verbose, FLEAVEA);
4 [3 TwinCAT Projectl ¥
b |l svsTEM
k= MoTIoN
PLC ///<AutoGeneratedContent id="ImplementationOf_IStateMachine">
= EIHRESULT CModulel::setState(SHORT NewState)
SAFETY i
4 [Cov HRESULT hr = E_NOTIMPL;
P Untitledl return hr;
4 [Untitled1 Project 3
b B3 External Dependencies
b B Header Files FIHRESULT ChModulel::Start()
4
Q‘S:'U’:ﬁ;“lz HRESULT hr = E_NOTIMPL;
oculel.cpp return hr;
++ TePeh.cpp
) Untitledl.rc
++ Untitled] ClassFactory | IHRESULT Crodulel::Stop()
4 & TMC Files {
@| Untitled] .tmc HRESULT hr = E_NOTIMPL;
b & TwinCAT RT Files return hr;
b TwinCAT UM Fil
» Ero i Twin = 7/4</autoseneratedContent>

17.Finished - the custom code can now be added to this area.

Optional change of the interface

® User-defined code will never be deleted

1 In the case of changes to the interface (e.g. the parameters of a method will be extended later), the
user-defined code will never be deleted. Instead, the existing method will merely be provided with a
comment if the TMC Code Generator cannot map the methods.

TC3 C++ Version: 1.7 93

Wizards BEGKHOFF

J{ /<dutoGeneratedContent id="ImplementationOf IStateMachine":
=IHRESULT CModulel::SetState(SHORT SetState, bool bRun)
1
HRESULT hr = E_NOTIMPL;
return hr;

E,
3// </ AutoGeneratedContent>

/i /<dutoGeneratedContent id="0Obsolete Implementationdf IStateMachine™>
JIHRESULT CModulel::SetState(SHORT SetState)
1

// HRESULT hr = E_NOTIMPL;

e

/ol [fcustom code

ff nstate = setstate;

e

/! return hr;

/Y

I

fff<fﬁutcﬁeneratEdCcntenk}

94 Version: 1.7 TC3 C++

BECKHOFF

Wizards

11.3.3.4 Data type properties

Editing the properties of data types
4 B TMC

4 3% Data Types ¢ Edit the properties of the Data Type.
P DataTypel
4 '] Modules
4 FL’I CModulel
~2 Implemented Interfaces
I By Parameters
| Datz Areas Mamespace

W Datz Pointers .
% Interface Pointers Guid {ecoodcy1-3635-43a3-987b-8dbi355F1a55)

¥ Devlomert Speciican

Choose data type

General properties

Name DataTypel

Select INT
Descrption

Type Information
Namespace

Guid {18071995-0000-0000-0000-000000000006}

Optionzl data type setfings

Size [Bits] x64 speciiic
%64 specific
CIC++ Name
default
%64 specific
Unit
Comment

[Hide sub items
[Persistent (even if unused)

Optional Defaults

Value | Enum | String

Value 4
Min 1
Max 5

Optional properties

=) t]

Name Value Descripiion

Datatype Hides

Guid

TC3 C++ Version: 1.7

95

Wizards BEGKHOFF

General properties

Name: user-defined name of the data type

Name conflict

A name collision can occur if the driver is used in combination with a PLC module.
* Do not use any of the keywords that are reserved for the PLC as names.

Namespace: user-defined namespace of the data type
Please note that this is not assigned to a C namespace. It is used as the prefix to your data type.

Example: an enumeration with a namespace "A":

@ Edit the properties of the Data Type.

General properties

Name ASampleEnum
Namespace A

GUID {41d4a207-3a05-4316-9d83-0dd 188 1abBed}

Specification

The following code is generated:

///<ButoGeneratedContent id="DataTypes">

#if !defined(TC TYPE 41D4A207 3A09 4316 9D89 ODD1881AB8C4 INCLUDED)
#define TC TYPE 41D4A207 3A09 4316 9D89 0ODD1881AB8C4 INCLUDED

enum A ASampleEnum : SHORT {

One,

Two,

Three

}i

#endif // !defined(TC_TYPE 41D4A207 3A09 4316 9D89 ODD1881AB8C4 INCLUDED)

You may wish to manually append the namespace name to the enumeration element as a prefix:

#if !defined(TC TYPE C26FED5F AC13 4FD3 AC6F B658CB5604E0 INCLUDED)
#define TC TYPE C26FED5SF AC13 4FD3 AC6F B658CB5604E0_INCLUDED

enum B BSampleEnum : SHORT ({

B _one,

B_two,

B three

bi

#endif // !defined(_TC_TYPE C26FED5F ACl3 4FD3 AC6F B658CB5604E0_ INCLUDED)

GUID: unique ID of the data type

Specification: specification of the data type

« Alias: generate an alias of a standard data type (e.g. INT)
Array [P 98]: create a user-defined array
Enumeration [P 99]: create a user-defined enumeration
Struct [P 99]: generate a user-defined structure
Interface [»_100]: generate a new interface

Choose data type

Select: Select data type — these could be base data types of TwinCAT or user-defined data types
There are data types defined, which are equivalent to the PLC data types (like TIME, LTIME etc.). Please
see Data Types of the PLC for a detailed description.

Description: Define if the type is a pointer, a reference or a value by selecting one of

96 Version: 1.7 TC3 C++

BEGKHOFF Wizards

* Normal type

* Is pointer

* |s pointer to pointer

* |s pointer to pointer to pointer
+ areference

Type Information

+ Namespace: Defined of the selected data type
* GUID: Unique ID of the selected data type
Optional data type settings

Size [Bits]: Size in bits (white fields) and in "Byte.Bit" notation (grey fields). A different size can be defined
for the x64 platform.

C/C++ Name: name used in the generated C++ code. The TMC code generator will not generate the
declaration, so that user-defined code can be provided for this data type. Beyond that a different name can
be defined for x64.

Unit: a unit of the variable
Comment: comment that is visible, for example, in the instance configurator

Hide sub items: If the data type has sub-elements, the System Manager will not allow the sub-elements to
be accessed. This should be used, for example, in the case of larger arrays.

Persistent (even if unused): Persistent type in the global type system (cf. System->Type System->Data
Types)

Optional Defaults
Depending on data type the default could be defined.

Optional Properties

A table of name, value and description for annotating the data type.
This information is provided within the TMC and also TMI files.
TwinCAT functions as well as customer programs can use these properties.

Datatype Hides

Listed GUIDs refer to data types which are hidden by this data type. Normally, GUIDs of previous versions of
this data type are inserted here automatically on each change.

11.3.3.5 Specification

This section describes the Specification of data types.

TC3 C++ Version: 1.7 97

Wizards BEGKHOFF

\3 Edit the properties of the Data Type.

General properties

MName stSensorData
Mamespace
GUID ———basabe ekl (198 -cab03abfe 1}

Specificaig

Array
Enumeration
Struct

Interface

R

Choose datgjtyp

Select

11.3.3.5.1 Array

Array: Create a user specific array

Define the dimensions of the amay

=
Oimension LBound Elements

You get a new dialog to add (+) or remove (-) array elements.
Dimension: Dimension of the array
LBound: Left bound of the array (default = 0)

Elements: Amount of elements

Dynamic Arrays for Parameters and Data Pointers

Define the dimensions of the amay

o -
Dimension LBound Elements Min Max Maxis unbounded
0 |0 |8 1 [32 | =] |

For Parameters [P_104] and Data Pointers [119] TwinCAT 3 can handle arrays, which are of dynamic length.

Min: Minimum size of the array
Max: Maximum size of the array

Max is unbounded: Indicates that there is no maximum limit of the array size

98 Version: 1.7 TC3 C++

BEGKHUFF Wizards

11.3.3.5.2 Enum

Enumeration: create a user-defined enumeration

Define the entries of the enumeration

=11
Text Enum Comment
red [0

gresn |2

A new dialog is shown for adding (+) or removing (-) an element. Edit the order with the help of the arrows.

Unique names are required for enumeration elements

Please note that the enumeration elements must have unique names, as otherwise the C++ code gener-
ated is invalid.

Text: Enumeration element
Enum: Suitable integer value

Comment: Optional comment

11.3.3.5.3 Struct

Struct: Create a user specific structure

Please select the “Sub Items” node or click the “Edit Struct” button to switch to this table:

4 !ﬂ TMC -
a 4» Data Types ° Edit the properties of the Data Type. 7
4 (P stSensorData
I b2 Subltems .
4 —o Mylnterface General properties
4o Methods
Ay Modules Name stSensorData
P @ CModulel Namespace
—_g Implemented Interfaces
| B Parameters GUID [3bee2b3e-b400-4278-a038-cabl03abie Te}
4 [Data Areas Specification | Struct | (EditStruct_|
4 Inputs
4 S',rmvb;:;l:e Optional base type for struct data type
Status =
Data Select E]
| [l Outputs R
Bk Data Pointers Type Information

You get a new dialog to add (+) or remove (-) an element. Use the arrows to adjust the ordering.

Untitledl Services.h Modulel .h Modulel.cpp Untitledl .tmc [TMC Editor]* & X -
o
4 33 TMC Add. remove and reorder Sub Items.
a %» Data Types . g
4 (P stSensorData =+ ! 8 Byte ~ ! H L) =
) | Sub liems Name Specification Type Description Guid Size Size X654 Unit
Ly bEnable bEnable Alizs BOOL Normal Type 18071995-0000-0000-0000-000000000030
Ls ”;‘;:Jf’era‘”“’ nTemperature Alias INT Normal Type 12071395-0000-0000-0000-000000000005
Mylmﬁ:ce = eStatus Enumeration INT Nermal Type 18071595-0000-0000-0000-000000000006
4 9
4% Methods
4 g Modules

Name: Name of the element

TC3 C++ Version: 1.7 99

BECKHOFF

Wizards

Specification: A struct can contain aliases, arrays or enumerations
Type: Type of variable

Size: Size and offset of the subitem.

Size X64: Different size for x64 platform is additionally provided.
Unit: Optional unit

By selecting node of the data type or double-clicking on the table entry one would get to the details of the
subitems configuration page. This is similar to the Data type properties [P 95].

11.3.3.5.4 Interfaces

Interfaces: Create a user specific interface.

4 2_'3 T™C
a4 % Data Types
4 (P stSensorData
I k2 Subltems
4 —o Mylnterface
4o Methods
P Modules
‘@@ CModulel
—_% Implemented Interfaces
| Bz Parameters
4 Data Areas
4 Inputs
4 Symbols
Value
Status
Data
| [l Outputs
Il Data Pointers
I :(f Interface Pointers

Deployment

Please select the “Methods” node or click the “Edit Methods” button to switch to this table:

—Q Edit the properties of the Data Type.

General properties

Name Mylnterface

Namespace

GUID Obad64c-3e7a-480a-2430-d4786623d0c0d}
Specification | [Interface ~| [EditMethods... |

Choose interface base type

Select ITComObject (=]

Type Information
MNamespace

Guid {00000 2-0000-0000-e000-000000000064}

Untitledl.tmc [TMC Editor]* + >

:" Add, remove and reorder Methods.

Untitled] Services.h Modulel.h Modulel.cpp
o
4 g_'g T™MC
a % Data Types
4 (P stSensorData
4 % Subltems LR |
Ly bEnable
Lg nTemperature Retum Type Name
Lg eStatus HRESULT callStart
4 —o Mylnterface HRESULT callEnd
a 4% Methods HRESULT checkState
W callStart
W callEnd
@ checkState
4 g Modules

Method Parameters

Select the node of the method or double click to see the details of a method:

100

Version: 1.7

TC3 C++

BECKHOFF

Wizards
Untitled]Services.h Modulel.h Modulel .cpp Untitledl.tmc [TMC Editor]* & X
=&
4 38 TMC
t‘u s Data Types 0 Edit the properties of the method
4 (P siSensorData
a [Sub ltems .
Ly bEnable Ezreal s
Lg nTemperature
Ly eStatus Name callStart
4 —o Mylnterface
4 %% Methods RPC
@ callStart] Enable
W callEnd Include Return Value
M checkState
4 ‘E Modules Choose retumn data type
4[] CModulel
=2 Implemented Interfaces Select HRESULT E]
I !3 Parameters
4 Data Areas Description
4 Inputs
. Symbols Type Information
Value Namespace
gfams Guid {18071395-0000-0000-0000-000000000013}
ata
| il Ouiputs
Iy Datz Pointers Define the parameters of the method
I :((Interface Pointers
Deployment o -
Name Type Description Default Value RPC Direction RPC Lengthls
INT MNormal Type Mot specified
Normal Type
Is Pointer
Is Pointer to Pointer
Is Pointer to Pointer to Pointer
Is Reference

Name: The name of the method

RPC enable: Enable “Remote Procedure Calls” from outside for this method.

* Include Return Value: Enable propagation of method’s return value

Fields are equivalent to the Data type properties [P 95].

Define the parameter of the method
+ Name
» Type: Known from the Data type properties [P 95]
» Description: Known from the Data type properties [P _95]
» Default Value: Default value of this parameter; only numbers are allowed

» RPC-Direction: Equivalent to PLC function blocks each parameter could either be IN, OUT or INOUT.
Additionally, NONE could be defined to ignore this parameter on Remote Procedure Calls.

11.3.4

Modules: Shows modules of the driver

Modules

Untitledl .trmec [TMC Editor] & X -

ok
4 2_‘: T™MC
| %o DataTypes ﬁa Shows the Modules of the driver.
4 g Modules
4 E_l CModule1 Class Name Class Id

_45 Implemented Interfaces
I !H Parameters
I Diata Areas

W Datz Pointers
I =% Interface Pointers

Deployment

CModulel 7f7e0c25-1719-41c0-a82d-50feec331043

Class Name: Name of the module

TC3 C++ Version: 1.7 101

Wizards BEGKHOFF

Class ID: Unique ID of the module
Modules properties:

Click on the node in the tree or the row in the table to open the module properties.

Unbenanntl.tmec [TMC Editor]* & > 1T Modulel.h
o & @
4 B3 TMC Module Classes _
4 %% Datz Types g Shows the properties of the Module.
B DataTypel
[=& lInterface2 Ge i N
4 57 Modules eI
4] CModulet
—2 Implemented Interfaces Name R
]
I Tz Parameters Class ID (CLSID) 70cfafd6-d564-4a33-84fc-37f79538:87bd [auto generate on save
4 Data Areas
P Inputs Class Factory Unbenanntl
I Symbols - -
4 W Outputs Image D[Choose image... l [Reset image... l
I - Symbols .
B Dstz Painters Init Sequence
4 —% Interface Pointers Instantizble in RT Context
— CyclicCaller
Deployment Define the contexts of the module
=]
ID

1

Optional properties

=4 1|

‘Name Value Descripion

General properties
Name: Name of the module
Class ID: Unique module ID

Auto generate on save: Enables TwinCAT to generate the ClassID via the module parameters during
saving. If the ClassID changes during import of the binary modules, the corresponding ClassIDs have to be
adjusted. Thus, TwinCAT can detect the interface change.

Choose Image: Add a 16x16 pixel bitmap symbol

Reset image: Reset the module image to the default value

Init sequence: Start the state machine. The selection options with “late” in the name are internal (see Object
[»_125] of the instance configurator for further information).

102 Version: 1.7 TC3 C++

BECKHOFF

Wizards

Instantiable in RT Context: Indicates whether this module can be instantiated under real-time context;

see TwinCAT Module Class Wizard [P 771

::" * I-_)
PR
4 %% Data Types “ Shows the properties of the Module.
P DataTypel
4 —o lInterface? .
4 3* Methods General properties
M Method1
4] Modules MName CModulel
4 fie] CModulel Class ID (CLSID) 6aB4hbi6d-ddd2-463b-b910-a3dd 1cc48121

~% Implemented Interfaces
=. Parametars

Data Areas
@ Data Pointers

% Interface Pointers)
= Init S0
[2 Deployment it sequencs

Instantiable in RT Context

Class Factory Untitled1

Image I:H Choose image. ..] [Reset image..

Define the contexts of the module

+ =

niitiedt.tme (riac Eaitor)* - >« |

ID
1

Optional properties

1]

Name “alue Description

Define the contexts of the module

You can add (+) or remove (-) contexts for the module. Use the arrows to adjust the ordering.
Context Id should be a non-zero integer.

Optional Properties

A table of name, value and description for annotating the module.
This information is provided within the TMC and also TMI files.
TwinCAT functions as well as customer programs can use these properties.

11.3.4.1 Implemented Interfaces

Implemented Interfaces: Manipulate and view the implemented interfaces of the module

TC3 C++ Version: 1.7

103

Wizards

BECKHOFF

UntitledL.tme [TMC Editer]* # X -

&
4 2_3 T™MC o
*s Data Types B Shows the implemented interfaces of the module.
4 Modules
E—@ CModulel o - 1
=2 Impl d
=_ Parameters Name Interface ID Digable Code Generation
7, Data Areas TComObject {00000012-0000-0000-E000-000000000064}
@ Datz Pointers [TeCyclic {03000010-0000-0000-E000-000000000064F [T]
% Interface Pointers [TeADI {03000012-0000-0000-E000-000000000064}
Deployment ITcWatchSource {02000018-0000-0000-E000-000000000064}

Name: Name for the interface
Interface ID: Unique ID of the interface
Disable Code Generation: Switch to enable/disable the code generation

You can add (+) or remove (-) contexts for the module. Use the arrows to adjust the ordering.

Choose data type... =]
Mame Mamespace Guid Specification Size
IStateMachine (local) {1ceb5764e-7804-dedb-aab8-68310a86829d} | Interface
ITcAppServices {08500102-0000-0000-e000-000000000064} |Interface 4.0 (8.0)
ITcAppServices? {08500104-0000-0000-e000-000000000064} |Interface 4.0 (8.0)
ITcBaseClassFactory {00000018-0000-0000-e000-000000000064} |Interface 4.0 (8.0)
ITeCyclicCaller {0300001 e-0000-0000-2000-000000000064} | Interface 4.0 (8.0)
ITcEthernetAdapter {02010060-0000-0000-e000-000000000064} | Interface 4.0 (8.0)
ITcFileAccess {742a7429-dabd-4c1d-80d8-398d8c1f1747} | Interface 4.0 (8.0)
ITcloCyclic {03000011-0000-0000-e000-000000000064} |Interface 4.0 (8.0)
ITcloCyclicCaller {0200001f-0000-0000-000-000000000064} |Interface 4.0 (8.0)
ITcloECatlrwemory {03021018-0000-0000-2000-000000000064} | Interface 4.0 (8.0)
ITcloEthProtocol {02010035-0000-0000-e000-000000000064} |Interface 4.0 (8.0)
[TcMeDeConvert {05000005-0000-0000-e000-000000000064} |Interface 4.0 (8.0)
[TcMeDeConvert2 {05000006-0000-0000-e000-000000000064} | Interface 4.0 (8.0)
ITcMcTrafo {05010001-0000-0000-e000-000000000064} |Interface 4.0 (8.0)
ITComCreatelnstance {00000031-0000-0000-e000-000000000064} | Interface 4.0 (8.0)
ITComLicenseServer {01010000-0000-0000-e000-000000000064} |Interface 4.0 (8.0)
ITComMoPlcWrapper {00000063-0000-0000-2000-000000000064} | Interface 4.0 (8.0)
ITComObjCon {00000016-0000-0000-e000-000000000064} |Interface 4.0(8.0)
ITComObjectServer {00000030-0000-0000-e000-000000000064} |Interface 4.0 (8.0)
ITComOhbjlnd {00000013-0000-0000-e000-000000000064} |Interface 4.0 (8.0)
ITComObjReq {00000015-0000-0000-e000-000000000064} |Interface 4.0 (8.0)
ITComObjRes {00000014-0000-0000-e000-000000000064} | Interface 4.0 (8.0)
ITcPostCyclic {02000025-0000-0000-e000-000000000064} |Interface 4.0 (8.0)
ITcPostCyclicCaller {03000026-0000-0000-2000-000000000064} |Interface 4.0 (8.0)
ITcPrelnputCyclic {02000017-0000-0000-e000-000000000064} |Interface 4.0(8.0)
ITcRTime {02000010-0000-0000-e000-000000000064} |Interface 4.0 (8.0)
ITcRTimeTask {02000003-0000-0000-e000-000000000064} |Interface 4.0 (8.0)
ITcTask {02000002-0000-0000-2000-000000000064} |Interface 4.0 (8.0)

["] Show hidden data types Group by |None | [OK | [Cancel

11.3.4.2 Parameters

A TcCOM module instance is defined through various parameters.

TwinCAT supports three types of parameter IDs (PTCID) in the section "Configure the parameter ID".

+ "user-defined" (default value for new parameters): A unique parameter ID is generated, which can be
used in the user code or in the instance configuration for specifying the parameter.

» "Predefined...": Special PTCIDs provided by the TwinCAT 3 system (e.g. TcTraceLevel).

104 Version: 1.7 TC3 C++

BECKHOFF Wizards

+ "Context-based...": Automatically assign values of the configured context [»_126] to this parameter.
The selected property is applied to the PTCPID. It overwrites the defined standard parameters and the
instance configuration parameter (parameter (Init)).

The parameters and their configuration are described in more detail below.

Parameters: Shows the implemented parameters of the module

Untitled] tme [TMC Editor]* + X -

o
4 95 T™MC —
| %» Data Types _5 Add, remove and reorder Parameters.
4 g Modules
4] CModulel F | B Byte ~ ! E
& ool 3 It
| !_; Parameters Name Farameter ID Specification Size Size X64 Context Disable Code Generation
i Data Areas Tracel evelMax #x03002103 Aliss 1 1

Il Data Pointers Farameter #x00000001 Struct 1 =)
| =% Interface Pointers

Deployment

Icon Function
:D:. Add a new parameter

Deletes the selected type
Move the selected item one position down
Move the selected item one position up

Select byte alignment

! Align selected data type

Reset the data layout of the selected data type

Name: Name for the interface

Parameter ID: Unique ID of the parameter

Specification: Data type of the parameter

Size: Size of the parameter. For x64 different sizes are possible.
Context: Context ID of the parameter

Disable Code Generation: Switch to enable/disable the code generation

11.3.4.2.1 Add / modify / delete parameters

The TwinCAT Module Class (TMC) Editor allows adding / modifying and deleting features and functionalities
of a TwinCAT class.

This article describes how to
» Step 1: Create new parameter [P_106] in the TMC file
+ Step 2: Start TwinCAT TMC Code Generator [P _107] to create code of module description in the TMC file

» Step 3: Statemachine transitions [P 108]

TC3 C++ Version: 1.7 105

Wizards

BECKHOFF

Step 1: Create new parameter
1. After starting the TMC editor, select the target "Parameters".

2. List of parameters will be extended with a new parameter by clicking the "+" button "Add a new

parameter".

= As aresult a new "Parameter” is listed as new entry:

4 3 TMC =
| %e Data Types .- | Add. remove and reorder Parameters.
4 [Modules
4 el CM?duIF1 L 1 2Eyte ~ [[
I 4 !; Parameters I Name Parameter ID Specification Size Size X64 Context Disable Code Generation
— ax ﬂ?ﬂoﬂ% Alizs 1 1
| [Parameter [Parameter 00001 Struct 1 =}
4 Datz Areas
4 Inputs
4 Symbols
Value
Status
Data
| [y Outputs
4 [@h Datafreal

3. Select “Parameter” in the left tree or double click on red marked "Parameter3" or select node in tree to
get details of new parameter.

Untitledl tmc [TMC Editor]* # X -
o &

4 2_: T™C
[3® Data Types
4 Fg Modules
4 [fg] CModulel }
—3 Implemented Interfaces General properties
4 By Parameters

I—a Edit the properties of the parameter.

= TracelevelMax Name Parameter
> SRR Specification | Struct ~] [EditStuct.]
4 Data Areas
“ Inputs Optional base type for struct data type
4 Symbals
Value
Status Select E]
Data .
Type Inf ti
| [y Cutputs :'Jpa ormation
4 [Datadres3 amespace
& Symbols Guid

Wy Dats Pointers
[:((Interface Pointers

Deployment

Configure the parameter ID

Enter 2 unique ID Value #x00000001

Constant Name PID_Module1Parameter

4. Configure parameter comparable to the Data Types [P 83]
5. Renaming this to a more usefully name - in this sample "bEnable" and select the data type "BOOL".

o &
a Y8 TMC
| % Data Types
4 Modules
a fiz] CModulel =
—3 Implemented Interfaces General properties

a B Parameters SEnabi
e nable

Specicaton [Ams 7]

Ta Edit the properties of the parameter.

il Name
= bEnable

4 Inputs

Choose data
4 |} Symbols RS
Value
oot Select| BOOL =)
Ot hData Type Informatien
I utpu
N
4 [@ Datafreal smespace
B Symbols Guid {18071995-0000-0000-0000-000000000030}

Il Datz Fointers
[j Interface Pointers

Deployment

Configure the parameter 1D

User defined... -

PSmmm——

Erbrr = omimen N alen | #0000NNT

6. Save your changes of the TMC file.

106 Version: 1.7 TC3 C++

BECKHOFF

Wizards

Step 2: Start TwinCAT TMC Code Gnerator to create code of module description
7. Right Click on your project file and select "TwinCAT TMC Code Generator" to get the parameter in your

source code:

Solution Explorer ARl Untitledl.tme [TMC Editor]* & X

®@ % o-88 4R
P~
a1 Solution TwinCAT Projectl' (1 project)
4[5 TwinCAT Projectl

Search Selution Explorer (Ctrl+a)

=&

4 E_n:TMC

4 %% Data Types

4 —o |StateMachine

:3 Add, remove and reorder Methods.

=]t

4 4% Methods
b @l SYSTEM i setState
MOTION W Start
PLC @ Stop
SAFETY 4 f Modules
4 [Cor 4 ff] CModulel
4 —_g Implemented Interfaces
T o roremerrs

TwinCAT TMC Code Generator
TwinCAT Publish Modules

3

b = HY

b Sotrg X

=R Build

@) Rebuild

b Tw Clean

b Tw Project Only
» Evo

Scope to This

B New Solution Explorer View

Return Type Name
HRESULT setState
HRESULT Start
HRESULT Stop

= You will see the parameter declaration in the module header file "Module1.h"

!/ f<AutoGeneratedContent id="Members":
TcTracelevel m_TracelevelMax;
bool m_bEnable;
ModulelInputs m_Inputs;
ModulelOutputs m_Outputs;
ModulelDataArea3 m_Datalbreal;
ITcCyclicCallerInfoPtr m_spCyclicCaller;
< /AutoGeneratedContent>

TC3 C++

Version: 1.7

107

Wizards BEGKHOFF

= The implementation of the new parameter can be found in the get and set methods of the module
class "module1.cpp".

IMPLEMENT _ITCOMOBIECT (CModulel)

IMPLEMENT _ITCOMOBJECT SETSTATE_LOCKOP2({CModulel)
IMPLEMENT _ITCADI{CModulel)

IMPLEMENT _ITCWATCHSOURCE (CModulel)

AP ET TR EE i T i P i i i i i diiiddididddiddidddiidiiiddiiii
Lfﬁ Set parameters of CModulel
BEGIN_SETOBIPARA MAP({CModulel)
SETOBJIPARA DATAAREA MAP()
J/f<AutoGeneratedContent id="SetObjectParameterMap”>

fff<fﬁutcﬁene’Eted[cntentj
END_SETOBIPARA MAP()

BALILELLILERETLT LTR80T T i i i i i i irdiddisirisidisidd
Lff Get parameters of CModulel
BEGIN GETOBIPARA MAP(CModulel)
GETOBIPARA_DATAAREA_MAP()
/! /<AutoGeneratedContent id="GetObjectParameterMap":

JH </ dutoGeneratedContents
END_GETOBIPARA_MAP()

If you add an additional parameter, use the TwinCAT TMC Code Generator again.

Step 3: State machine transitions

Note the different state transitions of your state machine [P_391:

108 Version: 1.7 TC3 C++

BEGKHUFF Wizards

Parameter

| SAFEOP I
| oP l
The parameters are specified during the transition Init->Preop and perhaps Preop->Safeop.

11.3.4.2.2 Parameter properties

Parameter properties: Edit the properties of the parameter

TC3 C++ Version: 1.7 109

Wizards BEGKHOFF

Modulel.cpp Modulel.h Untitledl.tmc [TMC Editor] R X » >
(o0 Sei
4 3_'3 TMC PRl -

| 4» Dats Types I’a Edit the properties of the parameter. M
4 B Modules 1€
4 @ CModule1 r
—a mal ted Irbark General o
-4
4 B Parameters al
- MName bEnable t

= S r
= beradc Spesicaton :
4 Inputs.]}
Choose data type &
- Symbols N
Value
2
ot Select BOOL (=) -
- Outo hData Type Information bl
0 utpu g)
N
4 [@ Datafreal amespace
B Symbols Guid {18071995-0000-0000-0000-000000000030}
Il Dats Pointers
I % Interface Pointers
Deployment Cenfigure the parameter [D User defined... =
-
Enter & unique 1D Value #:00000001 Generate 1D
Constant Name PID_Module1bEnable

Optional parameter settings

Size [Bits] %64 specific
xE4 specific £
Unit
Comment
Contet ID
[Create symbol

[T Disable code generation
[Hide parameter

[T Hide sub items

[T Online parameter

[Read-cnly

Optional properties

4

Name “alue Description

General properties
Name: Name for the interface

Specification: Data type of the parameter. Please see Specification.

Choose data type
Select: Select data type

Type Information

+ Namespace: User-defined namespace for the data type
« GUID: Unique ID of the data type

Enter a unique ID Value: Enter a unique ID Value. See Parameters [»_104].

Constant Name: Source code name of the parameter ID

Optional parameter settings

Size [Bits]: Calculated size in bits (white boxes) and in “byte.bit” notation (grey boxes). For x64 special size
configuration is provided.

Unit: A unit of the variable
Comment: Comment, which will be visible e.g. in the instance configurator
Context ID: Context, which is used when the parameter is accessed by ADS

Create Symbol: Default setting for ADS symbol creation.

110 Version: 1.7 TC3 C++

BECKHOFF Wizards

Disable Code Generation: Switch to enable/disable the code generation
Hide parameter: Switch to hide/unhide parameter in system manager view

Hide sub items: If data type has subitems, system manager will not provide access to the subitems. This
should be used for example on large arrays.

Online parameter: Set as online parameter

Read-only: Switch to read-only for system manager access

Optional Properties

A table of name, value and description for annotating the parameter.
This information is provided within the TMC and also TMI files.
TwinCAT functions as well as customer programs can use these properties.

11.3.4.2.3 TracelLevelMax
TracelLevelMax: Parameter which defines the trace level.

This is a predefined parameter provided by most TwinCAT module templates (except for the empty TwinCAT
module template).

Settings for this parameter should not be changed.

See Module messages for the Engineering (logging / tracing) [» 193]

..

PETRI
4 %o Data Types FE Edit the properties of the parameter.
I —a DataTypel
Pl Modules :
4 [z CModulel General properiies
:g Implemented Interfaces
4 = Parameters Name TraceLevelMax
AR Parameter D [PID_TcTracelevel v| #x03002103
| & Farameter
= Prameie? Spesiication
| Datz freas
Il Data Pointers Define the data type
I =% Interface Painters
Deployment Select TeTracelevel E]

Descrptor

Type Information
Name TeTracslevel

Namespace

Guid

Optional parameter settings

Size [Bits]
Unit
Comment Controls the amount of log messages.

Context ID

[] Create symbal

[C] Disable code generation
Hide parameter

[] Online parameter

[C] Read-only

TC3 C++ Version: 1.7 111

Wizards BEGKHOFF

11.3.4.3 Data Areas

Data Areas: Dialog for editing the data areas of your module

Untitled].tmc [TMC Editor]* & X .

o6
4 E_': T™C
| %o DataTypes Add. remove and reorder Data Areas
4 g Modules
4 fg] CModulet - 1 ceve- B
0 |mpl d Interk B
I !_; Parameters Mumber Area Type Name Size Size X64 Context Diszble Code Generation
4 Diata Areas 0 Input-Destination Inputs 1 B
I Inputs 1 Output-Source Outputs 1 =
I il Outputs 3 Standard Datafre 1 B
| [y Datahreal
W Datz Pointers
I =% Interface Pointers
B& Nenlovmeant
Symbol Function

+ Add a new data area
Delete the selected data area
Moves the selected element down one position

Moves the selected element up one position

Select byte alignment

3 Byte =
E Align the selected data type
E Reset the data format of the selected area

Recursion when setting an alignment

When setting the alignment of a data area, this will be taken as the basis for all of its elements (symbols
and also their sub-elements). User-defined alignment will be overwritten.

Number: Number of the data area

Type: Defines the purpose and location of the data area
Name: Name of the data area

Size: Size of the parameter. Other sizes are possible for x64.
Context: Displays the context ID

Disable Code Generation: Enable/disable the code generation

11.3.4.3.1 Add / modify / delete data areas and variables

The TwinCAT Module Class (TMC) Editor allows adding / modifying and deleting features and functionalities
of a TwinCAT class.

This article describes how to
« create a new data area in the TMC file

» create new variables [P 118] in a data area

112 Version: 1.7 TC3 C++

BECKHOFF

Wizards

+ modify e.g. the name or data type [» 118] of existing variables in the TMC file

» delete existing variables [» 119] in the TMC file

Create a new data area

1. After starting the TMC editor, select the node “Data Areas” of the module
2. By clicking on the + button a new data area is created

| gy Data Pointers
I =% Interface Pointers

Deployment

PRT=RI
| & Data Types Add, remove and reorder Data Areas
4 'E Modules
S| EQM?duIFW . S t 2eve~ lHEE
= B Mumber Area Type Name Size Size X684 Context Diszble Code Generation
Data Areas 0 Input-Destination Inputs 1 =
pouts 1 Ouiput-Source Outputs 1 =
| Wl Outputs 3 Standard Datahrea3 1 0
| [y Datatread

3. Double click on the table or click on the node to get to the properties of the data area

» Data Types
L] Modules
4 CModulel
:g Implemented Interfaces
| B5 Parameters
4 Data Areas
I Inputs
| Iy Outputs
| [y Datahreal
| Iy Data Pointers
I :“ Interface Pointers

Deployment

4. Rename the data area

Create a new variable

g Edit the properties of the Data Area.

General properties

Mumber 3

Tive

Name Datafrez3

Optional data area settings

Size [Bytes] x84 specific

Cemment

ContextiD (1]

5. Select the subnode “Symbols” of the data area.
6. This data area could be extended with a new variable by clicking the "+" button. As a result "Symbol4" is

listed as new entry.

4 B3 TMC
| 4» Data Types Add, remove and reorder Symbols.
4 [Modules
a [(_IGM?du\Ie'I m_ 1 8Bye~ ! E
| ;; Parameters Mame Specification BaseType Size Size X64 Unit
4 Data Areas Valug Alias UDINT
4 o Status Alias UDINT
Datz Alias UDINT
— Symbc Alias INT
Status
Data
Symbold
| [l Outputs
4 [Datalrea3
B Symbols
| [l Datz Pointers
[:((Interface Pointers
Deployment

Modify name or data type of existing variables
7. Select subnode "Symbol4" or double click on the line. The variable properties will open

113

TC3 C++ Version: 1.7

Wizards

BECKHOFF

8. Enter new name e.g. "bEnableJob" and change type to BOOL

4 B3 TMC
| %o Data Types Edit the properties of the Symbal.
4 fg Modules
4] CModuled =
:g Implemented Interfaces General properties
| B Parameters
4 3 Dot fros Nome
<@ s Spetcaion
4 [Symbols
Value
Ch: data
Status TR
Data
bEnable Select INT
| [y Outputs Description
4 [y Datafread
- i N bl Tune Information
Choose data type... 23
Name Namespace Guid Specification Size
ADMSYNC_COPYINFO {18071995-0000-0000-0000-000000000051} | Struct 320 =2
AMSADDR {18071995-0000-0000-0000-000000000042} | Struct 8.0
AMSHEAD {18071995-0000-0000-0000-000000000043] | Struct 320
AMSNETID {18071995-0000-0000-0000-000000000041} | Array 6.0 E
EIT {18071995-0000-0000-0000-000000000010} | Alias 01
BT {18071995-0000-0000-0000-000000000017} | Alias 10
BOOL {18071995-0000-0000-0000-000000000030} |Enumeration |1.0
{9060ae9d-214d-4685-a4 c0- cd1082626764} | Enumeration 4.0

= Finally, the new variable "bEnabledJob" was created in the data area "Input".

m Don’t forget to rerun the TMC Code generator

Delete existing variables

1. To delete existing variables in the data area select the variable and click on delete icon:
In this demo select "MachineStatus1" and click "Delete symbol"

4 E_': T™MC
| 5* Data Types Add, remove and reorder Symbols
4 fgg Modules
4 @EQM?dulltﬂ) M - 1 ceve~ B
| !; Parameters MName Specification BaseType Size Size X564 Unit
4 Data Areas Value Alias UDINT
4 Inputs Status Alias UDINT
4 (1] Symbols Data Alias UDINT
Walue bEnable Alias INT
Status
Data
bEnable
| iy Outputs
4 [DataAres3
Symbols

| Il Datz Pointers
[j Interface Pointers

Deployment

2. Rerun the TMC Code generator

11.3.4.3.2 Data Areas Properties

Data Areas Properties: Dialog to edit the data area properties

114 Version: 1.7

TC3 C++

BECKHOFF

Wizards

4 Q5 TMC
4 5% Data Types
i DataTypel
4 —o |Interface2
4 3% Methods
W Method1
4) Modules
4 [i] CModulel
—2 Implemented Interfaces
4 S5 Parametars
= TracelevelMax
[- & Parameter
F] Data Areas
4 [@ Dsta
4 E Symbols
|- [Data Fointers
I % Interface Pointers
Eq Deployment

General properties

Edit the properties of the Symbol.

General properties

MName Value
Speciiaton

Choose data type

Select UDINT

Descrtor

Type Information
Mamespace

Guid {18071935-0000-0000-0000-000000000008}

Optional symbol settings

Offset [Bits] %64 specific
Size [Bits] whd specific
xb4 specific
Unit
Comment
[] Create symbal
[C] Hide sub items
(Optional Defaults
Walue
Min
Max
Optional properties
=1 1]

Mame Walue Description

Number: Number of the data area

Type: Defines the purpose and the location of data area:

Linkable data areas in the System Manager:

* Input-Source

* Input-Destination
* Output-Source

* Output-Destination

» Retain-Source (for use with NOV-RAM memory, see annex [P_304])
» Retain-Destination (for internal use)

Further data areas:

« Standard (visible but not linkable in the System Manager)
* Internal (for internal module symbols, which can be reached via ADS but are not visible in the System

Manager)

TC3 C++

Version: 1.7

115

Wizards

BECKHOFF

* MArea (for internal use)
* Not specified (same as standard)

Name: Name of the data area

Optional parameter settings

Size [Bytes]: Size in bytes. For x64 special size configuration is provided

Comment: Optional a comment, which will be visible e.g. in the instance configurator
Context ID: Context ID of all symbols of this data area. Used to determine the mapping.
Data type name: If specified, a data type with the given name is created in the type system
Create Symbol: Default setting for ADS symbol creation

Disable Code Generation: Switch to enable/disable the code generation

Optional Defaults
Depending on data type the default could be defined.

Optional Properties

A table of name, value and description for annotating the data area.
This information is provided within the TMC and also TMI files.
TwinCAT functions as well as customer programs can use these properties.

11.3.4.3.3 Symbol Properties

Symbols: Dialog to edit the symbols of a data area

116 Version: 1.7

TC3 C++

BECKHOFF

Wizards

4 E_f]' T™MC
| &» Data Types Edit the properties of the Symbaol.
4 g Modules
4] CModulel
—a Imol d1 General
—o
I !E Parameters
a Data Arezs Name bEnable
LT Spctcation
4 Symbals
Value
Ch. data
Status o0se data type
Data
bEnable Select INT
| I Outputs Description
4 [Datafreal
B Symboals Type Information
| il Data Pointers MNamespace
| =% Interface Pointers .
— Guid {18071955-0000-0000-0000-000000000006}
Deployment
Optienal symbol settings
(ffset [Bits] %64 specific
Size [Bits] x64 specific
x64 specific
Unit
Comment
[T Create symbaol

[T Hide sub items
Opticnal properties

+

MName Value Description

General properties

Name: Name for the symbol

Specification: Data type of the symbol, see Data type properties [P 95]

Choose data type
Select: Select data type — these could be base data types of TwinCAT or user-defined data types

Description: Define if the type is
* Normal type
* |s pointer
* Is pointer to pointer
* |s pointer to pointer to pointer
» areference
Type Information

+ Namespace: Namespace for the selected data type

» GUID: Unique ID of the data type
Optional data type settings
Offset [Bits]: Offset of the symbol within the data area. Different offset for x64 platform can be set.
Size [Bits]: Size in bits, if specified. Different size for x64 platform can be set.

Comment: Optional a comment, which will be visible e.g. in the instance configurator

TC3 C++ Version: 1.7 117

Wizards BEGKHOFF

Create Symbol: Default setting for ADS symbol creation

Hide sub items: If variable has subitems, system manager will not provide access to the subitems. This
should be used for example on large arrays.

TwinCAT Module Class Editor - Data Areas Symbols Properties

Data Areas Symbols Properties: Dialog to edit the data area symbols properties

Unttiedt tme (Tmc Eator] < [

4 3 TMC
#s Dats Types Edit the properties of the Symbal.
P Modules
4 @ CModulel
—2 Implemented Interfaces
4 By Parameters

(General properties

= TracelevelMax Name Value
ity Specifcaton
= PFarameter3
4 Data Areas Define the data type
4 Inputs
4 Symbols

Select UDINT ()

Walue
Status Description
Data Type Information
e B Name UDINT
I [y Datafreal
iy Datz Pointers Mamespace
i .
[Interface Pointars Guid
Deployment

Optional symbol settings

Offzet [Bits]
Size [Bits]
Uit
Comment

[7] Create symbol

General Properties
Name: Name for the interface
Specification: Data type of the parameter

Available specifications are:

» Alias: Create an alias of a default data type (e.g. INT)
» Array: Create a user specific array

* Enumeration: Create a user specific enum

» Struct: Create a user specific structure

* Interface: Create a new interface

Define the data type
Select: Select data type

Description: Define description

118 Version: 1.7 TC3 C++

BECKHUFF Wizards
Type Information
Name: Name of the selected default type
Namespace: User-defined namespace for the data type
GUID: Unique ID of the data type
Optional data type settings
Offset [Bits]: Memory offset
Size [Bits]: Calculated size in bits
Unit: Optional
Comment: Optional
Create symbol: Default setting for ADS symbol creation
11.3.4.4 Data Pointers
Data Pointer: Dialog to adjust the data pointers of your module
2 IETNC
_|u s+ Data Types ‘ Add, remove and reorder Data Pointers.
4 'E Modules
a4 @ CM:)duIrﬂ) o -
B ;_.: Parameters Hame Parameter ID Type Context Diszble Code Generation
= TracelevelMax DataPointer] #x00000002 INT 1 =]
= bEnable
4 Data Areas
4 Inputs
4 [} Symbols
Value
Status
Data
| g Ouiputs
4 [Datafrea3
& Symbols
4 [y Data Pointers
[y DatzPointerl
I =% Interface Pointers
Deployment
Icon Function
+ Add a new data pointer
Deletes the selected data pointer
E
l Move the selected item one position down
1' Move the selected item one position up
Name: Name of the data pointer
Parameter ID: Unique ID of the parameter
Type: Defines the pointer type
Context: Displays the context ID
Disable Code Generation: Switch to enable/disable the code generation
TC3 C++ Version: 1.7 119

Wizards

BECKHOFF

11.3.4.4.1 Data Pointer Properties

Data Pointer Properties: Edit the Data Pointer properties

4 E.!_'g T™C
| §* DataTypes - Edit the properties of the Data Pointer
a gy Modules
4] CModulel
— Impl d General prop
-
4 !E Parameters
= TracelevelMax Name DatzPointer
= bEnable
Pl Data Areas Choose data type
4 Inputs
4 Symbals Select INT E]
Value
Status Type Information
Data Namespace
! Quiputs Guid {12071395-0000-0000-0000-000000000006}
4 [F Datafreal

Define the dimensions of the amay

+*

Dimension LBound Elements Min Max Maxis unbounded

Configure the parameter ID User defined...
Enter a unique ID Value #x00000002
Constant Name PID_Maodule1DataPointer1

Optional data pointer settings

Comment

Context 1D

[Disable code generation

General Properties

Name: Name of the data pointer

Define the data type
Select: Select data type

Type Information

+ Name: Name of the selected data type
» GUID: Unique ID of the data type

Define the dimension of the array

Please see here [» 98].

Configure the parameter ID

Enter a unique ID Value: Enter a unique ID Value. See Parameters [»_104].

Constant Name: Source code name of the parameter ID

Optional data pointer settings
Comment: Comment, which will be visible e.g. in the instance configurator

Context ID: Context ID of the data pointer.

120 Version: 1.7

TC3 C++

BECKHOFF Wizards

Disable Code Generation: Switch to enable/disable the code generation

11.3.4.5 Interface Pointers

Interface Pointers : Add, remove and reorder Interface Pointers

T™MC
29 Data Types :cc Add, remove and reorder Interface Painters.
-

43
I
4 Modules

g Lo
. !_; Parameters MName Farameter IO Type Context Disable Code Generation

= TracelevelMax CydlicCaller #x03002060 ITcCydicCaller =]
= bEnable
Pl Data Areas
4 Inputs
4 Symbols
Value
Status
Data
| [l Outputs
4 [F Datafread
B Symbols

4 =% Interfzce Pointers
— CyclicCaller

Icon Function
+ Add interface pointer
Deletes the selected pointer
E
l Move the selected item one position down
1‘ Move the selected item one position up

Name: Name of the interface

Parameter ID: Unique ID of the interface pointer
Type: Type of interface pointer

Context: Context of the interface

Disable Code Generation: Switch to enable/disable the code generation

11.3.4.5.1 Interface Pointer Properties

Interface Pointer Properties: Edit the Interface Pointer properties

TC3 C++ Version: 1.7 121

Wizards BEGKHOFF

4 JETMC
| 4@ Data Types —(Edit the properties of the Interface Painter.
a By Modules
4] CModulel .
—a [l e General prop
4 5 Parameters
= TracsLevelMax MName CyclicCaller
= bEnable
4 Data Areas Choose interface type
4 Inputs
4 Symbols Select [TeCyclicCaller E]
Value
Status Type Information
Datz Namespace
! Ouputs Guid {0300001-0000-0000-000-000000000064
4 [F Datalreal
Ig Symbals
= Configure the parameter 1D

=% Interface Pointers
—¢ CyclicCaller

Select the property which should be taken from the given context | Object ID of task «

Select the context
1D Valua #x03002060
Constant Name PID_Che_TaskOid

Optionzl interface pointer settings

Comment

ContextiD [|

[7] Disable code generation

General Properties

Name: Name of the interface pointer

Choose the base interface
Select: Selection of the interface

Type Information

* Namespace: namespace for the interface
* GUID: Unique ID of the interface

Configure the parameter ID

See Parameters [P_104].

Comment: Optional
Context ID: Context ID of the interface pointer.

Disable Code Generation: Switch to enable/disable the code generation

11.3.4.6 Deployment

Deployment: Specify storage locations for the provided modules on the target system

122 Version: 1.7 TC3 C++

BECKHUFF Wizards

Untitled! tmc [TMC Editor] + 3 [RUIae N aes! Modulel.cpp Modulel.h
o4
PETRILS
%+ Data Types E Specify the deployment of the module.
4 I Modules
4] CModule1 o
3‘?. Implemented Interfaces Define the files which should be deployed
I B Parameters N
) Data Areas +=l1
W Data Pointers Source File Destination File Rename Destination
I = Interface Pointers : o
B Deployment TwinCAT RT (x36) = "/.SOLUT\ONDEPLOYMENTPATH‘i’.TmeAT RT (x86)\%CLASSFACTORYNAME% sys | % TC_DRIVERAUTOINSTALLPATH% %CLASSFACTORYNAME % sys 0
Source File
% SOLUTIONDEPLOYMENTPATH% TwinCAT RT (x86)\%CLASSFACTORYNAME sys
Bhmte | [nset | (CLASSFACTORYNAME v
Destination File
%TC_DRIVERAUTOINSTALLPATH? %CLASSFACTORYNAME® sys
[Belee | [mset | (cassacTORYNAME -
+ TwinCATRT (x86) + |%SOLUTIONDEPLOYMENTPATHZ TwinCAT RT (x86)1%CLASSFACTORYNAMES pdb| %TC_DRIVERAUTOINSTALLPATHZ % CLASSFACTORYNAME® pdb B
+ | TwinCATRT (x64) ~ |%SOLUTIONDEPLOYMENTPATHZTwinCAT RT (x84)\%CLASSFACTORYNAME sys | % TC_DRIVERAUTOINSTALLPATH% % CLASSFACTORYNAME sys =]
+ TwinCATRT (x64) + |%SOLUTIONDEPLOYMENTPATHZ TwinCAT RT (x64)\%CLASSFACTORYNAME pdb| %TC_DRIVERAUTOINSTALLPATH % CLASSFACTORYNAME pdb B
Add or remave specific file entries
General Target platiorm
[Remove symbol fig entries | [TwinCAT RT (i86) = | [Adddefaultfileenties |
Symbol Function

+ Add a new file entry
Delete a file entry

Moves the selected element down one position

!
1

This dialog enables configuration of the source and target file, which are transferred to the target system for
the respective platforms.

Moves the selected element up one position

Define the files, which should be deployed.
Source File: Path to the source files
Destination File: Path to the binary files

Rename Destination: target file is renamed before the new file is transferred. Since this is required for
Windows 10, it is done implicitly.

The individual entries can be expanded or collapsed by clicking on "+" or "-" on the left.
Evaluate: Puts the calculated value into the text field for verification.

Insert: Adds the variable name selected in the dropdown list.

Add or remove specific file entries

Remove symbol file entries: Removes the entries for the provision of symbol files (PDB)
Remove all entries: Removes all entries

Reset to default: Sets the standard entries

Add default file entries: Adds the entries for the selected platform.

TC3 C++ Version: 1.7 123

Wizards BEGKHOFF

Remove file entries: Removes the entries for the selected platform.

Source and target paths for the allocation may contain virtual environment variables, which are resolved by
the TwinCAT XAE / XAR system.

The following table shows the list of these supported virtual environment variables.

Virtual environment variable Registry entry (REG_SZ) under |Default value

key

\HKLM\Software\Beckhoff\Twin-

CAT3
%TC_INSTALLPATH% InstallDir CATwinCAT\3.x \
%TC_CONFIGPATHY% ConfigDir C:ATwinCAT\3.x \Config\
%TC_TARGETPATH% TargetDir C:\TwinCAT\3.x \Target\
%TC_SYSTEMPATH% SystemDir C:\TwinCAT\3.x \System\
%TC_BOOTPRJPATH% BootDir C:A\TwinCAT\3.x \Boot\
%TC_RESOURCEPATH% ResourceDir C:\TwinCAT\3.x \Target\Resource\
%TC_REPOSITORYPATH% RepositoryDir C:\TwinCAT\3.x \Repository\
%TC_DRIVERPATH% DriverDir C:\TwinCAT\3.x \Driver\
%TC_DRIVERAUTOINSTALLPAT |DriverAutolnstallDir C:ATwinCAT\3.x \Driver\Autolnstall\
H%
%TC_SYSSRVEXEPATH% C:ATwinCAT\3.x \SDK\Bin

\TwinCAT UM (x86)\

%CLASSFACTORYNAME% <Name of the Class Factory>

("x" is replaced by the installed TwinCAT version)

11.4 TwinCAT Module Instance Configurator

The TwinCAT 3 Modules Class (TMC) editor described above defines drivers at class level. These are
instantiated and have to be configured via the TwinCAT 3 instance configurator.

The configuration applies to the context (including the task calling the module), parameters and pointers.

Instances of C++ classes are created by right-clicking on the C++ project folder; see quick start. This section
describes the configuration of these instances in detail.

Double-click on the generated instance to open the configuration dialog with several windows.

124 Version: 1.7 TC3 C++

BEGKHOFF Wizards

11.4.1 Object

Solution Explorer hE Rl TwinCAT SampleCPPProject + X Modulel.cpp Modulel.h

G| @~ | & Object |Car|te:d I Parameter {In'rt]ll Data Area | Interfaces | Interface F‘cirrterl
Search Solution Explorer (Ctrl+) P~) :
Object Id: 01010070 [F] Copy TMIto Target
fad Solution 'TwinCAT SampleCPPProject’ (1 praject) ! : —
4 [TwinCAT SampleCPPProject KAt o instancesample_Obj1 (CMe
[Iﬂ SYSTEM Type Name: CModuIe1 .
':LTON GUID: BE41FA92-2280-4372 986F F77FA2EFDTED
[sAFETY Class Id: BE41FAS8-3280-4378-986F F 77FA36FDTED
Fl @ C++ (Class Factory: instancesample
r instancesample Parnt k- o
4 [%] instancesample Project
b B35 External Dependencies Init Sequence: 50 5
f+ Bm HeaderFiles
I = Source Files
b B TMC Files
b B TwinCAT RT Files
b o TwinCAT UM Files
4 instancesample_Objl (CModulel)
B L Inputs
b B Cutputs
b o

* Object Id: The object ID used for identifying this instance in the TwinCAT system.

+ Object Name: Name of the object used for displaying the instance in the Solution Explorer tree.
* Type Name: Type information (class name) of the instance

+ GUID: Module class GUID

» Class Id: Class ID of the implementation class (GUID and Classld are usually identical)

» Class Factory: Refers to the driver, which provides the Class Factory that was used for the
development of the module instance.

» Parent Id: Contains the ObjectID of the parent, if available.

+ Init Sequence: Specifies the initialization states for determining the startup behavior of the interacting
modules. See here [P_39] for detailed description of the state machine.

50)
P

PS

PO

P50

5

0

.

Specifying the startup behavior of several TcCOM instances.

TcCOM instances can refer to each other - e.g. for the purpose of interaction via data or interface pointers.
To determine the startup behavior, the "init sequence" specifies states to be "held" by each TcCOM instance
for all other modules.

The name of an init sequence consists of the short name of the TcCOM state machine. If the short name of a
state (I, P, S, O) is included in the name of the init sequence, the modules will wait in this state, until all other
modules have reached at least this state. In the next transition the module can refer to all other module
instances, in order to be in this state as a minimum.

If, for example, a module has the init sequence "PS", the IP transitions of all other modules are executed, so
that all modules are in "Preop" state.

TC3 C++ Version: 1.7 125

Wizards BEGKHOFF

This is followed by the PS transition of the module, and the module can rely on the fact that the other
modules are in "Preop" state.

« Copy TMI to target: Generating the TMI (TwinCAT Module Instance) file and transferring it to the
target.

11.4.2 Context

TwinCAT SampleCPPProject & ¢ I3 80] Modulel.h
| Object | Context | P, {init) | Data Area | Interfaces [Interface Pointer
Context: [1 v]
Depend On: [Manual Config v]
[Need Call From Sync Mapping
Data Areas: Interfaces:
[#]0 ‘Inputs’
[#]1 ‘Outputs’
Data Pointer: Interface Pointer:
Result:
o] |Task MName | Priority | Cycle Time (ps) |Task Port | Symbol Port | Sort Order |
1 02010010 > Taskl 1 110000 350 1350 0 LI

» Context: Selects the context to configure (see TMC Editor for adding different contexts).
m A dataarea is associated with a context

» Data Areas / Interfaces / Data Pointer and Interface Pointer: Each instance could be configured to
have items defined in TMC or not.

* Result Table: List of IDs which need to be configured. At least the context (,Task“column) needs to be
configured to the task.

11.4.3 Parameter (Init)

TwinCAT SampleCPPProject -+ 2 [V 3843 Modulel.h

Object | Context | Parameter (init) | Data Area [Inter: Interface Fointer |

| PTCID | MName |Va|ue | cs | Unit |Type | Comment
+ | 0x00000001 Parameter

List of all parameters (as defined in TMC) could be initialized by values for each instance.

Special ParameterIDs (PTCID) are used to set values automatically. These are configured via the
TMCEditor's parameter dialogue as described here [P 104].

The CS (CreateSymbol) checkbox creates the ADS Symbols for each parameter, thus it is accessible from
outside

126 Version: 1.7 TC3 C++

BEGKHOFF Wizards

11.4.4 Data Area

TwinCAT SampleCPPProject + < LT IT84T Modulel.h >
| Obiect | Contest [Parameter (int) | Data Area | Interfaces [Interface Poiter |
Area No MName Type Size | C5 | Elements Owner Comment
0 Inputs InputDst 12 ™ |3 symbols
| Value UDINT woofs00) [
| Status UDINT 40 (Off= 4.0) O
| Data UDINT 40 (offzg0) [
JE: Outputs OutputSrc 12 [3 symbals
| Value UDINT 4.0 (Offs: 0.0) 'I__I
| Control |UDINT 400ffz40) [
| | Data |UDINT 40 ofs80) [

List of all data areas and their variables (as defined in TMC).

The CS (CreateSymbol) checkbox creates the ADS Symbols for each parameter, thus the variable is
accessible from outside

11.4.5 Interfaces

TwinCAT SampleCPPProject & 3¢ JULE IV RLT] Maodulel.h
|MID¥MIFMW]|D&3&E Interfaces | Interface Pointer

jiin} Name

0000001 2-0000-0000-E000-000000000064 ITComObject

(03000010-0000-0000-E000-000000000064 IMeCyclic

0300001 2-0000-0000-E000-000000000064 ITcADI

(0300001 8-0000-0000-E000-0000000000&84 ITeWatchSource

J

List of all implemented interfaces (as defined in TMC)

11.4.6 Interface Pointer

TwinCAT SampleCPPProject = X QI IV 8T:] Modulel.h

| Object | Context | Parameter (Init) | Data Areal h_afm| Interface Painter

PTCID Mame OTCID | Object Name i} Type
03002060 CyclicCaller 02010010 ;‘ Task1 0300001E-0000-0000... ITcCyclicCaller

List of all Interface Pointers (as defined in TMC).

Special ParameterIDs (PTCID) are used to set values automatically. These are configured via the
TMCEditor's parameter dialogue as described here [P 104].

The OTCID column defines the pointer to the instance, which should be used.

TC3 C++ Version: 1.7 127

Wizards BEGKHOFF

11.4.7 Data Pointer

QT el T el G SR Lintitled].tmc [TMC Editor] Modulel.cpp Maodulel.h
| Object | Context | P (Int) | Data Area | interfaces | Interface Poirter | Data Pointer |
PTCID | Name | oTCID | Object Name Area No | Offset | size
0x00000003 DataPointerl 000000000 e o 0 0

-
List of all Data Pointers (as defined in TMC).

Special ParameterIDs (PTCID) are used to set values automatically. These are configured via the
TMCEditor's parameter dialogue as described here [P 104].

The OTCID column defines the pointer to the instance, which should be used.

11.5 Customer-specific project templates

TwinCAT 3 is embedded in Visual Studio and thus also uses the project management provided. TwinCAT 3
C++ projects are "nested projects” in the TwinCAT project folder (TwinCAT Solution).

This section of the documentation describes how customers can realize their own project templates.

11.5.1 Overview

When a TwinCAT C/C++ project is created, the "TwinCAT C++ Project Wizard" is started first. The latter
generates a framework for a TwinCAT driver. The purpose of this framework is to register a TwinCAT driver
in the system. The actual function of the driver is implemented in TwinCAT modules.

Add New Ttem - TwinCAT Projectl = =]
4 Installed Sort by: |Defau|t v| = = Search Installed Templates (Ctrl+E) P~
TwinCAT Ce= Driver ﬂ TwinCAT Driver Project TwinCAT C++ Driver Type: TwinCAT C++ Driver
b Qnline Creates a TwinCAT driver project.
E TwinCAT Static Library Project TwinCAT C++ Driver

Click here to go online and find templates,

Mame: Untitledl

Location: |C:\Users\henningm.BEC KHOFF\Documents\Visual Studio 2013\Projects\ 'l

| Add || Cancel

128 Version: 1.7 TC3 C++

BECKHOFF

Wizards

The TwinCAT Class Wizard is automatically started on creating a new driver project in order to add the first
TwinCAT driver module. The different modules are generated by the same TwinCAT Class Wizard, but the

specific design of the module is realized using templates.

Add New Item - Untitledd -8 |
4 Installed Sort by: | Default -| i = Search Installed Templates (Ctrl+E) P
USRS SEEs £l TWinCAT Module Class TwinCAT C++ Module Type: TwinCAT C++ Module
I Online Creates a new TwinCAT module class.
TwinCAT Medule Class with ADS port TwinCAT C++ Module
TwinCAT Module Class with Cyclic Caller TwinCAT C++ Module
| TwinCAT Module Class with Cyclic I0 TwinCAT C++ Module
TwinCAT Module Class with Data Pointer TwinCAT C++ Module
L TwinCAT Module Class for RT Context TwinCAT C++ Module
MName:
Location:
Add || Cancel
11.5.2 Files involved

Virtually all relevant information is contained in the directory C:\TwinCAT\3.x\Components\Base

\CppTemplate:

Class
. Driver

| Templates

The "TwinCAT C++ Project Wizard" calls the "TwinCAT Module Class Wizard" if a driver project is to be

created.

Directory: Driver and Class

The respective project types are defined in the Driver (for "TwinCAT C++ Project Wizard") and Class
directory (for the "TwinCAT Module Class Wizard"), where each project type encompasses 3 files:

E TeDriverWizard.ico 10.06.201511:14 leon 267 KB
|| TeDriverWizard wsdir 10.06.201511:14 VSDIR File 1 KB
aﬂ TcDriverWizard.vsz 10.06.201511:14 Visual Studio Wiza... 1 KB
E TecStaticLibraryWizard.ico 10.06,201511:14 lcon 267 KB
|| TeStaticLibrarnyWizard.wsdir 10.06,201511:14 WSDIR File 1KE
asm| TcStaticLibraryWizard.vsz 10.06,201511:14 Visual Studio Wiza... 1KE

The .vsdir file provides information that is used when the respective assistant wizard is started. This is
essentially a name, a brief description and a file name of the type ".vsz" containing details for this project

type.

The general description in the MSDN can be found here: https://msdn.microsoft.com/de-de/library/

Aa291929%28v=VS.71%29.aspx.

The .vsz file referenced in the .vsdir file provides information that is needed by the assistant (wizard).
The most important information here is the wizard that is to be started and a list of parameters.

TC3 C++

Version: 1.7

129

https://msdn.microsoft.com/de-de/library/Aa291929%2528v=VS.71%2529.aspx
https://msdn.microsoft.com/de-de/library/Aa291929%2528v=VS.71%2529.aspx

Wizards BEGKHGFF

Both assistants have a .xml file as a parameter that describes the transformations of, for example, source
data from the template to the specific project. These are located together with the templates for the source
code, etc. in the Templates directory.

If a driver is to be created, the "TwinCAT C++ Project Wizard" starts the "TwinCAT Module Class Wizard" via
the "TriggerAddModule" parameter.

The general description in the MSDN can be found here: https://msdn.microsoft.com/de-de/library/
Aa291929%28v=VS.71%29.aspx.

The .ico file merely provides an icon.

Directory: Templates

Both the templates for the source code and the .xml file named in the .vsz file for the "TwinCAT Module
Class Wizard" are located in corresponding subdirectories in the Templates directory.

This .xml file describes the procedure for getting from the templates to a real project.

11.5.3 Transformations

Transformation description (XML file)

The configuration file describes (in XML) the transformation of the template files into the project folder. In the
normal case these will be .cpp / .h and possibly project files; however, all types of files can be handled.

The root node is a <ProjectFileGeneratorConfig> element. The useProjectinterface="true" attribute can be
set directly at this node. It sets the processing procedure in the Visual Studio mode to generate projects (as
opposed to TC-C++ modules).

Several <FileDescription> elements, each of which describes the transformation of a file, follow here. After
these elements there is a possibility to define symbols that are available for the transformation in a
<Symbols> element.

Transformation of the template files

A <FileDescription> element is structured as follows:

<FileDescription openFile="true">
<SourceFile>FileInTemplatesDirectory.cpp</SourceFile>
<TargetFile>[!output SYMBOLNAME] .cpp</TargetFile>
<Filter>Source Files</Filter>

</FileDescription>

» The source file from the templates directory is specified as the <SourceFile>.

« The target file in the Project directory is specified as the <TargetFile>. A symbol is normally used by
means of the [loutput...] command.

» The attribute "copyOnly" can be used to specify whether the file should be transformed, i.e. whether
the transformations described in the source file are executed. Otherwise the file is merely copied.

» The "openFile" attribute can be used to specify whether the file is to be opened after creation of the
project in Visual Studio.

* Filter: afilter is created in the project.
To do this the useProjectinterface="true" attribute must be set at the <ProjectFileGeneratorConfig>.

Transformation instructions
Commands that describe the transformations themselves are used in the template files.

The following commands are available:

e [!loutput SYMBOLNAME]
This command replaces the command by the value of the symbol. A number of predefined symbols are
available.

130 Version: 1.7 TC3 C++

https://msdn.microsoft.com/de-de/library/Aa291929%2528v=VS.71%2529.aspx
https://msdn.microsoft.com/de-de/library/Aa291929%2528v=VS.71%2529.aspx

BECKHUFF Wizards

e [!if SYMBOLNAME], ['else] and [!endif] describe a possibility to integrate corresponding text
only in certain situations during the transformation.

Symbol name

Symbol names can be provided for the transformation instructions in 3 ways.
These are used by the commands described above in order to carry out replacements.

1. A number of predefined symbols directly in the configuration file:

A list of <Symbols> is provided in the XML file. Symbols can be defined here: <Symbols>

<Symbol>

<Name>CustomerSymbol</Name>
<Value>CustomerString</Value>

</Symbol>
</Symbols>

2. The generated target file names can be provided by adding the "symbolName" attribute:
<TargetFile symbolName="CustomerFileName">[!output SYMBOLNAME].txt</Target-

File>

3. Important symbols are provided by the system itself

Symbol Name (Projects)

Description

PROJECT_NAME

The project name from the Visual Studio dialog.

PROJECT_NAME_UPPERCASE

The project name in upper case letters.

WIN32_WINNT

0x0400

DRVID

Driver ID in the format: 0x03010000

PLATFORM_TOOLSET

Toolset version, e.g. v100

PLATFORM_TOOLSET_ELEMENT

Toolset version as an XML element, e.g. <PlatformToolset>v100</
PlatformToolset>

NEW_GUID_REGISTRY_FORMAT

Creates a new GUID in the format:
{48583F97-206A-4C7C-9EF2-D5C8A31F7BDC}

Symbol Name (Classes)

Description

PROJECT_NAME

The project name from the Visual Studio dialog.

HEADER_FILE_NAME

Entered by the user in the wizard dialog.

SOURCE_FILE_NAME

Entered by the user in the wizard dialog.

CLASS_NAME Entered by the user in the wizard dialog.
CLASS_SHORT_NAME Entered by the user in the wizard dialog.
CLASS_ID A new GUID created by the wizard.
GROUP_NAME C++

TMC_FILE_NAME

Used to identify the TMC file.

NEW_GUID_REGISTRY_FORMAT

Creates a new GUID in the format:
{48583F97-206A-4C7C-9EF2-D5C8A31F7BDC}

11.5.4 Notes on handling

Template in customer-specific directory

Templates can also be stored outside of the usual TwinCAT directory.

1. In the registry, expand the search path (in this case V12.0, i.e. for VS 2013) in which the node /2 is

created:

Registry Key: HKEY CURRENT USER\Software\Microsoft\VisualStudio\12.0 Config

TC3 C++

Version: 1.7 131

Wizards BEGKHOFF

\Projects\{B9B2C4C6-072A-4B72-83C1-77FD2DEE35AB} \AddItemTemplates
\TemplateDirs\{3d3e7b23-b958-4a99-bfee-d0d953c182d4}\

Q’ Registry Editor
File Edit View Favorites Help

S). (BIET928E-AASF-4c3c-8CB2-674BFICOTISE] ~ [Name Type Data
41, {B9B2CHCO-072A-4572-83C1-TTFD2DEEISAE)) Default) REG.5Z CustomerTemplates
i 4 AdditemTemplates #]SortPriority REG_DWORD 0x00000065 (101)
4-Jy TemplateDirs f_‘ﬂTemplatesDir REG_SZ CACustemerDirectony\Class

a- K Blﬁe?hB—hQSB—uQQ—hFEe—dCIdQSE{18254}|—|
A m

E /2
{bcBalffa-bee3-4634-3014-f334798102b3} -
‘ S m I i

Computer\HKEY_CURRENT_USER\Software\Microsoft\VisualStudio\12.0_Config\Projects\{B9B2C4C6-072A-4B72-83C1-77FD2DEE35AB M AdditemTemplates\ TemplateDirs\{3d3e7b23-b958-4299-bf ee-d0d953c182d41\/2

2. Increase the SortPriority.

3. Recommendation: in the directory, create a subdirectory called Class, which is entered in the registry,
and a subdirectory called Templates in order to separate the .vsz / .vsdir / .ico files from the templates.

4. Adapt the paths within the files.
= As a result, a dedicated order exists for the templates:

Add Mew Itern - Untitled?

4 Installed Sort by: | Default -| & 1=

TwinCAT C++ Module

CustomerTemplates

W Customer Module Class with Cyclic IO CustomerTemplates

B Online

This directory or directory structure can, for example, now be given a version number in the version
management system and is also not affected by TwinCAT installations/updates.

Quick start

A general entry to the assistant environment in the MSDN is the entry point: https://msdn.microsoft.com/de-
de/library/7k3w6w59%28v=VS.120%29.aspx.

This describes how a template is used for creating a customer-specific module with the "TwinCAT C++
Module Wizard".

1. Take an existing module template as a copy template
In C:\TwinCAT\3.x\Components\Base\CppTemplate\Templates

I J CustomerModuleCycliclO 20.08.201510:29 File folder
J TeDriverWizard 21.07.201513:02 File folder
| TeMeodulefdsPort 21.07.201513:02 File folder
J TeMeduleCyclicCaller 21.07.201513:02 File folder
| TeMeduleCycliclO 21.07.201513:02 File folder
| TeMeduleDataPointer 21.07.201513:02 File folder
| TeMoeduleEmpty 21.07.201513:02 File folder
| TeMeduleRT 21.07.201513:02 File folder
| TeStaticLibrany 21.07.201513:02 File folder

132 Version: 1.7 TC3 C++

https://msdn.microsoft.com/de-de/library/7k3w6w59%2528v=VS.120%2529.aspx
https://msdn.microsoft.com/de-de/library/7k3w6w59%2528v=VS.120%2529.aspx

BEGKHOFF Wizards
2. Rename the .xml file within the folder
I || CustomerModuleCycliclOConfig.ml 10.06.201511:14 XML Document 1KB
'r_'jTCMDdME':}fC“dG.CFIp 10.06.201511:14 C++ Source TKB
|h] TeMeduleCycliclQ.h 10.06.201511:14 C/C++ Header 2 KB
|7 TeModuleCycliclO.tme 10.06.201511:14 TMC File 5KB
3. Copy the corresponding files .ico / .vsdir / .vsz also in the Class/
ﬂ CustomerModuleCycliclOWizard.ico 10.06.201511:14 Icon 265 KB
|| CustomerModuleCycliclOWizard.vsdir 20.08.2015 10:35 VSDIR File 1KE
asm| CystomerModuleCycliclOWizard wsz 10.06.201511:14 Visual Studio Wiza... 1KE
ﬁ TcModuleAdsPortWizard.ico 10.06.201511:14 Icon 265 KB
|| TeModulefAdsPertWizard.vsdir 10.06.201511:14 YSDIR File 1KE
a_sﬂ TeModuleAdsPortWizard wsz 10.06.2015 11:14 Visual Studio Wiza... 1EE
ﬂ TeModuleCyelicCallerWizard.ico 10.06.201511:14 Icon 265 KB

4. Now reference the copied .vsz file in the .vsdir file and adapt the description.

5. Enter the .xml file created in step 2 in the .vsz file.

6. You can now make changes to the source files in the Template/CustomerModuleCycliclO/ directory.
The .xml takes care of replacements when generating a project from this template.

= The "TwinCAT Module Class Wizard" now displays the new project for selection:

Add New Item - Untitledl
4 Installed Sort by: Default
TwinCAT C++ Module

P Online

EE

TwinCAT Module Class

TwinCAT Module Class with ADS port

TwinCAT Module Class with Cyclic Caller

TwinCAT C++ Module

TwinCAT C++ Module

TwinCAT C++ Module

(7 =]

Search Installed Templates (Ctrl+E)

Type: TwinCAT C++ Module

Creates a new TwinCAT module class.

Customer Module Class with Cyclic IO

TwinCAT C++ Module

EEEE

TwinCAT Module Class with Cyclic 10

TwinCAT Module Class with Data Pointer

TwinCAT Module Class for RT Context

TwinCAT C++ Module

TwinCAT C++ Module

TwinCAT C++ Module

If the vsxproj, for example, is also to be provided in a changed form, it is recommended to adapt a copy of

the "TwinCAT C++ Project Wizard".

If necessary, the use of settings in .props files should also be considered so that settings can also be
changed in existing projects generated from a template — e.g. as a result of the .props files being updated by

a version management system.

Alternative creation on the basis of an existing project

A viable way here is to create a finished project and transform it into a template afterwards.

1. Copy the cleaned project into the Templates\ folder.
2. Create a transformation description (XML file).
3. Prepare the source files and the project file by means of the replacements described.

4. Provide the .ico / .vsdir / .vsz files.

TC3 C++

Version: 1.7

133

Programming Reference BEGKHOFF

12 Programming Reference

TwinCAT offers a wide range of basic functions. They all can be very useful for TwinCAT C++ programmers
and are documented here.

There is a wide range of C++ samples [»_213], which contain the valuable information on the handling of the
modules and interfaces.

C++ project properties
A TwinCAT C++ project has some properties, which can be accessed by double-clicking on the TwinCAT C+
+ project (project name here "Untitiled1").

L LRSI Tt g Gl TwinCAT Projectl + X

o o-a@ F*R Project | Settings

Search Solution Explorer (Ctr 2 =

: : : Project Mame: Untitled1 g 1
fad Solution 'TwinCAT Projectl’ (1
4 ol TwinCAT Projectl Project Path: Untitled 1
b ﬂ Suo 2l Project Type: C++ Project
MOTION
PLC Project Guid: {935DCF25-54B2-43D5-836C-0315A7651066}
SAFETY Encryption: [Nn boot project encryption (default) -
F] E C++
b Untitledl
“ .) Comment:
‘ﬂ?g Devices

&’ Mappings

Renaming is not possible at this stage (see Renaming TwinCAT C++ projects [199])

Encryption is not implemented for C++ projects.

L NGRS g i S TwinCAT Projectl # X

@ ©-8 #F | [ppeql setings
Search Solution Explorer (Ctr O ~

fa] Solution TwinCAT Projectl’ (1
4 gl TwinCAT Projectl
b @l SYSTEM
MOTION
PLC
SAFETY
a E C++
b Untitledl
4 Fyo
% Devices

ﬁ:l Mappings

Target Archive File/E-Mail Archive
Project Sources Project Sources

The option whether the sources should be included can be set here for the two archive types, which are
transferred to the target system or sent by email.

Accordingly, empty archives are created on deselection.

134 Version: 1.7 TC3 C++

BECKHUFF Programming Reference

121 File Description

During development of a TwinCAT C++ module, one could come into contact with files on the file system
directly. This could be of interest either for understanding how the system works or for special use cases like
manual file transfer etc.

Here is a list of files, which are C++ module related.

TC3 C++ Version: 1.7 135

Programming Reference

BECKHOFF

File Description Additional Information
Engineering / XAE
*.sln Visual Studio Solution File, hosts TwinCAT and
non-TwinCAT projects
* tsproj TwinCAT Project, collecting all nested TwinCAT
projects like TwWinCAT C++ or TwinCAT PLC
projects
_Config/ Folder contains additional configuration files See menu Tools| Options|
(*.xti) which belong to the TwinCAT Project TwinCAT| XAE-
Environment]| File
Settings
_Deployment/ Folder for compiled TwinCAT C++ Drivers
*.tmc TwinCAT Module Class File (XML based) See TwinCAT Module
Class Editor (TMC) [»_79]
*.rc Resource File See Setting version/
vendor information
[»_203
.VCXproj. Visual Studio C++ Project files
*ClassFactory.cpp/.h Class factory for this TwinCAT Driver
*Ctrl.cpp/.h Driver loading and unloading for TwinCAT UM

platform

*Driver.cpp/.h

Driver loading and unloading for TwinCAT RT
platform

*Interfaces.cpp/.h

Declaration of TwWinCAT COM interface classes

*W32.cpp./.defl.idl

*.cpp/.h One C++/Header file per TwWinCAT module in
driver. Custom code goes here.
Resource.h Needed by *.rc file

TcPch.cpp/.h

Used for precompiled header creation

%TC_INSTALLPATHY
\CustomConfig\Modules*

Published TwinCAT driver package
usually C:\TwinCAT\3.x\CustomConfig\Modules
*

See Export modules
D 44]

Runtime / XAR

%TC_BOOTPRJPATH%

Current Configuration setup

\CurrentConfig* usually C:\TwinCAT\3.x\Boot
%TC_DRIVERAUTOINSTALLP |Compiled, platform specific driver
ATH% *.sys/pdb

* C:\TwinCAT\3.x\Driver\Autolnstall (System
load)

e C:\TwinCAT\3.x\Driver\AutoLoad (TcLoader
load)

%TC_BOOTPRJPATH% \TM
\OBJECTID.tmi

TwinCAT Module Instance file

Describes variables of driver

Filename is “ObjectID.tmi”

Usually C:\TwinCAT\3.x\Boot\TMNOTCID.tmi

Temporary Files

* . sdf

IntelliSense database

*.suo/ *.v12.suo

User and Visual Studio specific files

*.tsproj.bak

Automatically generated backup file of tsproj

ipch/

Intermediate directory created for precompiled
header

136

Version: 1.7

TC3 C++

BEGKHUFF Programming Reference

12.1.1 Compilation procedure

The procedure that initiates a "Build" or "Rebuild" on a TwinCAT C++ project in the TwinCAT Engineering
XAE is described here. This is to be taken into account, for example, if company-specific environments and
building processes are to be integrated.

The configurations that are built in the case of a "Build" or "Rebuild" depend on the current selection in Visual
Studio:

Release | [TwincaT RT 664 .
Llebug
Release

{ Configuration Manager... |

The correct target architecture (in this case TwinCAT RT (x64)) is set appropriately by selecting the target
system.

The "Configuration Manager" allows the dedicated setting of the build configuration.

When a "Build" or a "Rebuild" is selected (and thus also in the case of "Activate Configuration"), the following
steps take place:

1. The sources are located in the respective project directory.

2. The compilations are generated according to the specific architecture in C:\TwinCAT\3.1\sdk_prod-
ucts\
e.g. in C:\TwinCAT\3.1\sdk_products\TwinCAT RT (x64)\Debug\<ProjectName>

3. After that the link procedure places the .sys/.pdb file, similarly according to the specific architecture, in
C:\TwinCAT\3.1\sdk_products\.
e.g. in C:\TwinCAT\3.1\sdk_products\TwinCAT RT (x64)\Debug\

4. A copy of the .sys/.pdb is placed in the _Deployment/ subdirectory of the project directory, e.g. in
Project Directory/_Deployment/TwinCAT RT (x64)\

5. Pressing the "Activate Configuration" button leads to .sys/.pdb being transferred from _Deployment/ of
the project directory to the target system (if applicable it is a local copy)

12.2 Limitations

TwinCAT 3 C++ modules [»_30] are executed in Windows kernel mode. Developers must therefore be aware
of some limitations:

+ Win32 APl is not available in kernel mode (see below [P 137]).

* Windows kernel mode API must not be used directly.
TwinCAT SDK provides functions, which are supported.

» User mode libraries (DLL) cannot be used (see Third Party Libraries [P 206])

» The memory capacity for dynamic allocation in a real-time context is limited by the router memory (this
can be configured during engineering) (see Memory Allocation [P _138])

* A subset of the C++ runtime library functions (CRT) is supported
« C++ exceptions are not supported.

* Runtime Type Information (RTTI) is not supported (see below [>_138])
» Subset of STL is supported (see STL / Containers [P 192])

» Support for functions from math.h through TwinCAT implementation (see Mathematical Functions
[»190])

TwinCAT functions as replacement for Win32 API functions

The original Win32 APl is not available in Windows kernel mode. For this reason a list of the common
functions of the Win32 API and their equivalents for TwinCAT is provided here:

TC3 C++ Version: 1.7 137

Programming Reference BEGKHGFF

Win32API TwinCAT functionality

WinSock TF6311 TCP/UDP real-time

Message boxes Tracing [P 193]

File 1/0 See Interface ITcFileAccess [P 143], Interface

[TcFileAccessAsync [P 151] and Samplel9:
Synchronous File Access [P 268], Sample20: FilelO-
Write [P 269], Sample20a: FileIO-Cyclic Read / Write

[»_269]

Synchronization See Samplella: Module communication: C module
calls a method of another C module [P 263]

Visual C CRT See RiIR0.h

RTTI dynamic_cast function in TwinCAT
TwinCAT has no support for dynamic_cast<>.

Instead, it may be possible to use the TCOM strategy. Define an ICustom interface, which is derived from
ITcUnknown and contains the methods, which are called from a derived class. The base class CMyBase is
derived from ITcUnknown and implements this interface. The class CMyDerived is derived from CMyBase
and from ICustom. It overwrites the TcQuerylnterface method, which can then be used instead of dynamic
cast.

TcQuerylinterface can also be used to display the IsType() function through evaluation of the return value.

See Interface ITcUnknown [P 169]

12.3 Memory Allocation

Generally we recommend reserving memory with the aid of member variables of the module class. This is
done automatically for data areas defined in the TMC editor.
It is also possible to allocate and release memory dynamically.

* Operator new / delete
« TcMemAllocate / TcMemFree

This memory allocation can be used in the transitions [P_39] or in the OP state of the state machine.

If the memory allocation is made in a non-real-time context, the memory is allocated in the non-paged pool of
the operating system (blue in the diagram). In the TwinCAT real-time context, the memory is allocated in the
router memory (red in the diagram).

The memory can also be released in the transitions or the OP state; we recommend to always release the
memory in the "symmetric" transition, e.g. allocation in PS, release in SP.

138 Version: 1.7 TC3 C++

BEGKHOFF Programming Reference

TwinCAT XAR
TcCOM State Machine
INIT

P Pl

PREOP

:
:
3
§

P5 5P

Real-Time

Global class instances
Global instances must release memory allocated in the real-time context before the destructor.
TwinCAT supports up to 32 global class instances.

Global class instances include the following constructs:

+ Definition in the global scope
» Definition as a static class variable
* Local, static variables in methods

124 Interfaces

Several interfaces are available for the interaction of the modules developed by the user with the TwinCAT 3
system. These are described (at API level) in detail on these pages.

TC3 C++ Version: 1.7 139

Programming Reference

BECKHOFF

Name

Description

ITcUnknown [P 169]

ITcUnknown defines the reference count as well as the querying of a reference
to a more specific interface.

I[TComObject [»_156]

The ITComObject interface is implemented by every TwinCAT module.

ITcCyclic [» 140

The interface is implemented by TwinCAT modules that are called once per task
cycle.

ITcCyclicCaller [» 141]

Interface for logging the ltcCyclic interface of a module onto and off from a
TwinCAT task.

ITcFileAccess [P 143]

Interface for accessing the file system

[TcFileAccessAsync [P 151]

Asynchronous access to file operations.

ITcPostCyclic [» 161]

The interface is implemented by TwinCAT modules that are called once per task
cycle following the output update.

[TcPostCyclicCaller [P 162]

Interface for logging the ITcPostCyclic interface of a module onto and off from a
TwinCAT task.

[TcloCyclic [» 153]

This interface is implemented by TwinCAT modules that are called during the
input update and output update within a task cycle.

ITcloCyclicCaller [P 154]

Interface for logging the ITcloCyclic interface of a module onto and off from a
TwinCAT task.

ITcRTimeTask [P 164]

Query of extended TwinCAT task information.

ITcTask [» 165

Query of the time stamp and task-specific information of a TwinCAT task.

ITcTaskNotification
[»_168

Executes a callback if the cycle time was exceeded during the previous cycle.

TwinCAT SDK

TwinCAT SDK contains a number of functions, which can be found in C:\TwinCAT\3.x\sdk\Include.

* The TcCOM framework is provided here (in particular Tclnterfaces.h and TcServices.h).

Tasks and data area access is provided via Tclolnterfaces.h.
SDK functions are the mathematical functions [»_190].
Subset of STL [» 192].

TwinCAT runtime RtIRO.h [P 171]

Methods for ADS communication [» 173]

Classes / functions w

12.4.1 Interface

ith names beginning with "Os" must not be used in a real-time context.

ITcCyclic

Interface ITcCyclic Interface is implemented by TwinCAT modules which should be called once per task

cycle.

Syntax

TCOM DECL_ INTERFACE ("0300
struct declspec (novtable

0010-0000-0000-e000-000000000064™",
) ITcCyclic : public ITcUnknown

ITcCyclic)

Required include: TcIoInterfaces.h

Methods

Icon |Name

Description

CycleUpdate [P 141]

Called once per task cycle if interface has been registered with a cyclic

iy

caller.

140

Version: 1.7 TC3 C++

BEGKHUFF Programming Reference

Remarks

The ITcCyclic interface is implemented by TwinCAT modules. This interface is passed to method
ITcCyclicCaller::AddModule() when a module registers itself with a task, typically as the last initialization step
in the SafeOP to OP transition. After registration the method CycleUpdate() of the module instance is called.

12.4.1.1 Method ITcCyclic:CyclicUpdate

The method CyclicUpdate usually called by a TwinCAT task, after the interface has been registered.

Syntax

HRESULT TCOMAPI CycleUpdate (ITcTask* ipTask, ITcUnknown* ipCaller, ULONG PTR context)

Parameters
ipTask: (type: ITcTask) refers to the current task context.
ipCaller: (type: ITcUnknown) refers to the calling instance.

Context: (type: ULONG_PTR) context contains the value which has been passed to method
ITcCyclicCaller::AddModule()

Return Value

It is recommended to always return S_OK. Currently, the return value is ignored by TwinCAT Tasks.

Description

Within a task cycle the method CycleUpdate() is called after InputUpdate() has been for all registered
module instances. Therefore, this method should be used to implement cyclic processing.

12.4.2 Interface ITcCyclicCaller

Interface to register or unregister a module's ITcCyclic interface with a TwinCAT task.

Syntax

TCOM DECL_INTERFACE ("0300001E-0000-0000-e000-000000000064", ITcCyclicCaller)
struct declspec(novtable) ITcCyclicCaller : public ITcUnknown

Required include: TcIoInterfaces.h

Methods
Icon [Name Description
Py AddModule [» 142] Register module which implements the ITcCyclic interface.
Y RemoveModule [» 142] Unregister the previously registered ITcCyclic interface of a
module.
Remarks

The ITcCyclicCaller interface is implemented by TwinCAT tasks. A module uses this interface to register its
ITcCyclic interface with a task, typically as the last initialization step in the SafeOP to OP transition. After
registration the method CycleUpdate() of the module instance is called. The interface is also used to
unregister the module from being called by a task.

TC3 C++ Version: 1.7 141

Programming Reference BEGKHOFF

12.4.2.1 Method ITcCyclicCaller:AddModule

Register a module's ITcCyclic interface with cyclic caller, i.e. a TwinCAT task.

Syntax

virtual HRESULT TCOMAPI
AddModule (STcCyclicEntry* pEntry, ITcCyclic* ipMod, ULONG PTR
context=0, ULONG sortOrder=0)=0;

Parameters

PEntry: (type: STcCyclicEntry) [in] Pointer to a list entry, which is inserted into the internal list of the cyclic
caller. See also description.

ipMod: (type: ITcCyclic) [in] Interface pointer which will be used by cyclic caller

context: (type: ULONG_PTR) [optional] a context value which is passed to the ITcCyclic::CyclicUpdate()
method on each call.

sortOrder: (type: ULONG) [optional] the sort order can be used to control the order of execution if different
module instances are executed by the same cyclic caller.

Return Value
Type: HRESULT

On success the method returns S_OK. If cyclic caller, i.e. the TwinCAT task, is not in OP state, the error
ADS_E_INVALIDSTATE is returned.

Description

A TwinCAT module class usually uses a smart pointer to refer to the cyclic caller of type ITcCyclicCallerPtr.
The object id of the task is stored in this smart point and a reference to the task can be obtained using the
TwinCAT object server. In addition the smart pointer class already contains a list entry. Therefore the smart
pointer can be used as first parameter for the AddModule method.

The following sample code shows the registration of the ITcCyclicCaller interface.

RESULT hr =

S OK;

if (m _spCyclicCaller.HasOID()) {

if (SUCCEEDED DBG (hr =
m_spSrv->TcQuerySmartObjectInterface (m_spCyclicCaller)))
{

if (FAILED (hr =
m_spCyclicCaller->AddModule (m_spCyclicCaller,
THIS CAST (ITcCyclic)))) {

m spCyclicCaller = NULL;

}

12.4.2.2 Method ITcCyclicCaller:RemoveModule

Unregister a module instance from being called by a cyclic caller.

Syntax

virtual HRESULT TCOMAPI
RemoveModule (STcCyclicEntry* pEntry)=0;

142 Version: 1.7 TC3 C++

BECKHOFF

Programming Reference

Parameters

pPEntry: (type: STcCyclicEntry) refers to the list entry which should be removed from the internal list of the

cyclic caller.

Return Value

If the entry is not in the internal list, the method returns E_FAIL.

Description

Similar to the method AddModule() the smart pointer for the cyclic caller is used as list entry when the
module instance should be removed from cyclic caller.

Declaration and usage of smart pointer:

ITcCyclicCallerInfoPtr m_spCyclicCaller;

if (

m_spCyclicCaller) {
m_spCyclicCaller->RemoveModule (m_spCyclicCaller) ;

}

m spCyclicCaller = NULL;

12.4.3

Interface ITcFileAccess

Interface to access file system from TwinCAT C++ modules

Syntax

TCOM DECL INTERFACE ("742A7429-DA6D-4C1D-80D8-398D8C1F1747", ITcFileAccess)

ITcFileAccess:

public ITcUnknown

Required include: TcFileAccessInterfaces.h

__declspec (novtable)

Methods
Icon [Name Description
Y FileOpen [»_144] Opens a file
Y FileClose [P 145] Closes a file
 FileRead [» 145] Reads from a file
 FileWrite [» 146] Writes to a file
. |FileSeek [r 146] Sets position in file
9 FileTell [» 1471 Retrieves position in file
 EileRename [147] Renames a file
Y FileDelete [P 147] Deletes a file
Py FileGetStatus [P 148] Gets status of a file
% FileFindFirst [» 149] Searches for a file, first iteration
 |EileFindNext [» 149] Searches for a file, next iteration
¢ |FileFindClose [» 150] Closes a file search
& |MKDir [» 150] Creates a directory
9 RmbDir [» 151] Deletes a directory

TC3 C++

Version: 1.7

143

Programming Reference

BECKHOFF

Remarks

The ITcFileAccess interface used to access files from file systems.

Since the provided methods are blocking this should not be used in CycleUpdate() / realtime context. The

derived interface ITcFileAccessAsync [P 151] adds a Check() Method, which could be used instead.

Please have a look at Sample20a: FileIO-Cyclic Read / Write [» 269].

The interface is implemented by module class CID_TcFileAccess.

12.4.3.1 Method ITcFileAccess:FileOpen

Opens a file

Syntax

virtual HRESULT TCOMAPI FileOpen (PCCH szFileName,

phFile);

Parameters

szFileName: (type: PCCH) [in] the filename to open

AccessMode: (type: TcFileAccessMode) [in] Access mode of the File, see TcFileAccessServices.h

phFile: (type: TcFileHandle) [out] returned file handle

Return Value
Type: HRESULT
On success the method returns S_OK.

Error codes of special interest:

+ ADS_E_TIMEOUT when timeout (5 seconds) has elapsed.

Further ADS statuscodes [» 300] could occur.

Description

The method returns a handle to access the file, which name is defined in szFileName.

AccessModes could be used as following:

typedef enum TcFileAccessMode
{

amRead = 0x00000001,

amWrite = 0x00000002,
amAppend = 0x00000004,

amPlus = 0x00000008,

amBinary = 0x00000010,
amReadBinary = 0x00000011,
amWriteBinary = 0x00000012,
amText = 0x00000020,
amReadText = 0x00000021,
amWriteText = 0x00000022,
amEnsureDirectory = 0x00000040,
amReadBinaryED = 0x00000051,
amWriteBinaryED = 0x00000052,
amReadTextED = 0x00000061,
amWriteTextED = 0x00000062,
amEncryption = 0x00000080,
amReadBinEnc = 0x00000091,
amWriteBinEnc = 0x00000092,
amReadBinEncED = 0x000000d1,
amWriteBinEncED = 0x000000d2,
} TcFileAccessMode, *PTcFileAccessMode;

TcFileAccessMode AccessMode, PTcFileHandle

144

Version: 1.7

TC3 C++

BEGKHUFF Programming Reference

12.4.3.2 Method ITcFileAccess:FileClose

Closes a file

Syntax
virtual HRESULT TCOMAPI FileClose (PTcFileHandle phFile);

Parameters

phFile: (type: TcFileHandle) [out] returned file handle

Return Value
Type: HRESULT
On success the method returns S_OK.

Error codes of special interest:
« ADS_E_TIMEOUT when timeout (5 seconds) has elapsed.

Further ADS status codes [P 300] could occur.

Description

The method closes a file defined by the phFile.

12.4.3.3 Method ITcFileAccess:FileRead

Read data from a file.

Syntax

virtual HRESULT TCOMAPI
FileRead (TcFileHandle hFile, PVOID pData, UINT cbData, PUINT pcbRead);

Parameters

hFile: (type: TcFileHandle) [in] refers to the prior opened file

pData: (type: PVOID) [out] location of the data to be read

cbData: (type: PVOID) [in] maximum size of data to be read (size of memory behind pData)

pcbRead: (type: PUINT) [out] size of read data

Return Value
Type: HRESULT
If any data could be read, S_OK is returned.

Error codes of special interest:
« ADS_E_TIMEOUT when timeout (5 seconds) has elapsed.

Further ADS status codes [P 300] could occur.

Description

This method retrieves data from a file defined by the file handle. Data will be stored in pData while pcbRead
provides length of given data.

TC3 C++ Version: 1.7 145

Programming Reference BEGKHGFF

12.4.3.4 Method ITcFileAccess:FileWrite

Write data to a file.

Syntax

virtual HRESULT TCOMAPI
FileWrite (TcFileHandle hFile, PCVOID pData, UINT cbData, PUINT pcbWrite):;

Parameters

hFile: (type: TcFileHandle) [in] refers to the prior opened file

pData: (type: PVOID) [in] location of the data to be written

cbData: (type: PVOID) [in] size of data to be written (size of memory behind pData)
pcbRead: (type: PUINT) [out] size of written data

Return Value
Type: HRESULT
If any data could be written, S_OK is returned.

Error codes of special interest:
« ADS_E_TIMEOUT when timeout (5 seconds) has elapsed.

Further ADS status codes [» 300] could occur.

Description

This method writes data to a file defined by the file handle. Data will be read from pData while pcbRead
provides length of data.

12.4.3.5 Method ITcFileAccess:FileSeek

Sets position in file.

Syntax

virtual HRESULT TCOMAPI FileSeek (TcFileHandle hFile, UINT uiPos) ;

Parameters
hFile: (type: TcFileHandle) [in] refers to the prior opened file
uiPos: (type: UINT) [in] position to set to

Return Value
Type: HRESULT
If position could be set, S_OK is returned.

Error codes of special interest:
+ ADS_E_TIMEOUT when timeout (5 seconds) has elapsed.

Further ADS status codes [» 300] could occur.

Description

This method sets the position within the file for further actions

146 Version: 1.7 TC3 C++

BECKHOFF

Programming Reference

12.4.3.6 Method ITcFileAccess:FileTell

Retrieves position in file.

Syntax
virtual HRESULT TCOMAPI FileTell (TcFileHandle hFile, PUINT puiPos);

Parameters
hFile: (type: TcFileHandle) [in] refers to the prior opened file
puiPos: (type: PUINT) [out] location of the position to be returned

Return Value
Type: HRESULT
If position could be retrieved, S_OK is returned.

Error codes of special interest:
« ADS_E_TIMEOUT when timeout (5 seconds) has elapsed.

Further ADS status codes [P 300] could occur.

Description

This method retrieves the position within the file, which is currently set.

12.4.3.7 Method ITcFileAccess:FileRename

Renames a file

Syntax

virtual HRESULT TCOMAPI FileRename (PCCH szOldName, PCCH szNewName) ;
Parameters

szOldName: (type: PCCH) [in] the filename to be renamed

szNewName: (type: PCCH) [in] the new filename

Return Value
Type: HRESULT
If file could be renamed, S_OK is returned.

Error codes of special interest:
« ADS_E_TIMEOUT when timeout (5 seconds) has elapsed.

Further ADS status codes [P 300] could occur.

Description

This method renames a file from an old name to a new name.

12.4.3.8 Method ITcFileAccess:FileDelete

Deletes a file.

TC3 C++ Version: 1.7

147

Programming Reference

BECKHOFF

Syntax
virtual HRESULT TCOMAPI FileDelete (PCCH szFileName) ;

Parameters

szFileName: (type: PCCH) [in] the filename to be deleted

Return Value
Type: HRESULT
If file could be deleted, S_OK is returned.

Error codes of special interest:
« ADS_E_TIMEOUT when timeout (5 seconds) has elapsed.

Further ADS status codes [P 300] could occur.

Description

This method deletes a file from file system

12.4.3.9 Method ITcFileAccess:FileGetStatus

Retrieves status of a file.

Syntax

virtual HRESULT TCOMAPI FileGetStatus (PCCH szFileName, PTcFileStatus pFileStatus));

Parameters

szFileName: (type: PCCH) [in] the filename of interest

pFileStatus: (type: PTcFileStatus) [out] the status of the file. Compare TcFileAccessServices.h.

Return Value
Type: HRESULT
If status could be returned, S_OK is returned.

Error codes of special interest:
« ADS_E_TIMEOUT when timeout (5 seconds) has elapsed.

Further ADS status codes [P 300] could occur.

Description
This method retrieves Status information of a given file name.

This includes the following information:

typedef struct TcFileStatus
{

union

{

ULONGLONG ulFileSize;
struct

{

ULONG ulFileSizeLow;
ULONG ulFileSizeHigh;

}i

};

ULONGLONG ulCreateTime;
ULONGLONG ulModifiedTime;
ULONGLONG ulReadTime;

148 Version: 1.7

TC3 C++

BEGKH“FF Programming Reference

DWORD dwAttribute;
DWORD wReservedO;
} TcFileStatus, *PTcFileStatus;

12.4.3.10 Method ITcFileAccess:FileFindFirst

Capability to step through files of a directory.

Syntax

virtual HRESULT TCOMAPI FileFindFirst (PCCH szFileName, PTcFileFindData pFileFindData ,
PTcFileFindHandle phFileFind) ;

Parameters

szFileName: (type: PCCH) [in] Directory or path, and the file name to find. The file name can include
wildcard characters like an asterisk (*) or a question mark (?).

pFileFindData: (type: PTcFileFindData) [out] the description of the first file. Compare
TcFileAccessServices.h.

phFileFind: (type: PTcFileFindHandle) [out] handle to search further on with FileFindNext.

Return Value
Type: HRESULT
If any file could be found, S_OKiis returned.

Error codes of special interest:
« ADS_E_TIMEOUT when timeout (5 seconds) has elapsed.

Further ADS status codes [P 300] could occur.

Description

This method starts with finding files in a defined directory. The Method provides access to PTcFileFindData
of the first found file, which contains the following information:

typedef struct TcFileFindData
{

TcFileHandle hFile;

DWORD dwFileAttributes;
ULONGLONG ui64CreationTime;
ULONGLONG ui64LastAccessTime;
ULONGLONG ui64LastWriteTime;
DWORD dwFileSizeHigh;

DWORD dwFileSizeLow;

DWORD dwReservedl;

DWORD dwReserved?2;

CHAR cFileName[260];

CHAR cAlternateFileName([14];
WORD wReservedO;

} TcFileFindData, *PTcFileFindData;

12.4.3.11 Method ITcFileAccess:FileFindNext

Step further on through files of a directory.

Syntax

virtual HRESULT TCOMAPI FileFindNext (TcFileFindHandle hFileFind, PTcFileFindData pFileFindData) ;

Parameters

hFileFind: (type: PTcFileFindHandle) [in] handle to search further on with FileFindNext.

TC3 C++ Version: 1.7 149

Programming Reference BEGKHGFF

pFileFindData: (type: PTcFileFindData) [out] the description of the next file. Compare
TcFileAccessServices.h.

Return Value
Type: HRESULT
If any file could be found, S_OKiis returned.

Error codes of special interest:
« ADS_E_TIMEOUT when timeout (5 seconds) has elapsed.

Further ADS status codes [» 300] could occur.

Description

This method finds next file in a directory. The Method provides access to PTcFileFindData of the found file,
which contains the following information:

typedef struct TcFileFindData
{

TcFileHandle hFile;

DWORD dwFileAttributes;
ULONGLONG ui64CreationTime;
ULONGLONG ui64LastAccessTime;
ULONGLONG ui64LastWriteTime;
DWORD dwFileSizeHigh;

DWORD dwFileSizeLow;

DWORD dwReservedl;

DWORD dwReserved2;

CHAR cFileName[260];

CHAR cAlternateFileName([14];
WORD wReservedO;

} TcFileFindData, *PTcFileFindData;

12.4.3.12 Method ITcFileAccess:FileFindClose

Close finding files of a directory.

Syntax
virtual HRESULT TCOMAPI FileFindClose (TcFileFindHandle hFileFind) ;

Parameters

hFileFind: (type: PTcFileFindHandle) [in] handle to close searching

Return Value
Type: HRESULT
If any file search could be closed, S_OK is returned.

Error codes of special interest:
+ ADS_E_TIMEOUT when timeout (5 seconds) has elapsed.

Further ADS status codes [P 300] could occur.

Description

This method closes finding of files in a directory.

12.4.3.13 Method ITcFileAccess:MkDir

Create a directory on the filesystem.

150 Version: 1.7 TC3 C++

BEGKH“FF Programming Reference

Syntax
virtual HRESULT TCOMAPI MkDir (PCCH szDir);

Parameters

szDir: (type: PCCH) [in] directory to create

Return Value
Type: HRESULT
If directory could be created, S_OK is returned.

Error codes of special interest:
« ADS_E_TIMEOUT when timeout (5 seconds) has elapsed.

Further ADS status codes [P 300] could occur.

Description

This method creates a directory as defined by the szDir parameter.

12.4.3.14 Method ITcFileAccess:RmDir

Delete a directory from the filesystem.

Syntax
virtual HRESULT TCOMAPI RmDir (PCCH szDir);

Parameters

szDir: (type: PCCH) [in] directory to be deleted

Return Value
Type: HRESULT
If directory could be deleted, S_OK is returned.

Error codes of special interest:
« ADS_E_TIMEOUT when timeout (5 seconds) has elapsed.

Further ADS status codes [P 300] could occur.

Description

This method deletes a directory as defined by the szDir parameter.

12.4.4 Interface ITcFileAccessAsync

Asynchronous access to file operations.
This interface extends [TcFileAccess [P _143].

Syntax

TCOM DECL INTERFACE ("C04AC244-C126-466E-982E-93EC571F2277", ITcFileAccessAsync) struct
__declspec(novtable) ITcFileAccessAsync: public ITcFileAccess

Required include: TcFileAccessInterfaces.h

TC3 C++ Version: 1.7 151

Programming Reference BEBKHOFF

Methods

Symbol |Name Description
'y C [r 152]heck Query the state of the file operation

Interface parameters

Sym- [Name Description
bol
- PID_TcFileAccessAsyncSegmentSize Size of the segments transferred to system service
- PID_TcFileAccessAsyncTimeoutMs Sets the timeout in ms
= PID_TcFileAccessAsyncNetld(Str) NetID of the system service to be contacted
Remarks

Interface can be obtained from module instance with class id CID_TcFileAccessAsync.
When using the asynchronous, interface methods inherited from the synchronous variant will return
ADS_E_PENDING if request has been successfully submitted, but is not yet finished. If called while the
previous request is still processed, the error code ADS_E_BUSY will be returned.
Description of module parameters:

» PID_TcFileAccessAsyncAdsProvider: Object ID of a task providing the ADS interface.

* PID_TcFileAccessAsyncNetld / PID_TcFileAccessAsyncNetldStr: AmsNetld of the system service use
for file access. The “Str” variant takes the AmsNetld as String. Please use one.

» PID_TcFileAccessAsyncTimeoutMs: Timeout used for a file access
» PID_TcFileAccessAsyncSegmentSize: Read and write file access is fragmented using this segment
size

Please have a look at Sample20a: FileIO-Cyclic Read / Write [P 269]

12.44.1 Method ITcFileAccessAsync::Check()

Retrieve state of the file operation

Syntax
virtual HRESULT TCOMAPI Check() ;
Parameters

none

Return Value
Type: HRESULT
Returns S_OK, if file operation is completed

Error codes of special interest:

+ ADS_E_PENDING, if the file operation is not completed.
+ ADS_E_TIMEOQOUT, if the timeout for the file operation elapsed.

Further ADS statuscodes [»_300] could occur.

152 Version: 1.7 TC3 C++

BEGKHUFF Programming Reference

Description

This operation checks the state of the prior called file operation

12.4.5 Interface ITcloCyclic

Interface is implemented by TwinCAT modules which should be called on input update and on output update
within a task cycle.

Syntax

TCOM_DECL_INTERFACE ("03000011-0000-0000-e000-000000000064", ITcIoCyclic)
struct _ declspec(novtable) ITcIoCyclic : public ITcUnknown

Required include: TcToInterfaces.h

Methods
Icon Name Description
Y InputUpdate [» 153] Called at the beginning of a task cycle if interface has been
registered with a cyclic I/O caller.
Y OutputUpdate [» 154] Called at the end of a task cycle if interface has been
registered with a cyclic 1/0O caller
Remarks

ITcloCyclic can be used to implement a TwinCAT module which acts as a fieldbus driver or as a I/O filter
module.

This interface is passed to method ITcloCyclicCaller::AddloDriver when a module registers itself with a task,
typically as the last initialization step in the SafeOP to OP transition. After registration the methods
InputUpdate() and OutputUpdate() of the module instance are called, each once per task cycle.

12.4.5.1 Method ITcloCyclic:InputUpdate

The method InputUpdate is usually called by a TwinCAT task, after the interface has been registered.

Syntax

virtual HRESULT TCOMAPI InputUpdate (ITcTask* ipTask,
ITcUnknown* ipCaller, DWORD dwStateIn, ULONG_ PTR context = 0)=0;

Parameters
ipTask: (type: ITcTask) refers to the current task context.
ipCaller: (type: ITcUnknown) refers to the calling instance.

dwsStateln: (type: DWORD) reserved for future extensions, currently this is always zero
context: (type: ULONG_PTR) context contains the value which has been passed to method
ITcCyclicCaller::AddloDriver()

Return Value

It is recommended to always return S_OK. Currently, the return value is ignored by TwinCAT Tasks.

TC3 C++ Version: 1.7 153

Programming Reference BEGKHOFF

Description

In a task cycle the method InputUpdate() is first called for all registered module instances. Therefore this
method must be used for updating the data areas of the type Input-Source of the module.

12.4.5.2 Method ITcloCyclic:OutputUpdate

The method OutputUpdate is usually called by a TwinCAT task, after the interface has been registered.

Syntax

virtual HRESULT TCOMAPI OutputUpdate (ITcTask* ipTask, ITcUnknown* ipCaller,
PDWORD pdwStateOut = NULL, ULONG PTR context = 0)=0;

Parameters
ipTask: (type: ITcTask) refers to the current task context.
ipCaller: (type: ITcUnknown) refers to the calling instance.

pdwStateOut: (type: DWORD) [out] reserved for future extensions, currently returned value is ignored.
context: (type: ULONG_PTR) context contains the value which has been passed to method
ITcCyclicCaller::AddloDriver()

Return Value

It is recommended to always return S_OK. Currently, the return value is ignored by TwinCAT Tasks.

Description

In a task cycle the method OutputUpdate() is called for all registered module instances. Therefore this
method must be used for updating the data areas of the type Output-Destination of the module.

12.4.6 Interface ITcloCyclicCaller

Interface to register or unregister a module's ITcloCyclic interface with a TwinCAT task.

Syntax

TCOM DECL_INTERFACE ("0300001F-0000-0000-e000-000000000064", ITcIoCyclicCaller)
struct declspec(novtable) ITcIoCyclicCaller : public ITcUnknown

Required include: TcToInterfaces.h

Methods
Icon Name Description
Y AddlIoDriver [P 155] Register module which implements the ITcloCyclic interface.
Y RemoveloDriver [155] Unregister the previously registered ITcloCyclic interface of a
module.
Remarks

The ITcloCyclicCaller interface is implemented by TwinCAT tasks. A module uses this interface to register its
ITcloCyclic interface with a task, typically as the last initialization step in the SafeOP to OP transition. After
registration the method CycleUpdate() of the module instance is called. The interface is also used to
unregister the module from being called by a task.

154 Version: 1.7 TC3 C++

BEGKHUFF Programming Reference

12.4.6.1 Method ITcloCyclicCaller:AddloDriver

Register a module's ITcloCyclic interface with cyclic I/O caller, i.e. a TwinCAT task

Syntax

virtual HRESULT TCOMAPI AddIoDriver (STcIoCyclicEntry*
pEntry, ITcIoCyclic* ipDrv, ULONG PTR context=0, ULONG sortOrder=0)=0;

Parameters

pPEntry: (type: STcloCyclicEntry) pointer to a list entry, which is inserted into the internal list of the cyclic I/O
caller. See also description.

ipDrv: (type: ITcloCyclic) [in] interface pointer which will be used by cyclic 1/0 caller

context: (type: ULONG_PTR) [optional] a context value which is passed to the ITcloCyclic::InputUpdate()
and ITcloCyclic::OutputUpdate method on each call.

sortOrder: (type: ULONG) [optional] the sort order can be used to control the order of execution if different
module instances are executed by the same cyclic caller.

Return Value

Type: HRESULT

Description

A TwinCAT module class usually uses a smart pointer to refer to the the cyclic 1/0 caller of type
ITcloCyclicCallerPtr. The object id of the cyclic I/O caller is stored in this smart pointer and a reference can
be obtained using the TwinCAT object server. In addition the smart pointer class already contains a list entry.
Therefore the smart pointer can be used as first parameter for the AddloDriver method.

The following sample code shows the registration of the ITcloCyclicCaller interface.

HRESULT hr = S_OK;
if (m_spIoCyclicCaller.HasOID())

{
if (SUCCEEDED DBG (hr = m spSrv->TcQuerySmartObjectInterface (m spIoCyclicCaller))
)
{
if (FAILED(hr = m spIloCyclicCaller->AddIoDriver (m_spIoCyclicCaller,
TH157CAST(ITCIOCyCliC))))
{
m_sploCyclicCaller = NULL;
}
}
}

12.4.6.2 Method ITcloCyclicCaller:RemoveloDriver

Unregister a module instance from being called by a cyclic I/O caller.

Syntax

virtual HRESULT TCOMAPI
RemovelIoDriver (STcIoCyclicEntry* pEntry)=0;

Parameters

pPEntry: (type: STcloCyclicEntry) refers to the list entry which should be removed from the internal list of the
cyclic I/O caller.

TC3 C++ Version: 1.7 155

BECKHOFF

Programming Reference

Return Value

If the entry is not in the internal list, the method returns E_FAIL.

Description

Similar to the method AddloDriver() the smart pointer for the cyclic 1/O caller is used as list entry when the
module instance should be removed from cyclic I/O caller.

Declaration of smart pointer and usage:

ITcIoCyclicCallerInfoPtr

m_sploCyclicCaller;

if (m_spIoCyclicCaller)

{

m sploCyclicCaller->RemoveloDriver (m spIoCyclicCaller);

}

m spCyclicCaller = NULL;

12.4.7 Interface ITComObject

The ITComObject interface is implemented by every TwinCAT module. It makes basic functionalities
available.

Syntax

TCOM_DECL_ INTERFACE ("00000012-0000-0000-e000-000000000064",

struct declspec(novtable) ITComObject: public ITcUnknown

ITComObject)

Methods
Sym- Name Description
bol
9 TcGetObjectld(OTCID& obijld) Saves the object ID with the help of the given OTCID reference.
[»156
'y TcSetObjectld [P 157] Sets the object ID of the object to the given OTCID
Py TcGetObjectName [P 157] Saves the object names in the buffer with the given length
9 TcSetObjectName [» 158] Sets the object name of the object to given CHAR*
9 TcSetObjState [» 158] Initializes a transition to a predefined state.
y | 1cGetObjState [P 158] Queries the current state of the object.
Py TcGetObijPara [» 159] Queries an object parameter identified with its PTCID
9 TcSetObjPara [P 159] Sets an object parameter identified with its PTCID
: TcGetParentObijld [»_160] Saves the parent object ID with the help of the given OTCID
M reference.
Py TcSetParentObijld [» 160] Sets the parent object ID to the given OTCID.
Comments

The ITComObject interface is implemented by every TwinCAT module. It makes functionalities available
regarding the state machine and Information from/to the TwinCAT system.

12.4.71

Method ITcComObject:TcGetObjectld(OTCID& objid)

The method saves the object ID with the help of the given OTCID reference.

156

Version: 1.7 TC3 C++

BECKHOFF

Programming Reference

Syntax

HRESULT TcGetObjectId(OTCID& objId)

Parameters

objld: (type: OTCID&) Reference to OTCID value

Return Value

Indicates success of OTCID retrieval.

Description

The method stores Object ID using given OTCID reference.

12.4.7.2 Method ITcComObject:TcSetObjectid

The method TcSetObjectld sets object’s object ID to the given OTCID.

Syntax

HRESULT TcSetObjectId(OTCID objId)

Parameters

objld: (type: OTCID) The OTCID, which should be set.

Return Value

It is recommended to always return S_OK. Currently, the return value is ignored by TwinCAT tasks.

Description

Indicates success of id change.

12.4.7.3 Method ITcComObject:TcGetObjectName

The method TcGetObjectName stores the Object name into buffer with given length.

Syntax

HRESULT TcGetObjectName (CHAR* objName, ULONG namelen) ;

Parameters
objName: (type: CHAR*) the name, which should be set.

nameLen: (type: ULONG) the maximum length to write.

Return Value

Indicates success of name retrieval.

Description

The method TcGetObjectName stores the Object name into buffer with given length.

TC3 C++ Version: 1.7

157

Programming Reference BEGKHOFF

12.4.7.4 Method ITcComObject:TcSetObjectName

The method TcSetObjectName sets objects’s Object Name to the given CHAR*.

Syntax

HRESULT TcSetObjectName (CHAR* objName)

Parameters

objName: (type: CHAR*) the name of the object to be set

Return Value

Indicates success of name change.

Description

The method TcSetObjectName sets objects’s Object Name to the given CHAR™.

12.4.7.5 Method ITcComObject:TcSetObjState

The method TcSetObjState initializes a transition to given state.

Syntax

HRESULT TcSetObjState (TCOM STATE state, ITComObjectServer* ipSrv, PTComInitDataHdr pInitData);

Parameters
state: (type: TCOM_STATE) represents the new state
ipSrv: (type: ITComObjectServer*) handles the object

pInitData: (type: PTCominitDataHdr) Points to a list of parameters (optional)
See macro IMPLEMENT_ITCOMOBJECT_EVALUATE_INITDATA for an example how the list can be
iterated.

Return Value

Indicates success of state change.

Description

The method TcSetObjState initializes a transition to given state.

12.4.7.6 Method ITcComObject:TcGetObjState

The method TcGetObjState retrieves the current state of the object.

Syntax

HRESULT TcGetObjState (TCOM STATE* pState)

Parameters

pState: (type: TCOM_STATE") pointer to the state

158 Version: 1.7 TC3 C++

BECKHOFF

Programming Reference

Return Value

Indicates success of state retrieval.

Description

The method TcGetObjState retrieves the current state of the object.

12.4.7.7 Method ITcComObject:TcGetObjPara

The method TcGetObjPara retrieves a object parameter identified by its PTCID.

Syntax

HRESULT TcGetObjPara (PTCID pid, ULONG& nData, PVOID& pData, PTCGP pgp=0)

Parameters

pid: (type: PTCID) Parameter ID of the object parameter
nData: (type: ULONG&) max length of the data

pData: (type: PVOID&) Pointer to the data

pgp: (type: PTCGP) reserved for future extension, pass NULL

Return Value

Indicates success of object parameter retrieval.

Description

The method TcGetObjPara retrieves a object parameter identified by its PTCID.

12.4.7.8 Method ITcComObject:TcSetObjPara

The method TcSetObjPara sets a object parameter identified by its PTCID.

Syntax

HRESULT TcSetObjPara (PTCID pid, ULONG nData, PVOID pData, PTCGP pgp=0)

Parameters

pid: (type: PTCID) Parameter ID of the object parameter
nData: (type: ULONG) max length of the data

pData: (type: PVOID) Pointer to the data

pgp: (type: PTCGP) reserved for future extension, pass NULL

Return Value

Indicates success of object parameter retrieval.

Description

The method TcSetObjPara sets a object parameter identified by its PTCID.

TC3 C++ Version: 1.7

159

Programming Reference

BECKHOFF

12.4.7.9 Method ITcComObject:TcGetParentObjld

The method TcGetParentObjld stores Parent Object ID using given OTCID reference.

Syntax

HRESULT TcGetParentObjId(OTCID& objId)

Parameters

objld: (type: OTCID&) Reference to OTCID value

Return Value

Indicates success of parentObjld retrieval.

Description

The method TcGetParentObjld stores Parent Object ID using given OTCID reference.

12.4.7.10 Method ITcComObject:TcSetParentObjld

The method TcSetParentObjld sets Parent Object ID using given OTCID reference.

Syntax

HRESULT TcSetParentObjId(OTCID objId)

Parameters

objld: (type: OTCID) Reference to OTCID value

Return Value

It is recommended to always return S_OK. Currently, the return value is ignored by TwinCAT Tasks.

Description

The method TcSetParentObjld sets Parent Object ID using given OTCID reference.

12.4.8 ITComObiject interface (C++ convenience)

The ITComObject interface is implemented by every TwinCAT module. It makes basic functionalities

available.

TwinCAT C++ provides additional functions, which are not directly defined through the interface.

Syntax

Required include: TcInterfaces.h

Methods
Sym- |Name Description
bol
4 |OTCID TcGetObjectld [» 161] Queries the object ID.
. | 1cTryToReleaseOpState [P 161] Releases resources; must be implemented

160 Version: 1.7

TC3 C++

BEGKHUFF Programming Reference

Comments
Further methods exist, which are not itemized here.

This functionality is provided as standard by the module wizards.

12.4.8.1 TcGetObjectld method

The method queries the object ID.

Syntax
OTCID TcGetObjectId(void)

Parameters

Return Value

OTCID: Returns the OTCID of the object.

Description

The method TcGetObijectld retrieves the Object ID of the object.

12.4.8.2 TcTryToReleaseOpState method

The method TcTryToReleaseOpState releases resources, e.g. data pointer, in order to prepare for leaving
the OP state.

Syntax

BOOL TcTryToReleaseOpState (void)

Parameters

Return Value

TRUE means success in releasing resources.

Description

The method TcTryToReleaseOpState releases resources, e.g. data pointer, in order to prepare for leaving
the OP state. Should be implemented to resolve possible circular dependencies among module instances.

See sample 10 [»_235] for an example.

12.4.9 Interface ITcPostCyclic

Interface is implemented by TwinCAT modules which should be called once per task cycle after the output
update (comparable to Attribute TcCallAfterOutputUpdate of the PLC).

Syntax

TCOM DECL_INTERFACE ("03000025-0000-0000-e000-000000000064", ITcPostCyclic)
struct declspec(novtable) ITcPostCyclic : public ITcUnknown

Required include: TcToInterfaces.h

TC3 C++ Version: 1.7 161

Programming Reference BEGKHOFF

Methods
Icon |Name Description
Y PostCycleUpdate [» 162] Called once per task cycle after the output update if interface has been
registered with a cyclic caller.
Remarks

The ITcPostCyclic interface is implemented by TwinCAT modules. This interface is passed to method
ITcCyclicCaller::AddPostModule() when a module registers itself with a task, typically as the last initialization
step in the SafeOP to OP transition. After registration the method PostCycleUpdate() of the module instance
is called.

12.4.9.1 Method ITcPostCyclic:PostCyclicUpdate

The method PostCyclicUpdate usually called by a TwinCAT task after the output update, after the interface
has been registered.

Syntax

HRESULT TCOMAPI PostCycleUpdate (ITcTask* ipTask, ITcUnknown* ipCaller, ULONG PTR context)

Parameters
ipTask: (type: ITcTask) refers to the current task context.
ipCaller: (type: ITcUnknown) refers to the calling instance.

Context: (type: ULONG_PTR) context contains the value which has been passed to method
ITcPostCyclicCaller::AddPostModule()

Return Value

It is recommended to always return S_OK. Currently, the return value is ignored by TwinCAT Tasks.

Description

Within a task cycle the method PostCycleUpdate() is called after OutputUpdate() has been for all registered
module instances. Therefore, this method should be used to implement such cyclic processing.

12.4.10 Interface ITcPostCyclicCaller

Interface to register or unregister a module's ITcPostCyclic interface with a TwinCAT task.

Syntax

TCOM_DECL INTERFACE ("03000026-0000-0000-e000-000000000064", ITcCyclicCaller)
struct declspec(novtable) ITcPostCyclicCaller : public ITcUnknown Ca

Required include: TcToInterfaces.h

Methods
Icon Name Description
Y AddPostModule [» 163] Register module which implements the ITcPostCyclic interface.
Py RemovePostModule [» 164] Unregister the previously registered ITcPostCyclic interface of
a module.

162 Version: 1.7 TC3 C++

BEGKHUFF Programming Reference

Remarks

The ITcPostCyclicCaller interface is implemented by TwinCAT tasks. A module uses this interface to register
its ITcPostCyclic interface with a task, typically as the last initialization step in the SafeOP to OP transition.
After registration the method PostCycleUpdate() of the module instance is called. The interface is also used
to unregister the module from being called by a task.

12.4.10.1 Method ITcPostCyclicCaller:AddPostModule

Register a module's ITcPostCyclic interface with cyclic caller, i.e. a TwinCAT task.

Syntax

virtual HRESULT TCOMAPI
AddPostModule (STcPostCyclicEntry* pEntry, ITcPostCyclic* ipMod, ULONG PTR
context=0, ULONG sortOrder=0)=0;

Parameters

PEntry: (type: STcPostCyclicEntry) [in] pointer to a list entry, which is inserted into the internal list of the
cyclic caller. See also description.

ipMod: (type: ITcPostCyclic) [in] interface pointer which will be used by cyclic caller

context: (type: ULONG_PTR) [optional] a context value which is passed to the
ITcPostCyclic::PostCyclicUpdate() method on each call.

sortOrder: (type: ULONG) [optional] the sort order can be used to control the order of execution if different
module instances are executed by the same cyclic caller.

Return Value
Type: HRESULT

On success the method returns S_OK. If cyclic caller, i.e. the TwinCAT task, is not in OP state, the error
ADS_E_INVALIDSTATE is returned.

Description

A TwinCAT module class uses a smart pointer to refer to the cyclic caller of type ITcPostCyclicCallerPtr. The
object id of the task is stored in this smart point and a reference to the task can be obtained using the
TwinCAT object server. In addition the smart pointer class already contains a list entry. Therefore the smart
pointer can be used as first parameter for the AddPostModule method.

The following sample code shows the registration of the ITcPostCyclicCaller interface.

RESULT hr =
S_OK;

if (m spPostCyclicCaller.HasOID()) {
if (SUCCEEDED DBG (hr =
m_spSrv->TcQuerySmartObjectInterface (m spPostCyclicCaller)))
{

if (FAILED (hr =
m_spPostCyclicCaller->AddPostModule (m spPostCyclicCaller,
THIS CAST (ITcPostCyclic)))) {

m_spPostCyclicCaller = NULL;

}

TC3 C++ Version: 1.7 163

Programming Reference BEGKHGFF

12.4.10.2 Method ITcPostCyclicCaller:RemovePostModule

Unregister a module instance from being called by a cyclic caller.

Syntax

virtual HRESULT TCOMAPI
RemovePostModule (STcPostCyclicEntry* pEntry)=0;

Parameters

pEntry: (type: STcPostCyclicEntry) refers to the list entry which should be removed from the internal list of
the cyclic caller.

Return Value

If the entry is not in the internal list, the method returns E_FAIL.

Description

Similar to the method AddPostModule() the smart pointer for the cyclic caller is used as list entry when the
module instance should be removed from cyclic caller.

Declaration and usage of smart pointer:
ITcPostCyclicCallerinfoPtr m_spPostCyclicCaller;
if (

m_spPostCyclicCaller) {
m_spPostCyclicCaller->RemovePostModule (m_spPostCyclicCaller);

}

m_spPostCyclicCaller = NULL;

12.4.11 Interface ITcRTimeTask

Retrieve extended TwinCAT task Information.

Syntax

TCOM DECL INTERFACE ("02000003-0000-0000-e000-000000000064", ITcRTimeTask)
struct _ declspec (novtable) ITcRTimeTask : public ITcTask

Required include: TcRtInterfaces.h

Methods
Icon Name Description

Py GetCpuAccount [164] Retrieve the CPU account of a TwinCAT task.
Remarks

Retrieving and using TwinCAT task Information could be done by this interface.

Please have a look at Sample30: Timing Measurement [P 277]

12.4.11.1 Method ITcRTimeTask::GetCpuAccount()

Retrieve the CPU account of a TwinCAT task.

164 Version: 1.7 TC3 C++

BEGKHUFF Programming Reference

Syntax
virtual HRESULT TCOMAPI GetCpuAccount (PULONG pAccount)=0;
Parameters

pAccount: (type: PULONG) [out] TwinCAT task CPU account is stored in this parameter.

Return Value

E_POINTER if parameter pAccount is NULL, otherwise S_OK.

Description
The method GetCpuAccount() allows to retrieve the actual computation time used by the task.

Code fragment which shows the usage of GetCpuAccount() e.g. within method ITcCyclic::CycleUpdate():

// CPU account in 100 ns interval
ITcRTimeTaskPtr spRTimeTask = ipTask;
ULONG nCpuAccountForComputeSomething = 0;
if (spRTimeTask != NULL)

{

ULONG nStart = 0;
hr = FAILED (hr) ? hr : spRTimeTask->GetCpuAccount (&nStart) ;
ComputeSomething () ;

ULONG nStop = 0;
hr = FAILED (hr) ? hr : spRTimeTask->GetCpuAccount (&nStop) ;

nCpuAccountForComputeSomething = nStop - nStart;
}

12.4.12 Interface ITcTask

Retrieve timestamps and task specific information from a TwinCAT task.

Syntax

TCOM DECL_ INTERFACE ("02000002-0000-0000-e000-000000000064", ITcTask)
struct _ declspec(novtable) ITcTask : public ITcUnknown

Required include: TcRtInterfaces.h

Methods
Ilcon |Name Description
9 GetCycleCounter [» 167] Retrieve number of task cycles since task start
9 GetCycleTime [P 168] Retrieve the task cycle time in nanoseconds, i.e. the time
between "begin of task" and next "begin of task"
9 GetPriority [» 166] Retrieve task priority

GetCurrentSysTime [» 166] Retrieve time at task cycle start in 100 nanoseconds intervals

v since 1. January 1601 (UTC)

9 GetCurrentDcTime [P 167] Retrieve distributed clock time at task cycle start in
nanoseconds since 1. January 2000

9 GetCurPentiumTime [» 167] |Retrieve time at method call in 100 nanoseconds intervals

since 1. January 1601 (UTC)

TC3 C++ Version: 1.7 165

Programming Reference BEGKHOFF

Remarks

The ITcTask interface can be used to measure time within the RT context.

Begin of Task End of Task Begin of Task

|
|I— basetime —||I— basetime —|||— basetime ——|——— basetime —||
1 2 3 4 5 5] 7 8
| cycletime |

[timer interrupt (tick)

read of time stamp in task

: read time stamps at
Reference Function Unit Zerotime P
(ITcTask)
3 4 6
Distributed GetCurrentSysTime 100ns 01.01.1601 1 1 1
Clock master
(EtherCAT, .
Sercos,...) GetCurrentDc Time: 1ns 01.01.2000 1 1 1
Processor Clock GetCurPentiumTime 100ns 01.01.1601 3 4 6

12.4.12.1 Method ITcTask:GetPriority

Retrieve task priority

Syntax

virtual HRESULT TCOMAPI GetPriority (PULONG
pPriority)=0;

Parameters

pPriority: (type: PULONG) [out] task priority value is stored in this parameter.

Return Value

E_POINTER if parameter pPriority is NULL, otherwise S_OK.

Description

Sample30: Timing Measurement [»_277] shows usage of this method.

12.4.12.2 Method ITcTask:GetCurrentSysTime

Retrieve time at task cycle start in 100 nanoseconds intervals since 1. January 1601 (UTC)

Syntax

virtual HRESULT TCOMAPI GetCurrentSysTime (PLONGLONG
pSysTime)=0;

166 Version: 1.7 TC3 C++

BEGKHUFF Programming Reference

Parameters

pSysTime: (type: PLONGLONG) [out] current system time at task cycle start is stored in this parameter.

Return Value

E_POINTER if parameter pSysTime is NULL, otherwise S_OK.

Description

Sample30: Timing Measurement [»_277] shows usage of this method.

12.4.12.3 Method ITcTask:GetCurrentDcTime

Retrieve distributed clock time at task cycle start in nanoseconds since 1. January 2000

Syntax

virtual HRESULT TCOMAPI GetCurrentDcTime (PLONGLONG
pDcTime)=0;

Parameters

pDcTime: (type: PLONGLONG) [out] distributed clock time at task cycle start is stored in this parameter.

Return Value

E_POINTER if parameter pDcTime is NULL, otherwise S_OK.

Description

Sample30: Timing Measurement [»_277] shows usage of this method.

12.4.12.4 Method ITcTask:GetCurPentiumTime

Retrieve time at method call in 100 nanoseconds intervals since 1. January 1601 (UTC)

Syntax

virtual HRESULT TCOMAPI GetCurPentiumTime (PLONGLONG
pCurTime)=0;

Parameters

pCurTime: (type: PLONGLONG) [out] current time (UTC) in 100 nanoseconds intervals since 1. January
1601 is stored in this parameter

Return Value

E_POINTER if parameter pCurTime is NULL, otherwise S_OK.

Description

Sample30: Timing Measurement [P 277] shows usage of this method.

12.4.12.5 Method ITcTask:GetCycleCounter

Retrieve number of task cycles since task start.

TC3 C++ Version: 1.7 167

Programming Reference BEGKHGFF

Syntax
virtual HRESULT TCOMAPI GetCycleCounter (PULONGLONG

pCnt)=0;

Parameters

pCnt: (type: PULONGLONG) [out] number of task cycles since task has been started is stored in this
parameter

Return Value

E_POINTER if parameter pCnt is NULL, otherwise S_OK

Description

Sample30: Timing Measurement [»_277] shows usage of this method.

12.4.12.6 Method ITcTask:GetCycleTime

Retrieve the task cycle time in nanoseconds, i.e. the time between "begin of task" and next "begin of task"

Syntax

virtual HRESULT TCOMAPI GetCycleTime (PULONG
pCycleTimeNS)=0;

Parameters

pCycleTimeNS: (type: PULONG) [out] the configured task cycle time in nanoseconds is stored in this
parameter.

Return Value

E_POINTER if parameter pCycleTimeNS is NULL, otherwise S_OK.

Description

Sample30: Timing Measurement [P 277] shows usage of this method.

12.4.13 Interface ITcTaskNotification

Executes a callback if the cycle time was exceeded during the previous cycle.
This interface provides comparable functions such as PLC PlcTaskSystemInfo->CycleTimeExceeded.

Syntax

TCOM_DECL_ INTERFACE ("9CDE7C78-32A0-4375-827E-924B31021FCD", ITcTaskNotification) struct
__declspec(novtable) ITcTaskNotification: public ITcUnknown

Required include: TcRtInterfaces.h

Methods
Symbol |Name Description
Py NotifyCycleTimeExceeded Called if the cycle time was exceeded.

168 Version: 1.7 TC3 C++

BEGKHUFF Programming Reference

Remarks

Please note that the callback will not take place within the calculations but on the end of the cycle. So this
method does not provide a mechanism to immediately stop calculations.

12.4.13.1 Method ITcTaskNotification::NotifyCycleTimeExceeded()

Gets called if cycle time was exceeded beforehand

Syntax

virtual HRESULT TCOMAPI NotifyCycleTimeExceeded ()

Parameters
ipTask: (type: ITcTask) refers to the current task context.

context: (type: ULONG_PTR) context

Return Value
Type: HRESULT

Return S_OK, if file operation is completed

Description

Gets called if cycle time was exceeded beforehand. So not immediately on exceeded time, but afterwards.

12.4.14 Interface ITcUnknown

ITcUnknown defines the reference counting as well as querying a reference to a more specific interface.

Syntax
TCOM_DECL_INTERFACE ("00000001-0000-0000-e000-000000000064", ITcUnknown)

Declared in: TcInterfaces.h

Required include: -

Methods

Icon Name Description
9 TcAddRef [169] Increments the reference counter.
& IcQuerynterface [» 170] Query reference to an implemented interface by the 11D
4 |ICcRelease [» 171] Decrements the reference counter.

Remarks

Every TcCOM interface is directly or indirectly derived from ITcUnknown. As a consequence every TcCOM
module class implements ITcUnknown, because it is derived from ITComObject.

The default implementation for ITcUnknown will delete the object if its last reference is released. Therefore
an interface pointer must not be dereferenced after TcRelease() has been called.

12.4.14.1 Method ITcUnknown:TcAddRef

This method increments the reference counter.

TC3 C++ Version: 1.7 169

Programming Reference BEGKHGFF

Syntax
ULONG TcAddRef ()

Return Value

Resulting reference count value.

Description

Increments the reference counter and returns the new value..

12.4.14.2 Method ITcUnknown:TcQuerylinterface

Query of an interface pointer with regard to an interface that is given by interface ID (lID).

Syntax
HRESULT TcQueryInterface (RITCID iid, PPVOID pipItf)

iid: (Type: RITCID) Interface 11D

pipltf: (PPVOID Type) pointer to interface pointer. Is set when the requested interface type is available from
the corresponding instance.

Return Value
A return value S_OK indicates success.

If requested interface is not available the method will return ADS_E_NOINTERFACE.

Description

Query reference to an implemented interface by the IID. It is recommended to use smart pointers to initialize
and hold interface pointers.

Variant 1:

HRESULT GetTracelLevel (ITcUnkown* ip, TcTracelLevelg& tl)
{

HRESULT hr = S OK;

if (ip != NULL)

{

ITComObjectPtr spObj;

hr = ip->TcQueryInterface (spObj.GetIID(), &spObj);

if (SUCCEEDED (hr))

{

hr = spObj->TcGetObjPara (PID_TcTraceLevel, &tl, sizeof(tl));
}

return hr;

}

}

The interface id associated with the smart pointer can be used as parameter in TcQuerylnterface. The
operator “&” will return pointer to internal interface pointer member of the smart pointer. Variant 1 assumes
that interface pointer is initialized if TcQuerylnterface indicates success. If scope is left the destructor of the
smart pointer spObj releases the reference.

Variant 2:

HRESULT GetTracelLevel (ITcUnkown* ip, TcTraceLevelg& tl)
{

HRESULT hr = S_OK;

ITComObjectPtr spObj = ip;

if (spObj != NULL)

{

spObj->TcGetObjParam (PID TcTraceLevel, &tl);

}

170 Version: 1.7 TC3 C++

BEGKH“FF Programming Reference

else

{
hr = ADS E NOINTERFACE;

}

return hr;

}

When assigning interface pointer ip to smart pointer spObj method TcQuerylnterface is implicitly called with
[ID_ITComObject on the instance ip refers to. This results in shorter code, however it loses the original return
code of TcQuerylInterface.

12.4.14.3 Method ITcUnknown:TcRelease

This method decrements the reference counter.

Syntax
ULONG TcRelease()

Return Value

Resulting reference count value.

Description
Decrements the reference counter and returns the new value.

If reference counter gets zero, object deletes itself.

12.5 Runtime Library (RtIR0.h)

TwinCAT has its own implementation of the runtime library. These functions are declared in RtIR0.h, a part of
TwinCAT SDK.

TC3 C++ Version: 1.7 171

Programming Reference

BECKHOFF

Methods provided

Name Description

Y abs Calculates the absolute value.

% atof Converts a string (char *buf) into a double.

Py BitScanForward Searches for a set bit (1) from LSB to MSB.

Py BitScanReverse Searches for a set bit (1) from MSB to LSB.

Y labs Calculates the absolute value.

4 |memcmp Compares two buffers

4 |memcpy Copies one buffer into another

Py memcpy_byte Copies one buffer into another (bytewise)

Py memset Sets the bytes of a buffer to a value

Y gsort QuickSort for sorting a list

9 snprintf Writes formatted data into a character string.

Y sprintf Writes formatted data into a character string.

Py sscanf Reads data from a character string after specification of a format.

9 strcat Appends one character string to another.

Py strchr Searches for a character in a character string.

'y strcmp Compares two character strings.

Py strcpy Copies a character string.

9 strlen Determines the length of a character string.

Py strncat Appends one character string to another.

Y strncmp Compares two character strings.

9 strncpy Copies a character string.

9 strstr Searches for a character string within a character string.

Y strtol Converts a character string into an integer.

Py strtoul Converts a character string into an unsigned integer.

® swscanf Reads data from a character string after specification of a format.

9 tolower Converts a letter into a lower-case letter.

Py toupper Converts a letter into an upper-case letter.

Py vsnprintf Writes formatted data into a character string.

® vsprintf Writes formatted data into a character string.
Comments

All functions are based on the C++ runtime library.

172

Version: 1.7

TC3 C++

BEGKHUFF Programming Reference

12.6 ADS Communication

ADS based on the Client-Server-principle (figure 1). An ADS request invokes the corresponding indication
methods on the server side. The ADS response invokes the corresponding confirmation method on the client
side.

ADS ADS
Client Server
Req() \-__*
Ind{)
{
‘,—/—/ Resl)
Con() I
i
Req: Request
Ind: Indication
} Res: Response
Con: Confirmation
ADS Client-Server-Sequence

This section describes outgoing as well as incoming ADS communication for TwinCAT 3 C++ Modules.

ADS Command Set Description
AdsReadDevicelnfo [P 173] General device information can be read with this command..
AdsRead [» 175] ADS read command, to request data from an ADS device.
AdsWrite [P 177] ADS write command, to transfer data to an ADS device.
AdsReadState [P 181] ADS command to retrieve state of an ADS device.
AdsWriteControl [P 183] ADS control command to change the state of an ADS device.
AdsAddDeviceNotification [P 185] Observe a variable. The client will be notified by an event.
AdsDelDeviceNotification [» 187] Removes the variable that was connected before.
AdsDeviceNotification [P 189] Used to transmit the device notification event.
AdsReadWrite [P 179] ADS write/read command. Data is transmitted to an ADS device
(write) and its response data read with one call.

The ADS Return Codes [»_300] apply to the whole ADS communication.

As a starting point, please have a look at Sample07: Receiving ADS Notifications [P 231]

12.6.1 AdsReadDevicelnfo

12.6.1.1 AdsReadDevicelnfoReq
The method AdsDevicelnfoReq permits to send an ADS Devicelnfo command for reading the identification

and version number of an ADS server.
The AdsReadDevicelnfoCon will be called on arrival of the answer.

Syntax

int AdsReadDeviceInfoReqg(AmsAddré& rAddr, ULONG invokeId);

TC3 C++ Version: 1.7 173

Programming Reference BEGKHGFF

Parameters
rAddr: (type: AmsAddr&) [in] structure with Netld and port number of the ADS server.

invokeld: (type: ULONG) [in] handle of the command, which is sent. The Invokeld is specified from the
source device and serves to identify the commands.

Return Value
Type: int

error code - see AdsStatuscodes [P 300]

12.6.1.2 AdsReadDevicelnfolnd

The method AdsDevicelnfolnd indicates an ADS Devicelnfo command for reading the identification and
version number of an ADS server. The AdsReadDevicelnfoRes [P_174] must be called afterwards.

Syntax

void AdsReadDeviceInfoInd(AmsAddr& rAddr, ULONG invokeId) ;

Parameters
rAddr: (type: AmsAddr&) [in] structure with Netld and port number of the ADS server.

invokeld: (type: ULONG) [in] handle of the command, which is sent. The Invokeld is specified from the
source device and serves to identify the commands.

Return Value

void

12.6.1.3 AdsReadDevicelnfoRes

The method AdsReadDevicelnfoRes sends an ADS Read Device Info. AdsReadDevicelnfoCon [175] forms
the counterpart and is subsequently called.

Syntax

int AdsReadDeviceInfoRes (AmsAddr& rAddr, ULONG invokeId, ULONG nResult, CHAR
name [ADS FIXEDNAMESIZE], AdsVersion version);

Parameter
rAddr: (type: AmsAddr&) [in] structure with Netld and port number of the responding ADS server

invokeld: (type: ULONG) [in] handle of the command that is sent. The Invokeld is specified by the source
device and is used for the identification of the commands.

nResult: (type: ULONG) [in] contains the result of the ADS write command. See AdsStatuscodes [P _300].
name: (type: char[ADS_FIXEDNAMESIZE]) [in] contains the name of the device.

version: (type: AdsVersion) [in] structure of build (int), revision (byte) and version (byte) of the device

174 Version: 1.7 TC3 C++

BEGKHUFF Programming Reference

Return value
Type: int

Error code - see AdsStatuscodes [P 300].

12.6.1.4 AdsReadDevicelnfoCon

The method AdsReadDevicelnfoCon permits to receive an ADS read device info confirmation. The receiving
module has to provide this method. The AdsReadDevicelnfoReq [P 173] is the counterpart and need to be
called beforehand.

Syntax

void AdsReadDeviceInfoCon(AmsAddré& rAddr, ULONG invokeId, ULONG nResult,
CHAR name [ADS FIXEDNAMESIZE], AdsVersion version);

Parameters
rAddr: (type: AmsAddr&) [in] structure with Netld and port number of the ADS server answering

invokeld: (type: ULONG) [in] handle of the command, which is sent. The Invokeld is specified from the
source device and serves to identify the commands.

nResult: (type: ULONG) [in] contains the result of the ADS write command. See AdsStatuscodes [»_300]

name: (type: char[ADS_FIXEDNAMESIZE]) [in] contains the name of the device.

version: (type: AdsVersion) [in] struct of Build (int), Revision (byte) and Version (byte) of the device

Return Value

void

12.6.2 AdsRead

12.6.2.1 AdsReadReq

The method AdsReadReq permits to send an ADS read command, for the transfer of data from an ADS
device.

The AdsReadCon [» 177] will be called on arrival of the answer.

Syntax

int AdsReadReqg(AmsAddré& rAddr, ULONG invokeId, ULONG indexGroup, ULONG indexOffset, ULONG
cbLength);

Parameters
rAddr: (type: AmsAddr&) [in] structure with Netld and port number of the ADS server.

invokeld: (type: ULONG) [in] handle of the command, which is sent. The Invokeld is specified from the
source device and serves to identify the commands.

indexGroup: (type: ULONG) [in] contains the index group number (32 bit, unsigned) of the requested ADS
service.

TC3 C++ Version: 1.7 175

Programming Reference BEGKHGFF

indexOffset: (type: ULONG) [in] contains the index offset number (32 bit, unsigned) of the requested ADS
service.

cbLength: (type: ULONG) [in] contains the length, in bytes, of the data (pData) to be read.

Return Value
Type: int

error code - see AdsStatuscodes [P _300]

12.6.2.2 AdsReadInd

The method AdsReadInd permits to receive an ADS read request. The AdsReadRes [P 176] needs to be
called for sending the result.

Syntax

void AdsReadInd(AmsAddr& rAddr, ULONG invokeId, ULONG indexGroup, ULONG indexOffset, ULONG
cbLength);

Parameters
rAddr: (type: AmsAddr&) [in] structure with Netld and port number of the ADS server answering

invokeld: (type: ULONG) [in] handle of the command, which is sent. The Invokeld is specified from the
source device and serves to identify the commands.

indexGroup: (type: ULONG) [in] contains the index group number (32 bit, unsigned) of the requested ADS
service.

indexOffset: (type: ULONG) [in] contains the index offset number (32 bit, unsigned) of the requested ADS
service.

cbLength: (type: ULONG) [in] contains the length, in bytes, of the data (pData) to be read.

Return value
Type: int

ADS Return Code - see AdsStatuscodes [» 300].

12.6.2.3 AdsReadRes

The method AdsReadRes permits to send an ADS read response. AdsReadCon [P_177] is the counterpart
and will be called afterwards.

Syntax

int AdsReadRes (AmsAddr& rAddr, ULONG invokeId, ULONG nResult, ULONG cbLength, PVOID pData);

Parameter
rAddr: (type: AmsAddr&) [in] structure with Netld and port number of the responding ADS server

invokeld: (type: ULONG) [in] handle of the command that is sent. The Invokeld is specified by the source
device and is used for the identification of the commands.

nResult: (type: ULONG) [in] contains the result of the ADS read command. See AdsStatuscodes [P 300]

176 Version: 1.7 TC3 C++

BEGKHUFF Programming Reference

cbLength: (type: ULONG) [in] contains the length in bytes of the data that was read (pData).
pData: (type: PVOID) [in] pointer to the data buffer in which the data are located.

Return value
Type: int

ADS Return Code - see AdsStatuscodes [» 300].

12.6.2.4 AdsReadCon

The method AdsReadCon permits to receive an ADS read confirmation. The receiving module has to provide
this method.

The AdsReadReq [P 175] is the counterpart and need to be called beforehand.

Syntax

void AdsReadCon (AmsAddr& rAddr, ULONG invokeId, ULONG nResult, ULONG cbLength, PVOID pData);

Parameters
rAddr: (type: AmsAddr&) [in] structure with Netld and port number of the ADS server answering

invokeld: (type: ULONG) [in] handle of the command, which is sent. The Invokeld is specified from the
source device and serves to identify the commands.

nResult: (type: ULONG) [in] contains the result of the ADS read command. See AdsStatuscodes [»_300]
cbLength: (type: ULONG) [in] contains the length, in bytes, of the data (pData) which was read
pData: (type: PVOID) [in] pointer of the data buffer, in which the data is located.

Return Value

void

12.6.3 AdsWrite

12.6.3.1 AdsWriteReq

The method AdsWriteReq permits to send an ADS write command, for the transfer of data to an ADS device.
The AdsWriteCon [»_179] will be called on arrival of the answer.

Syntax

int AdsWriteReg(AmsAddré& rAddr, ULONG invokeId, ULONG indexGroup, ULONG indexOffset, ULONG
cbLength, PVOID pData);

Parameters
rAddr: (type: AmsAddr&) [in] structure with Netld and port number of the ADS server.

invokeld: (type: ULONG) [in] handle of the command, which is sent. The Invokeld is specified from the
source device and serves to identify the commands.

indexGroup: (type: ULONG) [in] contains the index group number (32 bit, unsigned) of the requested ADS
service.

TC3 C++ Version: 1.7 177

Programming Reference BEGKHGFF

indexOffset: (type: ULONG) [in] contains the index offset number (32 bit, unsigned) of the requested ADS
service.

cbLength: (type: ULONG) [in] contains the length, in bytes, of the data (pData) to be written
pData: (type: PVOID) [in] pointer of the data buffer, in which the data written is located.

Return Value
Type: int

error code - see AdsStatuscodes [P 300]

12.6.3.2 AdsWritelnd

The method AdsWritelnd indicates an ADS write command, for the transfer of data to an ADS device.
The AdsWriteRes [P_178] has to be called for confirming the operation.

Syntax

void AdsWriteInd(AmsAddré& rAddr, ULONG invokeId, ULONG indexGroup, ULONG indexOffset, ULONG
cbLength, PVOID pData);

Parameters
rAddr: (type: AmsAddr&) [in] structure with Netld and port number of the ADS server.

invokeld: (type: ULONG) [in] handle of the command, which is sent. The Invokeld is specified from the
source device and serves to identify the commands.

indexGroup: (type: ULONG) [in] contains the index group number (32 bit, unsigned) of the requested ADS
service.

indexOffset: (type: ULONG) [in] contains the index offset number (32 bit, unsigned) of the requested ADS
service.

cbLength: (type: ULONG) [in] contains the length, in bytes, of the data (pData) to be written
pData: (type: PVOID) [in] Pointer of the data buffer, in which the data written is located.

Return Value
void

error code - see AdsStatuscodes [P 300]

12.6.3.3 AdsWriteRes

The method AdsWriteRes sends an ADS write response. AdsWriteCon [P_179] forms the counterpart and is
subsequently called.

Syntax

int AdsWriteRes(AmsAddré& rAddr, ULONG invokeId, ULONG nResult);

178 Version: 1.7 TC3 C++

BEGKHUFF Programming Reference

Parameters
rAddr: (type: AmsAddr&) [in] structure with Netld and port number of the ADS server answering

invokeld: (type: ULONG) [in] handle of the command, which is sent. The Invokeld is specified from the
source device and serves to identify the commands.

nResult: (type: ULONG) [in] contains the result of the ADS write command. See AdsStatuscodes [P _300]

Return Value
Type: int

ADS Return Code - see AdsStatuscodes [» 300]

12.6.3.4 AdsWriteCon

The method AdsWriteCon permits to receive an ADS write confirmation. The receiving module has to provide
this method.

The AdsWriteReq [P _177] is the counterpart and need to be called beforehand.

Syntax

void AdsWriteCon (AmsAddré& rAddr, ULONG invokeId, ULONG nResult);

Parameters
rAddr: (type: AmsAddr&) [in] structure with Netld and port number of the ADS server answering

invokeld: (type: ULONG) [in] handle of the command, which is sent. The Invokeld is specified from the
source device and serves to identify the commands.

nResult: (type: ULONG) [in] contains the result of the ADS write command. See AdsStatuscodes [P _300]

Return Value

void

12.6.4 AdsReadWrite

12.6.4.1 AdsReadWriteReq

The method AdsReadWriteReq permits to send an ADS readwrite command, for the transfer of data to and
from an ADS device. The AdsReadWriteCon [P 181] will be called on arrival of the answer.

Syntax

int AdsReadWriteReq(AmsAddré& rAddr, ULONG invokeId, ULONG indexGroup, ULONG indexOffset, ULONG
cbReadLength, ULONG cbWriteLength, PVOID pData);

Parameters
rAddr: (type: AmsAddr&) [in] structure with Netld and port number of the ADS server.

invokeld: (type: ULONG) [in] handle of the command, which is sent. The Invokeld is specified from the
source device and serves to identify the commands.

TC3 C++ Version: 1.7 179

Programming Reference BEGKHGFF

indexGroup: (type: ULONG) [in] contains the index group number (32 bit, unsigned) of the requested ADS
service.

indexOffset: (type: ULONG) [in] contains the index offset number (32 bit, unsigned) of the requested ADS
service.

cbReadLength: (type: ULONG) [in] contains the length, in bytes, of the data (pData) to be read
cbWriteLength: (type: ULONG) [in] contains the length, in bytes, of the data (pData) to be written
pData: (type: PVOID) [in] pointer of the data buffer, in which the data written is located.

Return Value
Type: int

error code - see AdsStatuscodes [P 300]

12.6.4.2 AdsReadWritelnd

The method AdsReadWritelnd indicates an ADS readwrite command, for the transfer of data to and from an
ADS device. The AdsReadWriteRes [P_182] needs to be called for sending the result.

Syntax

void AdsReadWriteInd(AmsAddr& rAddr, ULONG invokeId, ULONG indexGroup,
ULONG indexOffset, ULONG cbReadLength, ULONG cbWriteLength, PVOID pData);

Parameters
rAddr: (type: AmsAddr&) [in] structure with Netld and port number of the ADS server.

invokeld: (type: ULONG) [in] handle of the command, which is sent. The Invokeld is specified from the
source device and serves to identify the commands.

indexGroup: (type: ULONG) [in] contains the index group number (32 bit, unsigned) of the requested ADS
service.

indexOffset: (type: ULONG) [in] contains the index offset number (32 bit, unsigned) of the requested ADS
service.

cbReadLength: (type: ULONG) [in] contains the length, in bytes, of the data (pData) to be read
cbWriteLength: (type: ULONG) [in] contains the length, in bytes, of the data (pData) to be written
pData: (type: PVOID) [in] pointer of the data buffer, in which the data written is located.

Return Value

void

12.6.4.3 AdsReadWriteRes

The method AdsReadWriteRes permits to receive an ADS read write confirmation. The AdsReadWriteCon
[»_181] is the counterpart and will be called afterwards.

180 Version: 1.7 TC3 C++

BEGKHUFF Programming Reference

Syntax

int AdsReadWriteRes (AmsAddr& rAddr, ULONG invokeId, ULONG nResult, ULONG cbLength, PVOID
pbhata);

Parameters
rAddr: (type: AmsAddr&) [in] structure with Netld and port number of the ADS server answering

invokeld: (type: ULONG) [in] handle of the command, which is sent. The Invokeld is specified from the
source device and serves to identify the commands.

nResult: (type: ULONG) [in] contains the result of the ADS write command. See AdsStatuscodes [P_300]

cbLength: (type: ULONG) [in] contains the length, in bytes, of the data (pData) which was read
pData: (type: PVOID) [in] pointer of the data buffer, in which the data is located.

Return value
Type: int
ADS Return Code - see AdsStatuscodes [» 300].

12.6.4.4 AdsReadWriteCon

The method AdsReadWriteCon permits to receive an ADS read write confirmation. The receiving module has
to provide this method.
The AdsReadWriteReq [P_179] is the counterpart and need to be called beforehand.

Syntax

void AdsReadWriteCon (AmsAddr& rAddr, ULONG invokeId, ULONG nResult, ULONG cbLength, PVOID pData);

Parameters
rAddr: (tpe: AmsAddr&) [in] structure with Netld and port number of the ADS server answering

invokeld: (type: ULONG) [in] handle of the command, which is sent. The Invokeld is specified from the
source device and serves to identify the commands.

nResult: (type: ULONG) [in] contains the result of the ADS write command. See AdsStatuscodes [»_300]

cbLength: (type: ULONG) [in] contains the length, in bytes, of the data (pData) which was read
pData: (type: PVOID) [in] pointer of the data buffer, in which the data is located.

Return Value

void

12.6.5 AdsReadState

12.6.5.1 AdsReadStateReq

The method AdsReadStateReq permits to send an ADS read state command for reading the ADS status and
the device status from an ADS server. The AdsReadStateCon [»_183] will be called on arrival of the answer.

TC3 C++ Version: 1.7 181

Programming Reference BEGKHGFF

Syntax

int AdsReadStateReq(AmsAddré& rAddr, ULONG invokeId) ;

Parameters
rAddr: (type: AmsAddr) [in] structure with Netld and port number of the ADS server.

invokeld: (type: ULONG) [in] handle of the command, which is sent. The Invokeld is specified from the
source device and serves to identify the commands.

Return Value
Type: int

error code - see AdsStatuscodes [P 300]

12.6.5.2 AdsReadStatelnd

The method AdsReadStatelnd indicates an ADS read state command for reading the ADS status and the
device status from an ADS device. The AdsReadStateRes [P 182] needs to be called for sending the result.

Syntax

void AdsReadStateInd(AmsAddré& rAddr, ULONG invokeId);

Parameters
rAddr: (type: AmsAddr) [in] structure with Netld and port number of the ADS server.

invokeld: (type: ULONG) [in] handle of the command, which is sent. The Invokeld is specified from the
source device and serves to identify the commands.

Return Value

void

12.6.5.3 AdsReadStateRes

The method AdsWriteRes enables the sending of an ADS status read response. AdsReadStateCon [P _183]
forms the counterpart and is subsequently called.

Syntax

int AdsReadStateRes (AmsAddré& rAddr, ULONG invokeId, ULONG nResult, USHORT adsState, USHORT
deviceState);

Parameter
rAddr: (type: AmsAddr&) [in] structure with Netld and port number of the responding ADS server

invokeld: (type: ULONG) [in] handle of the command that is sent. The Invokeld is specified by the source
device and is used for the identification of the commands.

nResult: (type: ULONG) [in] contains the result of the ADS write command. See AdsStatuscodes [»_300]

adsState: (type: USHORT) [in] contains the ADS state of the device

deviceState: (type: USHORT) [in] contains the device status of the device

182 Version: 1.7 TC3 C++

BEGKHUFF Programming Reference

Return value
Type: int

Error code - see AdsStatuscodes [P 300].

12.6.5.4 AdsReadStateCon

The method AdsWriteCon permits to receive an ADS read state confirmation. The receiving module has to
provide this method.
The AdsReadStateReq [»_181] is the counterpart and needs to be called beforehand.

Syntax

void AdsReadStateCon (AmsAddr& rAddr, ULONG invokeId, ULONG nResult, USHORT adsState, USHORT
deviceState);

Parameters
rAddr: (type: AmsAddr&) [in] structure with Netld and port number of the ADS server answering

invokeld: (type: ULONG) [in] handle of the command, which is sent. The Invokeld is specified from the
source device and serves to identify the commands.

nResult: (type: ULONG) [in] contains the result of the ADS write command. See AdsStatuscodes [»_300]

adsState: (type: USHORT) [in] contains the ads state of the device
deviceState: (type: USHORT) [in] contains the device state of the device

Return Value

void

12.6.6 AdsWriteControl

12.6.6.1 AdsWriteControlReq

The method AdsWriteControlReq permits to send an ADS write control command for changing the ADS

status and the device status of an ADS server. The AdsWriteControlCon [P 185] will be called on arrival of
the answer.

Syntax

int AdsWriteControlReq(AmsAddr& rAddr, ULONG invokeId, USHORT adsState,
USHORT deviceState, ULONG cbLength, PVOID pData);

Parameters
rAddr: (type: AmsAddr&) [in] structure with Netld and port number of the ADS server.

invokeld: (type: ULONG) [in] handle of the command, which is sent. The Invokeld is specified from the
source device and serves to identify the commands.

adsState: (type: USHORT) [in] contains the index group number (32 bit, unsigned) of the requested ADS
service.

deviceState: (type: USHORT) [in] contains the index offset number (32 bit, unsigned) of the requested ADS
service.

TC3 C++ Version: 1.7 183

Programming Reference BEGKHGFF

cbLength: (type: ULONG) [in] contains the length, in bytes, of the data (pData)
pData: (type: PVOID) [in] pointer of the data buffer, in which the data written is located.

Return Value
Type: int

error code - see AdsStatuscodes [P _300]

12.6.6.2 AdsWriteControlind

The method AdsWriteControlind permits to send an ADS write control command for changing the ADS status

and the device status of an ADS device. The AdsWriteControlRes [»_184] has to be called for confirming the
operation.

Syntax

void AdsWriteControlInd(AmsAddr& rAddr, ULONG invokeId, USHORT adsState, USHORT deviceState,
ULONG cbLength, PVOID pDeviceData);

Parameters
rAddr: (type: AmsAddr&) [in] structure with Netld and port number of the ADS server.

invokeld: (type: ULONG) [in] handle of the command, which is sent. The Invokeld is specified from the
source device and serves to identify the commands.

adsState: (type: USHORT) [in] contains the index group number (32 bit, unsigned) of the requested ADS
service.

deviceState: (type: USHORT) [in] contains the index offset number (32 bit, unsigned) of the requested ADS
service.

cbLength: (type: ULONG) [in] contains the length, in bytes, of the data (pData)
pData: (type: PVOID) [in] pointer of the data buffer, in which the data written is located.

Return Value

void

12.6.6.3 AdsWriteControlRes

The method AdsWriteControlRes permits to send an ADS write control response. The AdsWriteControlCon
[»_185] is the counterpart and will be called afterwards.

Syntax

int AdsWriteControlRes (AmsAddré& rAddr, ULONG invokeId, ULONG nResult);

Parameters

rAddr: (type: AmsAddr&) [in] structure with Netld and port number of the ADS server answering

184 Version: 1.7 TC3 C++

BEGKHUFF Programming Reference

invokeld: (type: ULONG) [in] handle of the command, which is sent. The Invokeld is specified from the
source device and serves to identify the commands.

nResult: (type: ULONG) [in] contains the result of the ADS write command. See AdsStatuscodes [»_300]

Return Value
Type: int

ADS return code - see AdsStatuscodes [P 300]

12.6.6.4 AdsWriteControlCon

The method AdsWriteCon permits to receive an ADS write control confirmation. The receiving module has to
provide this method.

The AdsWriteControlReq [P _183] is the counterpart and needs to be called beforehand

Syntax

void AdsWriteControlCon(AmsAddr& rAddr, ULONG invokeId, ULONG nResult);

Parameters
rAddr: (type: AmsAddr&) [in] tructure with Netld and port number of the ADS server answering

invokeld: (type: ULONG) [in] handle of the command, which is sent. The Invokeld is specified from the
source device and serves to identify the commands.

nResult: (type: ULONG) [in] contains the result of the ADS write command. See AdsStatuscodes [»_300]

Return Value

void

12.6.7 AdsAddDeviceNotification

12.6.7.1 AdsAddDeviceNotificationReq

The method AdsAddDeviceNotificationReq permits to send an ADS add device notification command, for

adding a device notification to an ADS device. The AdsAddDeviceNotificationCon [»_187] will be called on
arrival of the answer.

Syntax

int AdsAddDeviceNotificationReq(AmsAddr& rAddr, ULONG invokeId, ULONG indexGroup, ULONG
indexOffset,
AdsNotificationAttrib noteAttrib);

Parameters
rAddr: (type: AmsAddr&) [in] structure with Netld and port number of the ADS server.

invokeld: (type: ULONG) [in] handle of the command, which is sent. The Invokeld is specified from the
source device and serves to identify the commands.

indexGroup: (type: ULONG) [in] contains the index group number (32 bit, unsigned) of the requested ADS
service.

TC3 C++ Version: 1.7 185

Programming Reference BEGKHGFF

indexOffset: (type: ULONG) [in] contains the index offset number (32 bit, unsigned) of the requested ADS
service.

noteAttrib: (type: AdsNotificationAttrib) [in] contains specification of the notification parameters (cbLength,
TransMode, MaxDelay)

Return Value
Type: int

error code - see AdsStatuscodes [P _300]

12.6.7.2 AdsAddDeviceNotificationind

The method AdsAddDeviceNotificationInd should enable sending AdsDeviceNotification [P 189]. The
AdsAddDeviceNotificationRes [P _186] has to be called for confirming the operation.

Syntax

void AdsAddDeviceNotificationInd(AmsAddr& rAddr, ULONG invokeId, ULONG indexGroup, ULONG
indexOffset, AdsNotificationAttrib noteAttrib);

Parameters
rAddr: (type: AmsAddr&) [in] structure with Netld and port number of the ADS server answering

invokeld: (type: ULONG) [in] sandle of the command, which is sent. The Invokeld is specified from the
source device and serves to identify the commands.

indexGroup: (type: ULONG) [in] contains the index group number (32 bit, unsigned) of the requested ADS
service.

indexOffset: (type: ULONG) [in] contains the index offset number (32 bit, unsigned) of the requested ADS
service.

noteAttrib: (type: AdsNotificationAttrib) [in] contains specification of the notification parameters (cbLength,
TransMode, MaxDelay).

Return Value

void

12.6.7.3 AdsAddDeviceNotificationRes

The method AdsAddDeviceNotificationRes permits to send an ADS add device notification response. The
AdsAddDeviceNotificationCon [P_187] is the counterpart and will be called afterwards.

Syntax

void AdsAddDeviceNotificationCon (AmsAddré& rAddr, ULONG invokeId, ULONG nResult, ULONG handle);

Parameters
rAddr: (type: AmsAddr&) [in] structure with Netld and port number of the ADS server answering

invokeld: (type: ULONG) [in] handle of the command, which is sent. The Invokeld is specified from the
source device and serves to identify the commands.

nResult: (type: ULONG) [in] contains the result of the ADS write command. See AdsStatuscodes handle:
(type: ULONG) [in] handle to the generated device notification

186 Version: 1.7 TC3 C++

BEGKHUFF Programming Reference

Return Value

void

12.6.7.4 AdsAddDeviceNotificationCon

The method AdsAddDeviceNotificationCon confirms an ADS add device notification request. The
AdsAddDeviceNotificationReq [P 185] is the counterpart and needs to be called beforehand.

Syntax

void AdsAddDeviceNotificationCon(AmsAddré& rAddr, ULONG invokeId, ULONG nResult, ULONG handle);

Parameters
rAddr: (type: AmsAddr&) [in] structure with Netld and port number of the ADS server answering

invokeld: (type: ULONG) [in] handle of the command, which is sent. The Invokeld is specified from the
source device and serves to identify the commands.

nResult: (type: ULONG) [in] contains the result of the ADS write command. See AdsStatuscodes handle
handle: (type: ULONG) [in] handle to the generated device notification

Return Value

void

12.6.8 AdsDelDeviceNotification

12.6.8.1 AdsDelDeviceNotificationReq

The method AdsDelDeviceNotificationReq permits to send an ADS delete device notification command, for

removing a device notification from an ADS device. The AdsDelDeviceNotificationCon [P_188] will be called
on arrival of the answer.

Syntax

int AdsDelDeviceNotificationReqg(AmsAddr& rAddr, ULONG invokeId, ULONG hNotification);

Parameters
rAddr: (type: AmsAddr&) [in] structure with Netld and port number of the ADS server

invokeld: (type: ULONG) [in] handle of the command, which is sent. The Invokeld is specified from the
source device and serves to identify the commands

hNotification: (type: ULONG) [in] contains the handle to the notification, which should be removed

Return Value
Type: int

error code - see AdsStatuscodes [P _300]

TC3 C++ Version: 1.7 187

Programming Reference BEGKHGFF

12.6.8.2 AdsDelDeviceNotificationind

The method AdsAddDeviceNotificationCon permits to receive an ADS delete device notification confirmation.
The receiving module has to provide this method. The AdsDelDeviceNotificationRes [P_188] has to be called
for confirming the operation.

Syntax

void AdsDelDeviceNotificationCon (AmsAddré& rAddr, ULONG invokeId, ULONG nResult);

Parameters
rAddr: (type: AmsAddr&) [in] structure with Netld and port number of the ADS server answering

invokeld: (type: ULONG) [in] handle of the command, which is sent. The Invokeld is specified from the
source device and serves to identify the commands

nResult: (type: ULONG) [in] contains the result of the ADS write command. See AdsStatuscodes [P _300]

Return Value

void

12.6.8.3 AdsDelDeviceNotificationRes

The method AdsAddDeviceNotificationRes permits to receive an ADS delete device notification. The
AdsDelDeviceNotificationCon [»_188] is the counterpart and will be called afterwards.

Syntax

int AdsDelDeviceNotificationRes (AmsAddr& rAddr, ULONG invokeId, ULONG nResult);

Parameters
rAddr: (type: AmsAddr&) [in] structure with Netld and port number of the ADS server answering

invokeld: (type: ULONG) [in] handle of the command, which is sent. The Invokeld is specified from the
source device and serves to identify the commands.

nResult: (type: ULONG) [in] contains the result of the ADS command. See AdsStatuscodes [» 300]

Return Value

Int

Returns the result of the ADS command. See AdsStatuscodes [» 300]

12.6.8.4 AdsDelDeviceNotificationCon

The method AdsAddDeviceNotificationCon permits to receive an ADS delete device notification confirmation.

The receiving module has to provide this method. The AdsDelDeviceNotificationReq [P 187] is the
counterpart and need to be called beforehand.

Syntax

void AdsDelDeviceNotificationCon (AmsAddré& rAddr, ULONG invokeId, ULONG nResult);

188 Version: 1.7 TC3 C++

BEGKHUFF Programming Reference

Parameters
rAddr: (type: AmsAddr&) [in] structure with Netld and port number of the ADS server answering

invokeld: (type: ULONG) [in] handle of the command, which is sent, the Invokeld is specified from the
source device and serves to identify the commands

nResult: (type: ULONG) [in] contains the result of the ADS write command, see AdsStatuscodes [»_300]

Return Value

void

12.6.9 AdsDeviceNotification

12.6.9.1 AdsDeviceNotificationReq

The method AdsAddDeviceNotificationReq permits to send an ADS device notification, to inform an ADS
device. The AdsDeviceNotificationInd [»_189] will be called on the counterpart.

Syntax

int AdsDeviceNotificationReq(AmsAddré& rAddr, ULONG invokeId, ULONG cbLength,
AdsNotificationStream notifications[]);

Parameters
rAddr: (type: AmsAddr&) [in] structure with Netld and port number of the ADS server.

invokeld: (type: ULONG) [in] handle of the command, which is sent. The Invokeld is specified from the
source device and serves to identify the commands.

nResult: (type: ULONG) [in] contains result of the device notification indication.

notifications|]: (type: AdsNaotificationStream) [in] contains information of the device notification(s).
Return Value
Type: int

ADS return code - see AdsStatuscodes [300]

12.6.9.2 AdsDeviceNotificationind

The method AdsDeviceNotificationInd enables receiving of information from an ADS device notification
display. The receiving module must provide this method. There is no acknowledgment of receipt.
AdsDeviceNotificationCon [P_190] must be called by AdsDeviceNotificationReq [P_189] to check the transfer.

Syntax
void AdsDeviceNotificationInd(AmsAddré& rAddr, ULONG invokeId, ULONG cbLength,

AdsNotificationStream* pNotifications);

Parameters

rAddr: (type: AmsAddr&) [in] structure with Netld and port number of the ADS server answering

TC3 C++ Version: 1.7 189

Programming Reference BEGKHOFF

invokeld: (type: ULONG) [in] handle of the command, which is sent. The Invokeld is specified from the
source device and serves to identify the commands.

cbLength: (type: ULONG) [in] contains the length of pNotifications

pNotifications: (type: AdsNotificationStream®) [in] pointer to the Notifications. This array consists of
AdsStampHeader, which contains notification handle and data via AdsNotificationSample.

Return Value

void

12.6.9.3 AdsDeviceNotificationCon

The sender can use the method AdsAddDeviceNotificationCon to check the transfer of an ADS device
notification.
AdsDeviceNotificationReq [P _189] must be called first.

Syntax

void AdsDeviceNotificationCon (AmsAddr& rAddr, ULONG invokeId, ULONG nResult);

Parameters
rAddr: (type: AmsAddr&) [in] structure with Netld and port number of the ADS server.

invokeld: (type: ULONG) [in] handle of the command, which is sent. The Invokeld is specified from the
source device and serves to identify the commands.

nResult: (type: ULONG) [in] contains result of the device notification indication

Return Value

void

12.7 Mathematical Functions

TwinCAT has its own mathematical functions implemented, because the math.h implementation provided by
Microsoft is not real-time capable.

These functions are declared in TcMath.h, which is part of TwWinCAT SDK. For x64 the operations are
executed via SSE; on x86 systems the FPU is used.

® TwinCAT 3.1 4018 or earlier

TwinCAT 3.1 4018 provides an fpu87.h with the same methods. This continues to exist and redi-
rects to TcMath.h.

Methods provided

Mathematical functions

190 Version: 1.7 TC3 C++

BEGKHUFF Programming Reference

Name Description

o (sar Calculates the square.

% sqrt_ Calculates the square root.

Py sin_ Calculates the sine.

9 Cos_ Calculates the cosine.

Py tan_ Calculates the tangent.

Y atan_ Calculates the angle whose tangent is the specified value.

Y atan2_ Calculates the angle whose tangent is the quotient of two
specified values.

Y asin_ Calculates the angle whose sine is the specified value.

4 |acos_ Calculates the angle whose cosine is the specified value.

o [&XP_ Calculates e to the specified power.

Py log_ Calculates the logarithm of a specified value.

Y log10_ Calculates the base 10 logarithm of a specified value.

Py fabs_ Calculates the absolute value.

Py fmod_ Calculates the remainder.

, ceil_ Calculates the smallest integer that is greater than or equal to

v the specified number.

Py floor_ Calculates the largest integer that is smaller than or equal to
the specified number.

o |POW_ Calculates a specified number to the specified power.

® sincos_ Calculates the sine and cosine of x.

9 fmodabs_ Calculates the absolute value that meets the Euclidean
definition of the mod operation.

9 round_ Calculates a value and rounds to the nearest integer.

Py round_digits_ Calculates a rounded value with a specified number of
decimal places.

Py coubic_ Calculates the cube.

Py ldexp_ Calculates a real number (double) from mantissa and
exponent.

Py Idexpf_ Calculates a real number (float) from mantissa and exponent.

Py sinh_ Calculates the hyperbolic sine of the specified angle.

Py cosh_ Calculates the hyperbolic cosine of the specified angle.

Y tanh_ Calculates the hyperbolic tangent of the specified angle.

Help Functions

Y finite_ Determines whether the specified value is finite.

) isnan_ Determines whether the specified value is not a number

L]
(NAN).

Y rands_ Calculates a pseudo-random number between 0 and 32767.
The parameter "holdrand" is set randomly and changes with
each call.

TC3 C++ Version: 1.7 191

Programming Reference BEGKHOFF

Comments

The functions have the extension "_" (underscore), which identifies them as TwinCAT implementation.

Most are analog math.h, designed by Microsoft, only for the data type double.

See also

MSDN documentation of analog math.h functions.

12.8 Time Functions

TwinCAT provides functions for time conversion.

The functions are declared in TcTimeConversion.h, which is part of the TwinCAT SDK.

Name Description
Py TcDayOfWeek Calculates the day of week (Sunday is 0)
Py TclsLeapYear Calculates if the given year is a leap year
Py TcDaysInYear Calculates the number of days in given year
® TcDaysInMonth Calculates the number of day in given month
Py TcSystemTimeToFileTime(const SYSTEMTIME* Converts the given system time to a file time
IpSystemTime, FILETIME *IpFileTime);
® TcFileTimeToSystemTime(const FILETIME Converts the given file time to a system time
IpFileTime, SYSTEMTIME IpSystemTime);
_ TcSystemTimeToFileTime(const SYSTEMTIME* Converts the given system time to a file time
M IpSystemTime, ULONGLONG& ul64FileTime); (ULONGLONG format)
, TcFileTimeToSystemTime(const ULONGLONG& Converts the given file time (ULONGLONG
¥ |ul64FileTime, SYSTEMTIME* IpSystemTime); format) to a system time

12.9 STL / Containers

TwinCAT 3 C++ supports STL with regard to
+ List
* Map
» Set
« Stack
» String
* Vector
» WString
» Algorithms (such as binary_search)
o See c:\TwinCAT\3.x\Sdk\Include\Sth\Stl\algorithm for a specific list of supported algorithms

Please note:

+ Class templates do not exist for all data types
» Some header files should not be used directly

More detailed documentation on memory management, which uses STL, can be found here [P 138].

192 Version: 1.7 TC3 C++

http://msdn.microsoft.com/en-us/library/system.math_methods

BEGKHUFF Programming Reference

1210 Error Messages - Comprehension

TwinCAT might come up with Error messages which seem to be overloaded.

] TwinCAT Systemn

g

Igl Error starting TwinCAT system!
Nl Initl6NI0: Set State TComObj SAFEOP OP: Set Object Untitledl_Objl
a (CModulel) to OP = > AdsWarning: 1821 (0x71d, ADS ERROR: invalid
object id)
For further information start the event viewer and open the application
log.

They contain very detailed information about the occurred error.
As an example the screenshot above does describe:

» The error occurred during the transition SAFE OP to OP
» The related object is “Untitled1_Obj1 (CModule1)
» The errorcode 1821 / 0x71d indicates that the object id is invalid

Conclusion should be that one needs to have a look at the “SetObjStateSP()” method, which is responsible
to this transition. For the generated default code one could see that adding the module is done there.

The reason why this error occurred was that no task was assigned to this module — thus the module can’t
have a task to be executed within.

1211 Module messages for the Engineering (logging /
tracing)

Overview

TwinCAT 3 C++ offers the option of sending messages from a C++ module to the TwinCAT 3 Engineering as
tracing or logging.

TC3 C++ Version: 1.7 193

Programming Reference

BECKHOFF

Solution Explorer =

v B X 'Modulel.cpp & X Modulel.h

@ e-a@m o & " = CModulel
Search Solution Explorer (Ctrl+a) P~ // Sample to showcase trace logs
&7 Selution TwinCAT Projectl’ (1 project ULONGLONG cnt = @;
» z TwinCAT Projectl if (SUCCEEDED(ipTask-»GetCycleCounter(&
1
{
P @l SYSTEM if (cnt¥see == @)
MOTION m_Trace.Log(tlAlways, FNAMEA "L
PLC if (cnt¥51e == @)
SAFETY m_Trace.Log(tlError, FNAMEA "Le
4 E C++
4 Untitled1 if (entk520 == @)
4 [Untitled] Project m_Trace.Log(tlWarning, FNAMEA "
b =3 External Dependencic if (cnt¥s3e — @)
b = HEEdEI’F.ﬂES m_Trace.Log(tlInfo, FNAMEA “"Lev
4 &5 Source Files
++ Modulel.cpp if (cnt¥54@ == @)
++ TcPch.cpp m_Trace.Log(tlVerbose, FNAMEA "
il Untitledl.rc 1
++ Untitledl ClassFac
b B TMC Files // TODD: Replace the sample with your c

m_counter++;

b BB TwinCAT RT Files
m_Outputs.Value = m_counter;

b B TwinCAT UM Files

b [T untitiedl_Objl (CModul return hre:

4 L"O 3

Syntax

4‘% Devices

&% Mappings 100 % =

cnt)))

evel tlAlways: cycle=¥1llu", cnt);

vel tlError: cycle=¥11lu", cnt);

Level tlWwarning: cycle=¥11lu", cnt);

el tlInfo: cycle=¥11lu™, cnt);

Level tlVerbose: cycle=¥1lu", cnt);

yclic code

Y - Q 10 Errors ! 9 Warnings o 49 Messages Clear

Description

€3 53 22.04.2015 16:03:47 042 ms | 'TCOM Server' (10): CModulel
) 55 22.04.2015 16:03:48 442 ms | TCOM Server' (10): CModulel
) 56 22.04.2015 16:03:49 142 ms | TCOM Server' (10): CModulel
) 57 22.04.2015 16:03:51 342 ms | 'TCOM Server' (10): CModulel
€358 22.04.2015 16:03:52 142 ms | TCOM Server' (10): CModulel
) 60 22.04.2015 16:03:53 742 ms | TCOM Server' (10): CModulel
) 61 22.04.2015 16:03:54 542 ms | TCOM Server' (10): CModulel

R £ I NA WAE TENVLEE VAT e | TR A € e DM, SR A A

The syntax of tracing messages is as follows:

m Trace

.Log (TLEVEL, FNMACRO"A message", ..);

With these properties:

* TLEVEL categorizes a message into one of five different levels.
While tracing the higher level will always include the trace of the lower levels: E.g. a message traced to
level "tIWarning" will occur with level "tlAlways", "tIError" and "tlWarning" - it will NOT trace the
messages "tlinfo" and "tIVerbose".

:CycleUpdate() Level tiError cycle=3570
1:CycleUpdate() Level tinfo: cycle=3710
CycleUpdate() Level tiVerbose: cycle=3780
1:CycleUpdate() Level tiAlways: cycle=4000
nCycleUpdate() Level tiError cycle=4080
nCycleUpdate() Level tinfo: cycle=4240
nCycleUpdate() Level tiVerbose: cycle=4320

S SR | R, O [N Y 1 S

Level O tIAlways
Level 1 tIError
Level 2 tiWarning
Level 3 tlinfo
Level 4 tiVerbose

* FNMACRO could be used to put function name in front of message to be printed

o FENTERA: Used while entering a function; will print function name followed by,>>>“

o FNAMEA: Used within a function; will print function name

o FLEAVEA: Used upon leaving a function; will print function name followed by “<<<”

» Format specifier

194

Version: 1.7

TC3 C++

BECKHOFF

Programming Reference

Sample

HRESULT CModulel: :Cy

{
HRESULT hr =

cleUpdate (ITcTask* ipTask, ITcUnknown* ipCaller, ULONG PTR context)

S_OK;

// Sample to showcase trace logs

ULONGLONG cnt =

if (SUCCEEDED (ipTask->GetCycleCounter (&cnt)))
{
if (cnt%500 == 0)
m Trace.Log(tlAlways, FENTERA "Level tlAlways: cycle= %1lu", cnt);
if (cnt%510 == 0)
m Trace.Log(tlError, FENTERA "Level tlError: cycle=%1lu", cnt);
if (cnt%520 == 0)
m Trace.Log(tlWarning, FENTERA "Level tlWarning: cycle=%11d", cnt);
if (cnt%530 == 0)
m_Trace.Log(tlInfo, FENTERA "Level tlInfo: cycle=%11lu", cnt);
if (cnt%540 == 0)
m_Trace.Log(tlVerbose, FENTERA "Level tlVerbose: cycle=%1lu", cnt);
}
// TODO: Replace the sample with your cyclic code
m_counter++;
m_Outputs.Value = m_counter;
return hr;
}
Using trace level
At module instance it's possible to pre configure the trace level.
1. Navigate to the instance of the module in the solution tree
2. Select tab "Parameter (Init)" on the right side.
3. Be aware to enable "Show Hidden Parameters"
4. Select the trace level
5. To test everything, select highest level "tIVerbose".
Solution Explorer <o v §X RGOSR Modulel cpp Modulel.h
co@ e-d ’ Object | Content | Parameter (int) | Data Area [Interfaces | Inteface Pointer
Search Solution Explorer (Ctrl+) P~
m Solution TwinCAT Projectl' (1 project) PTCID Mame Value C. | Unit Type |Comrneni
i ﬂTmeAT Projectl 0:03002103 | TracelevelMax tlError Ql_ TeTracelevel |Cantrofsthea...
bl sysTEM - 000000001 | Parameter HAlw i |
3 datal e UDINT |
| data2 tlinfo UDINT |
data3 tiVerbose LREAL |

4[] Untitled

4[] Untitledl Project
b =2 External Dependencies
b =i Header Files

4 & SourceFiles

++ Modulel.cpp

++ TcPch.cpp

O Untitledl.re

++ Untitledl ClassFactory.cpp

b = TMC Files

b = TwinCAT RT Files
g~ AT LIk Ll

nﬁ'r

0;

, [B on

.__,..II

7o

‘E Devices

&% Mappings

Show Hidden Paramster

Show Online Values

Alternatively, the trace level could also be changed during runtime by going to the instance, selecting a level
at “Value” for the TraceLevelMax parameter, right-click in front on the first column and select “Online Write”

TC3 C++

Version: 1.7

195

Programming Reference

BECKHOFF

TwinCAT Projectl = > LTINS Modulel.h

Object | Context | Parameter (Int) | Data Area | Interfaces | Interface Painter |

PTCID | Name | Value
[1n.nann21n2 Tracel evelMax
| Online Read
er
Online Write 0
.data2 0
.data3 00

Filter messages categories

| C..l Unit Type
hd I_ TcTracelevel
I_
UDINT
UDINT
LREAL

Visual Studio Error List allows to filter the entries with respect to their category. The three categories
"Errors”, "Warnings" and "Messages" can be enabled or disabled independently by just toggling the buttons.

In this screenshot only "Warnings" is enabled - but "Errors" and "Messages" are disabled:

Error List

T -

1 164 22.04.201516:05:42 142 ms | ' TCOM Server' (10): CModulel::
1 169 22.04.2015 16:05:47 342 ms | ' TCOM Server' (10): CModulel::
1174 22042015 16:05:52 542 ms | ' TCOM Server' (10): CModulel::
v 179 22042015 16:05:57 742 ms | 'TCOM Server' (10): CModulel
1 184 22.04.2015 16:06:02 942 ms | 'TCOM Server' (10): CModulel
1 189 22.04.2015 16:06:08 142 ms | ' TCOM Server' (10): CModulel::
! 194 22.04.2015 16:06:13 342 ms | ' TCOM Server' (10): CModulel::
1 199 22.04.2015 16:06:18 542 ms | ' TCOM Server' (10): CModulel::

€3 42 Errors 1 41 Warnings |) 145 Messages

Description -

Clear

CycleUpdate() Level tiWarning: cycle=15080
CycleUpdate() Level tiWarning: cycle=15600
CycleUpdate() Level tiWarning: cycle=16120

zCyclelpdate() Level tiWarning: cycle=16640
=CycleUpdate() Level tiWarning: cycle=17160

CycleUpdate() Level tiWarning: cycle=17680
CycleUpdate() Level tiWarning: cycle=18200
CycleUpdate() Level tiWarning: cycle=18720

In this screenshot only "Messages" is enabled - but "Errors" and "Warnings" are disabled to be displayed.

Error List

Y -

05
i L
i Yl
i 1
055
066
i Y,
G B[
on
i ¥/

€3 58 Errors 1 56 Warnings | D 189 Messages

Description &

22.04.2015 16:03:51 342 ms | TCOM Server' (10): CModulel

22.04.2015 16:03:56 242 ms | TCOM Server' (10): CModulel

22.04.2015 16:04:04 242 ms | TCOM Server' (10): CModulel

Clear

nCyclelpdate() Level tlAlways: cycle=4000
22.04.2015 16:03:53 742 ms | 'TCOM Server' (10): CModulel:
22.04.2015 16:03:54 542 ms | 'TCOM Server' (10): CModulel:

CycleUpdate() Level tlinfo: cycle=4240
CycleUpdate() Level tiVerbose: cycle=4320

nCyclelUpdate() Level tlAlways: cycle=4500
22042015 16:03:59 042 ms | 'TCOM Server' (10} CModulel:CycleUpdate() Level tlinfo: cycle=4770
22.04.2015 16:03:59 942 ms | 'TCOM Server' (10): CModulel:

22.04.2015 16:04:01 342 ms | 'TCOM Server' (10): CModulel:

CycleUpdate() Level tiVerbose: cycle=4860
CycleUpdate() Level tiAlways: cycle=5000

nCyclelUpdate() Level tlnfo: cycle=5300
22.04.2015 16:04:05 242 ms | TCOM Server' (10): CModulel:
22042015 16:04:06 342 ms | ' TCOM Server' (10} CModulel::

CycleUpdate() Level tiVerbose: cycle=5400
CycleUpdate() Level tiAlways: cycle=5500

196

Version: 1.7

TC3 C++

BECKHUFF How to...?

13 How to...?

This is a collection of frequently ask questions about common paradigms of coding as well as handling of
TwinCAT C++ modules.

13.1 Using the Automation Interface

The Automation Interface can be used for C++ projects

This includes creating projects [»_76] and using the wizard for creating module classes [P _77].
In addition, the project properties can be set, and the TMC code generator and publishing of modules can be
called. The corresponding documentation [P _307] is part of the Automation Interface.

Irrespective of the programming language, access to and creation and handling of TcCOM modules [» 311]
may be relevant.

From there, common System Manager tasks such as linking of variables can be executed.

13.2 Windows 10 as target system up to TwinCAT 3.1 Build
4022.2

For Windows 10 target systems the transferred files cannot be overwritten; they have to be renamed first.

Up to TwinCAT 3.1 Build 4022.2, the "Rename Destination" option must be enabled for this purpose in the
TMC Editor deployment [P 122]. In later versions this is done implicitly when the target system uses Windows
10 as operating system.

13.3 Publishing of modules

The section Export modules [P 44] describes how TwinCAT modules are published, thus they could be
transferred and imported [P 45] on any TwinCAT system.

The engineering system (XAE) does not have to be of the same platform type as the execution system.
Therefore TwinCAT build during publishing all versions of the module.
Some use-cases require customizing the publishing procedure of modules:

« If working in a pure 32bit (x86) environment, the x64 builds could be skipped, thus no certificates are
required.

» The User Mode (UM) builds could be skipped, if not used.

® Migration
1 If a build is not included in the published module, the specific platform could not be used as execu-
tion system.

Please add / remove the corresponding Target Platforms from Deployment [»_122] of the TMC Editor.

For example this Deployment configuration:

TC3 C++ Version: 1.7 197

How to...? BEGKHOFF

PublishDriverMod.trc [TMC Editor] & X

(R
4 E TMC *
#» Data Types Specify the deployment of the module. B
4 Modules
P @ CMadulel .
9 Implemented Interfaces Define the files which should be deployed.
I By Parameters
I Data Areas = _| 1
! :J.:lt:fF'uln;er.ste Target Platform SourceFile
bgg o oeee e TwinCAT RT (x86) %SOLUTIONDEPLOYMENTPATHZ% TwinCAT RT (x86)\%CLASS|
Deployment

TwinCAT AT (x86) % SOLUTIONDEPLOYMENTPATH : TwinCAT RT (x86)32CLASSI

‘| m | 3

Edit the properties of the selected File Entry

Target Platform TwinCAT RT (x88)
Source File ESOLUTIONDEPLOYMENTPATH: TwinCAT RT (xBE)032CLASSFAL

Destinatien File %TC_DRIMVERAUTOINSTALLPATH: % CLASSFACTORYNAME . sy =

Does only provide the TwinCAT RT (x86) build:

C=1=1
b OS(C) » TwinCAT » 31 » CustomConfig » Modules » PublishDriveriMod » ~ | 44 | | Search PublishDri.
brary = Share with = Burn MNew folder == - E;l i
MName : Date modified Type Size
| TwinCAT RT (x86) 01.09.2014 12:33 File folder
& PublishDriverMod e 01.09.2014 12:33 TMC File 5KB

13.4 Publishing modules on the command line

By means of the following call, the module publishing process in the TwinCAT Engineering (XAE) can also
be initiated from the command line:

msbuild CppProject.vcxproj /t:TcPublishModule /p:TcPublishDestinationBaseFolder=c:\temp
The CppProject.vexproj parameter must be adapted according to the existing project file.

The TcPublishDestinationBaseFolder parameter is optional here. If it is not specified, the normal
storage location will be used (C:\TwinCAT\3.x\CustomConfig\Modules).

13.5 Clone

The runtime data can be transferred from one machine to another by means of a file copy if both machines
originate from the same platform and are connected with equivalent hardware equipment.

198 Version: 1.7 TC3 C++

BECKHUFF How to...?

The following steps describe a simple procedure to transfer a binary configuration from one machine,
"source", to another, "destination".

v' Please empty the folder C:\TwinCAT\3.x\Boot on the source machine.

1. Create (or activate) the module on the source machine.

. Transfer the folder C:\TwinCAT\3.x\Boot from the source to the destination.

. Transfer the driver itself from C:\TwinCAT\3.x\Driver\Autolnstal\MYDRIVER.sys.
. Optionally also transfer MYDRIVER.pdb.

. If drivers are new on a machine:
TwinCAT must carry out a registration once. To do this, switch TwinCAT to RUN using SysTray (right-
click->System->Start/Restart).
The following call can alternatively be used (replace "%1" by the driver name):
sc create %1 binPath= c:\TwinCAT\3.1\Driver\AutoInstall\%l.sys type= kernel
start= auto group= "file system" DisplayName= %1 error= normal

a b~ WODN

= The destination machine can be started.

@® Handling licenses

Note that licenses cannot be transferred in this manner. Please use pre-installed licenses, volume
licenses or other mechanisms for providing licenses.

13.6 Renaming TwinCAT C++ projects

The automated renaming of TwinCAT C++ projects is not possible.
At this point instructions will be given on manually renaming a project.

In summary, one can say that the C++ project will be renamed together with the corresponding files.
v A project, "OldProject", exists and is to be renamed "NewProject".

1. If TcCOM instances exist in the project and are to be retained along with their links, first move them by
drag & drop out of the project into System->TcCOM Objects.

2. Remove the old project from the TwinCAT solution ("Remove").

I LT L e e,

4 I C++ -
CldProject [
- roje Microsoft Visual Studio (=]

4 [%] OldProject Project
b B2 External Dependencies
4 &g] Header Files

Modulel.h Choose Delete to permanently delete 'OldProject’ and all its contents.
B Moduled.h

OldProjectClassFactory.h @

CldProjectInterfaces.h
P OHdProiectServices.h I

Choose Remove to remove 'OldProject’ and all its contents from 'TwinCAT Projectl3'",

3. Compilations of the "OldProject" can be deleted. To do this, delete the corresponding .sys/.pdb files in
" _Deployment".
Any existing .aps file can also be deleted.

4. Rename the C++ project directory and the project files (.vcxproj, .vexproj.filters).
If version management is in use, this renaming must be carried out via the version management system.

5. If a .vcvproj.user file exists, check the contents; this is where user settings are stored. Also rename this
file if necessary.

6. Open the TwinCAT Solution. Re-link the renamed project to the C++ node using "Add existing item...":
navigate to the renamed subdirectory and select the .vcxproj file there.

7. Rename the ClassFactory, services and interfaces as well as header/source code files to the new project
name. In addition, rename the TMC file and the corresponding files in the project folders "TwinCAT RT
Files" and "TwinCAT UM Files".

This renaming should also be mapped in the version management system; if the version management
system is not integrated in Visual Studio, this step must also be carried out in the version management
system. Replace all instances in the source code (case-sensitive):

"OLDPROJECT" becomes "NEWPROJECT" and

TC3 C++ Version: 1.7 199

How to...? BEGKHOFF

"OldProject" becomes "NewProject".
The "Find and Replace" dialog in Visual Studio is useful for this: the "NewProject Project" must be
selected in the Solution Explorer (cf. screenshot).

Find and Replace
Al Findin Files | &7 Replace in Files

b B Header Files Find what:

b =9 Source Files OldProject -

[TMC Files .

b gmincm RT Files Replace with:

b R TwinCAT UM Files NewProject v
- L'rG Look in:

:% DWIC?S I Current Project - E
@1 Mappings
¥ Include sub-folders
E] Find options
I [+ Match case I
[~ Match whole word

¥ Use Regular Expressions
Lock at these file types:

(=] Result options
List results in:
' Find results 1 window
= Find results 2 window

I Display file narmes anly

[Keep modified files open after Replace All

| FindNet || Replace |

| SkipFile || Replacesl |

=

NOTE

Incorrect source code

The simple renaming of all instances of the character string may result in incorrect source code, for exam-
ple if the project name is used within a method name.

« If such occurrences are possible, carry out the renaming individually ("Replace" instead of "Replace
All").

How to build the project:

200 Version: 1.7 TC3 C++

BECKHOFF How to...?

1. A) If instances from the project should exist, update them. To do this, right-click on the instance, select
TMI/TMC File->Reload TMI/TMC File... and select the renamed new TMC file.

F < /AutoGeneratedContent s

i o ‘O Add New Item... Ins

. + - - .
;‘% Devices 1 Add Existing ltem.. Shift+AltsA brcomoBIECT SETSTATE();
m 1 Mappings X Remove Del
AddModuleToCaller();
) Copy Sl oveModuleFromCaller();
3t Cut Ctrl+X
nE
m_Trace;
TMLTMC File r Reload TMI/TMC File...
= Disable Export TMI File...
Change Id... Export TMC File...

IT-::C'-,--:'_icCa'_'_e*IE'Fc:P-_' m spCvclicCaller:
B) Alternatively, carry this out via System->TcCOM Objects and the "Project Objects" tab by right-clicking
on the OTCID.

2. Move System->TcCOM into the project.

3. Clean up the target system(s).
Delete the files OldProject.sys/.pdb in C:\TwinCAT\3.x\Driver\Autolnstall.

4. Test the project.

13.7 Access Variables via ADS

Variables of C++ modules could be accessed by ADS, if variable is marked as “Create Symbol” in TMC
Editor:

& CModulel Comment Controls the amount of log messages.
—2 Implemented Interfaces Context ID

4 !E Parameters

= TracelevelMax 1 Create symbol)
| &= Parameter [] Dizable code generation
I Diata Areas Hide parameter

The Name of the variable for access by ADS is constructed from the instance name.

So for the TraceLevelMax parameter it might be:

Untitledl Objl (CModulel) .TracelLevelMax

13.8 TcCallAfterOutputUpdate for C++ modules

Comparable to PLC Attribute TcCallAfterOutputUpdate C++ modules could be called after the output update.
Equivalent to the [TcCyclic [P_140] Interface: Please make use of the ITcPostCyclic [P _161] Interface

13.9 Ordering Execution in one Task

Various module instances could be assigned to one task, thus customer needs a mechanism to determine
the execution order within the task.

TC3 C++ Version: 1.7 201

How to...?

BECKHOFF

The keyword is “Sort Order”, which is configured in the Context [126] of the TwinCAT Module Instance
Configurator [P 124].

| Object | Context | (it} | Data Area [| Inteface Pointer |
Context: [-
Depend On [Manual Corfig -]
[T Meed Call From Sync Mapping
Data Areas: Interfaces:
[7]0 Inputs’
[7]1 Outputs’
Data Poirter: Interface Pointer:
Resutt:
(o] ITa;k MName | Priority | Cycle Time (ps) |Task Port | Symbol Port m |
1 02010010 [~ Task1 1 1000000 350 350 | 150 =

Please see Sample26: Execution order at one task [275] on how to implement this.

13.10 Use Stack Size > 4kB

If a method uses a stack size larger than 4 KB, the __ chkstk function will additionally be called in the case of
real-time modules.
For this reason the error message

Error LNK2001: unresolved external symbol _ chkstk
occurs.

You can use the library "TcChkStk.lib" provided by TwinCAT by adding the property file "TwinCAT RT
ChkStk" (located by default in c:\TwinCAT\3.x\sdk\VsProps\) to the respective RT variants using the property
manager.

Property Manager - Untitledl MR Modulel.cpp # X Modulel.h

fEH [Add Existing Progerty Sheet =]
4 *4 Untitledl X - -
< &2l Debug | TAARCAT RT 664) @Uv | « OS(C:) » TwinCAT » 31 » sdk » VsProps ~ | 42| [search vsProps)
» TwlnCATTe.st Driver Signing Organize » Mew folder B= « E;l @
& Beckhoff. TwinCAT.default —
& Application MName Date modified Type Size

& Core Windows Libraries

b B Debug | TwinCAT RT (6) F Beckhoff. TwinCAT.default.props 01.10.201514:39 Project Property File 2KB

b @l Debug | TwinCAT UM (x64) & Tc_ExtractVersion_PreBuild_Step.props 01.10.201514:39 Project Property File 1KB

I @l Debug | TwinCAT UM (86) & TwinCAT RT (x64) Debug.props 01.10.201514:39 Project Property File 4 KB

b Bl Release | TwinCAT RT (x64) & TwinCAT RT (x64) Release.props 01.10.2015 14:39 Project Property File 4KB

b il Release | TwinCAT RT (86) & TwinCAT RT (x86) Debug.props 01.10.201514:39 Project Property File 5KB

O i oL iR e 01.10.201514:39 Project Property File 4KB
I il Release | TwinCAT UM (x86) . - .

& TwinCAT RT ChkStk.props 01.10.201514:39 Project Property File 1KB

" 01.10.201514:39 Project Property File 1KB

F TwinCAT UM (x64) Debug.props 01.10.201514:39 Project Property File 4KB

F TwinCAT UM (x64) Release.props 01.10.201514:39 Project Property File 4KB

F TwinCAT UM (x86) Debug.props 01.10.201514:39 Project Property File 4KB

F TwinCAT UM (x86) Release.props 01.10.201514:39 Project Property File 4KB

Solution Explorer] Property Manager

File name: TwinCAT RT ChkStk.props

- ’Visual C++ Property Sheets (*.p v]

’ Open

J |

Cancel]

100 %

The TwinCAT execution environment (XAR) has a limit of 64 KB for the stack size.

If (local) memory should be required, there are several possibilities:

* Member variables (header file of the module)
» Symbols of the module (TMC Editor [P 79]), e.g. in an additional, locally used DataArea

202

Version: 1.7

TC3 C++

BECKHOFF

How to...?

* Dynamic allocation of memory using new() and delete() (cf. Memory Allocation [»_138])

13.11 Setting version/vendor information

Windows provides a mechanism for retrieving vendor and version resources, which are defined during a .rc
file for compile time.

These are accessible e.g. via the Details tab of each file Properties:

2 VersionVendornfo.sys Properties

[e=]

| General | Digital Signatures I Security | Details | Previous Versions |

Property
Descripticn
File description

Tvpe
File version
Product name

Copyright

Size

Date modified
Language
Original filenam

Walue

WersionVendorinfo TwinCAT C++ Driver

System file
1234
Beckhoff Customer Project

Product version 1.0.0.0

TODO: Add legal copyright
254 KB
01.09.2014 12:54
Endglish (United States)
e VersionVendorinfo sys

Remove Properti

e3 and Personal Information

0K || Cancel Apply

TwinCAT does provide this behavior via the well-known Windows mechanisms of .rc Files, which are created
during the TwinCAT C++ project creation.

a E C++
F ‘u‘ers

4 [%] VersionVendorInfo Project

™

I
4

™

™

Please use the Resource Editor on the .rc-File in the Source Files folder for setting these properties:

ionVendorlnfo

& External Dependencies
Header Files
Source Files

*+ [cFch.cpp
[VersionVendornfo.rc
: ctorv.con

TC3 C++

Version: 1.7

203

How to...? BEGKHOFF
B-= VersionVendorlnfo.rc Key Value
El- & Version FILEVERSION 1,234
...t vS_VERSIOM_IMNFO [English (Unit

PRODUCTVERSION 1,0,0,0
FILEFLAGSMASK 0:A7L
FILEFLAGS 0L
FILEOS QoL
FILETYPE VFT_APP
FILESUBTYPE VFT2_UMENOWN
Block Header English (United States) (040904 b0)
CompanyMame Beckhoff Test Company

FileDescription
FileWersion
InternalMame
LegalCopyright
CriginalFilename

ol

ProductVersion

13.12 Delete Module

Deleting a TwinCAT C++ module from a C++ project is available via the TMC Editor.
1. Right-click on the module (here: CModule2)
2. Select “Delete”

4 E_r; TMC

2o Data Types
Modules

S

CMadule1

VersionVendorinfo TwinCAT C++ Driver
1234

VersionVendorinfo

TODO: Add legal copyright
VersionVendorlnfo.sys

K

1.0.0.0

E Shows the properties of the

General properties

I Cdnrnl=?
Add new data area...
CModule2?
Add new data pointer....
bef5338d-f345-4
Add new interface pointer...
Choose imz
Add new parameter. .. I:I E
S50 -
Delete
of the module
204 Version: 1.7 TC3 C++

BECKHUFF How to...?

3. Confirm deletion from TMC

TMC Editor £3

I.-"'_"“‘-.I Delete TwinCAT module class 'Module2' from TMC file?
Y Implementation files '"Modulel.h’ and "Modulel.cpp’ remain in the
project.

ves || Ne

4. Please note that the .cpp and .h files will remain — delete them manually, if required.
Delete usage of other related components (i.e. header files, structs). Maybe see compiler error
messages for assistance.

13.13 Initialization of TMC-member variables

All member variables of a TcCOM Module need to be initialized. The TMC Code generator supports this by

///<ButoGeneratedContent id="MemberInitialization">

It is replaced by the TMC Code generator to:

///<AutoGeneratedContent id="MemberInitialization">
m TraceLevelMax = tlAlways;
memset (&m_Parameter, 0, sizeof (m_Parameter));
memset (&m Inputs, 0, sizeof (m Inputs));
memset (&m Outputs, 0, sizeof (m Outputs));
///</ButoGeneratedContent>

Projects generated by TwinCAT C++ Wizard prior TwinCAT 3.1 Build 4018 does not use this feature but
could easily be adopted by simply adding this line at the corresponding code (i.e. constructor):

///<AutoGeneratedContent id="MemberInitialization">

13.14 Using PLC Strings as Method-Parameter

In order to pass a string from PLC to C++ as a method parameter use a pointer with length information while
declaring the method in TMC:

o o= 4 1

MName Type Description

St | uoiwe =
S | o =

Such a method could be called by implementing a method within the wrapper functionblock:

TC3 C++ Version: 1.7 205

How to...? BEGKHOFF

1 METHOD Set3tring : HRESULT
- e VAR INFUT
3 33ent : STRIHNG({Z0O);
4 END VAR
. -
- 1 IF ({ipStateMachine <> () THEH
2 Set5tring := ipStateMachine.SetString (SIZEOF (s3ent) , ADR{35ent));
3 END IF

Reason is the different handling of method parameters from both worlds:

» PLC: Uses call by value for STRING(nn) datatypes
* TwinCAT C++ (TMC): Uses call by reference

13.15 Third Party Libraries

C/C++ code existing in Kernel mode cannot be linked with or execute libraries from third parties that were
developed for execution in User mode. There is therefore no possibility to use any DLL directly in TwinCAT
C++ modules.

The connection of the TwinCAT 3 real-time environment can be realized via ADS communication instead.
You can implement a User-mode application that makes use of the third-party library that provides TwinCAT
functions via ADS.

TwinCAT Customer Customer

N on- RT ADS Server ADS Client

DLL ‘ DLL ‘

ADS Router Other systems
ADS ADS

RT

CH

This action of an ADS component in User mode can take place both as a client (i.e. the DLL transmits data
to the TwinCAT real-time if necessary) and as a server (i.e. the TwinCAT real-time fetches data from the
User mode if necessary).

Such an ADS component in User mode can also be used in the same way from the PLC. In addition, ADS
can communicate beyond device limits.

The following examples illustrate the use of ADS in C++ modules:

Sample03: C++ as ADS server [P 216]

Sample07: Receiving ADS Notifications [» 231]

Sample08: provision of ADS-RPC [P 232]

206 Version: 1.7 TC3 C++

BECKHOFF

How to...?

13.16 Linking via TMC editor (TcLinkTo)

Similar to the PLC, in TwinCAT C++ a link to the hardware, for example, can be predefined at the time of

encoding.

This is done in the TMC editor at the symbol to be linked. A property "TcLinkTo" with the value of the target

is specified.

Solution Explorer =+

The screenshot below illustrates this:

@ - &R c &A@

Search Selution Explorer (Ctrl+) P- 1. 1 ThC
fa] Solution TwinCAT TMCLinkProject' (1 project) 5" Data Types
4l TwinCAT TMCLinkProject 4 I Modules
4 |l svsTem el Chiodule1
B License —% Implemented Interfaces
- I Big Parameters
4 @ Real-Time Y Data Arcas
& VO Idle Task . Inputs
rl E] Tasks « Wl Outputs
21 Task1 « [Symbols
gt Routes [Testlink
[TcCOM Objects W Data Pointers
MOTION I =% Interface Pointers
PLC [B Deployment
SAFETY
a E C+

Pl Untitledl

4[] Untitled1 Project

b =3 External Dependencies
b =5 Header Files
b B Source Files
4 L] TMC Files
2] Untitledl tme
b =i TwinCAT RT Files
b B TwinCAT UM Files
4 Ii‘ Untitledl_Objl (CModulel)
3 Inputs
Fl
BFv Testlink
4 Fuo
Pl e% Devices

4 == Devicel
jg Image
j!). Imageqnfo

-~
-

H InfoDat:

3

4
4
b [Output
4
4

SyncUrjts
Inputs

Term 1 £K1100)
& Info

® Term

TwinCAT TMCLinkProject

* B X Untitled] tme [TMC Editor] ® X Modulel.cpp Maodulel.h

. Edit the praperties of the Symbol

Generzal properties
Name Testlink
Soecision
Choose data type

Select BOOL)
Descrpion

Type Information
MNamespace

Guid {18071995-0000-0000-0000-000000000030}

Optional symbol settings
Offset [Bits] %64 specific
Size [Bits] %64 specific
%64 specific
Unit
Comment

[£] Create symbol
[Hide sub tems

Optional Defaultz

Value | Enum | String

Valid enum items v]

Actual enum text

Optional properties.

alye Description

Variable |Fags | Online
Mame Output
Type BIT
Group: Channel 1 Size 01
ﬁj Mapy| | Address: 260 User 1D: 0
[TestLink . Cutputs . Untited1_Obi1 {CModule) . UntitiedT]
Commert: -
ADS Info Port: 11, IGrm: 23040010, I0ffs: (xC 1000000, Len: 1
... -~
Full Mame: ITHD“Davice 1 (EtherCAT)"Term 1 (EK1100)"Temm 2 (EL2008) "Channel 1“(' Search Error List £
Col... | Project
Note that such an instruction applies to all instances of the module:
TC3 C++ Version: 1.7 207

How to...? BEGKHOFF

F] E C++
4 Untitledl

4 [%] Untitledl Project

=5 External Dependencies

m Header Files

= Source Files

4 =g] TMC Files
| 7] Untitled].tmc

= TwinCAT RT Files

g TwinCAT UM Files

4 @ Untitledl_Objl (CModulel)
b Inputs

[] =
4 || Untitledl_Obj2
b

W

=

Inputs

[Tesi |
4 Fvo
P ‘ﬂ'f'g Devices \

4 == Devicel (EtherCAY
+l |
O Image

j: Irage-Info
2 SyncUnits
Inputs

B Outputs
& InfoData

i Term1 (EK1100)
i [InfoData

VOV VW

[
[[l Channel 3
{+ [l Channel4
[Bl Channels
[Bl Channeld
[Bl Channel7
- [l Channel 8
[WcState
[[InfoData
4 ﬁj Mappings
Untitled]_Obj2 (CModulel) - Device 1 (EtherCAT) 1
@ Untitledl_Objl (CModulel] - Device 1 (EtherCAT) 1

208 Version: 1.7 TC3 C++

BECKHOFF Troubleshooting

14 Troubleshooting

This is a list of pitfalls and glitches within the handling of TwinCAT C++ modules.

14.1 Build - "Cannot open include file ntddk.h"

When building a TwinCAT C++ project, this error message indicates that there is a problem with the WinDDK
installation on your engineering computer.

Show cutput from: | Buid | @] d sy | =x|=3

PreBuLl4EVENT ! =
Peacription: “C:A\TEInCATISPEWVEIN\EXTIactVeraionInio™ "Untitledl™ “C:\TWinCATI\IDEYY _producta\TUinCAT BT (x36)\DebugiTuticledly\inticledl™
header file << C:\TwinCATIEDELY producta\TwinCAT BT (xB6) \DebugiUncitledl)\UntitledlVWersion.h > i3 up-to-dace!

ClCompile:
TePch. cpp

cihEincardhadehineludet eedef, h(L02) ¢ Catal ecpor CLOG63:] Cannot open include file: ‘neddk.h': Ho such file of dicectory

Euild FAILED.

Tiwe Elap=ed 00:00:02, 57
szeszzssss Build: 0 succeedsd, 1 failed, 0 up-ro-dave, 0 skipped ss=ssszess

In case this error message is shown, please check the following according to the WinDDK installation manual
[» 201
» Check if you have installed WinDDK

» Check the existence of the environment variable "WinDDK7" and its configured value, as described in
the document above. The value must be equal to the path where WinDDK is installed, including the
first sub-folder. After changing this value a reboot is needed.

14.2 Build - "The target ... does not exist in the project”

Especially when transferring a TwinCAT solution from one machine to another, Visual Studio might come up
with error messages that all targets (like Build, Rebuild, Clean) do not exist in the project.

€91 error M5B4057: The target "Rebuild” does not exist in the project.

12 23022015 08:39:08 279 ms | 'TCatSysManager' (33728): Project 'Measurement’ build for
platform TwinCAT RT (x86)" failed.

Please check the “platform toolset” configuration of the C++ project — it need to be reconfigured, if solutions
are migrated from one to another Visual Studio version:

Measurement Property Pages @
Configuration: ’Active(Debug] v] Platform: [Active('l'winCAT RT (xB&)) "] [Configuration Manager...]
> Common Properties 4 General
4 Configuration Properties Output Directory $(SelutionDir)$(Configuration),
General Interrediate Directory S{Configuration)’,
Target Name

Target Extension
Extensions to Delete on Clean
Baild oo Eil SatDit S ASBuildProjectMName).log
Platform Toolset v120
“Enaple Managed Incrernental pond
4 Project Defaults
Configuration Type Application (.exel

TC3 C++ Version: 1.7 209

Troubleshooting BEGKHOFF

14.3 Debug - "Unable to attach”

When starting the debugger to debug a TwinCAT C++ project, this error message indicates that there is a
missing configuratioin step:

Egﬁ;utes #include "Modulel.h™
[&] T<COM Objects —#ifdef _DEBUG
NC / Moticn | #define new DEBUG_NEW
& rLC “#endif
l}__;j SAFETY DEEIME THTS FTIE(Y —
i Microsoft Visual Studio =
4 [Untitledl = !/ /4
a | 7] Untitled] Project :::: P A
i [pd External Dependencies '-Q' Unable to attach.
[I;jHeaderFiles 7, - I
» [Source Files 1 1e
» [TMC Files BE
3 TwinCAT RT Files (]
Ll TwinCAT UM Files 2 ——— 1
o [] Untitled1_Objl (CModulel) N 3 T s e
L"D 3 J f<AutoGeneratedContent id= In-:f
_ INTERFACE_ENTRY{IID ITcCyclic
:% lDJE"”c"?S‘ - /{</AutoGeneratedContent>

40 o8 -

In case this error message is shown, *please navigate to "System -> Real-Time" and select tab "C++
Debugger" and activate the option "Enable C++ Debugger"

Solution Explorer A Bl TwinCAT I0-Project = > Untitledl.tme [TMC Editor]
fat | © - & | Fo- | C++ Debugger

Search Solution Explorer (Ctrl+)
. . . . Eﬂable C++ Debugger
fad Solution TwinCAT I0-Project' (1 project)

4 ol TWinCATI0-Project
bl SYSTEM
MOTION
PLC

E C++ I

4 [%] Untitled1 Project
u-0 References

P

I ['m External Dependencies
I 1 Header Files

B 27 Socurce Files

4 TMC Files

[Untitledl.tmc
TwinCAT RT Files
TwinCAT UM Files

T

210 Version: 1.7 TC3 C++

BEGKHOFF Troubleshooting

14.4 Activation - “invalid object id” (1821/0x71d)

If the ADS return code 1821 / 0x71d is reported during startup, please check the context of the module
instance like described in the Quick Start [_59].

Untitledl.trmc [TMC Editor] TwinCAT Projectl2 < B0 [2M Ty Modulel.h

Object | Context | Parameter {Init) I Data Area | Interfaces I Interface Pointer

Cortext: [1 v]

Depend On: [I‘u'lanual Canfig "]

[] Meed Call From Sync Mapping

Data Areas: Target systern reports a fatal error @
[#] 0 'Inputs’

[¥]1 Outputs’

9% 29.08.2014 13:52:32 432 ms | TwinCAT Systern' (10000): Sending ams
[Q] command > > Initle\IO: Set State TComObj SAFE peGdmis=t Object

© Untitledl_Objl (CMedulel) to OP »> AdsWarninld, ADS
Data Poirter: ERROR: invalid object id) << failed!

Result:
D 1 Task Iame

1 00000000 ~|

14.5 Error Message — VS2010 and LNK1123/COFF

During compilation of a TwinCAT C++ module the error message

LINK : fatal error LNK1123: failure during conversion to COFF: file invalid or
corrupt

indicates that a Visual Studio 2010 is used, but without Service Pack 1, which is required [P 18] for TwinCAT
C++ modules.

Please download the installer program for the service pack from Microsoft.

14.6 Using C++ classes in TwinCAT C++ module

When adding (non TwinCAT) C++ classes using the Visual Studio Add->Class... context menu, the
compiler / linker complains

Error 4 error C1l010: unexpected end of file while looking for precompiled

header. Did you forget to add '#include ""' to your source?

Please add the following lines to the very beginning of your generated class file:
#include "TcPch.h"

#pragma hdrstop

14.7 Using afxres.h

In some templates afxres.h is included, which on some systems is not provided.

TC3 C++ Version: 1.7 211

http://www.microsoft.com/en-us/download/confirmation.aspx?id=23691

Troubleshooting BEGKHOFF

The header file can be replaced with winres.h.

212 Version: 1.7 TC3 C++

BECKHOFF

C++-samples

15

15.1

C++-samples

Overview

Numerous samples are available — further samples follow.

This picture provides an overview in graphical form and places the emphasis on the interaction possibilities
of a C++ module.

Customer User-Mode

Application

S03: ADSServer]

w
S06: SymbolUpload |

r
S08: ADS-RPC]

S01: Cyclic 1/O

TwinCAT C++

S02: Cyclic 1/0 Task

523: SEH

S25: Static Lib

519: SyncFileAccess

S20: WriteFile]
S20a: RW FileAccess |

Beyond that, this is a table with brief descriptions of the samples.

File

S35: Ethernet

S526: TaskOrder
S27: JobTask

S30: Timing

S$31: CTON

S07: ADSNotification |

S$10: Data Pointers

S12: 10 Mapping

S513: CppToPLC

)
] >
)

511: Methodinvoke |

S37: ArchiveData

S22: ADD DPRAM |

DPRAM

S1la: Methodinvoke |

S05: CoE-Access]

=

TwinCAT PLC

TcCOM Samples

TwinCAT C++

TC3 C++

Version: 1.7

213

C++-samples

BECKHOFF

Number [Title Description
01 Sample01: cyclic with IO module This article describes the implementation of a TC3 C++
[» 215] module that uses an |0 module mapped with physical 10.

This sample describes the quick start for the purpose of
creating a C++ module that increments a counter on
each cycle and assigns the counter to the logical output
"Value" in the data area.
The data area can be assigned to the physical 10 or
another logical input or another module instance.

02 Sample02: cyclic with 10 task [» 216] |Describes the flexibility of C++ code when working with
IOs that are configured at the task. Thanks to this
approach, a finally compiled C++ module can affect
various 10s connected with the 10 task much more
flexibly. One application could be to check cyclic analog
input channels, where the number of input channels can
differ from one project to another.

03 Sample03: ADS Server Client [» 216] |Describes the design and implementation of one's own
ADS interface in a C++ module.

The sample contains two parts:

- ADS Server implemented in TC3 C++ with user-specific
ADS interface.

- ADS Client Ul implemented in C#, which transmits user-
specific ADS messages to the ADS server

05 Sample05: CoE access over ADS Shows how CoE registers of EtherCAT devices can be

[» 225] accessed over ADS
06 Sample06: ADS C# client uploads ADS |Shows how symbols in an ADS server can be accessed
symbols [» 226] via the ADS interface. C# ADS client connects with a
module implemented in PLC/C++/Matlab; uploading of
the available symbol information and read/write
subscription for process values.

07 Sample07: Receiving ADS Describes the implementation of a TC3 C++ module that

Notifications [» 231] receives ADS notifications regarding data changes on
other modules.

08 Sample08: provision of ADS-RPC Describes the implementation of methods that can be

[» 232] called by ADS via the task.
10 Samplel0: Module communication: |Describes the interaction between two C++ modules with
Use of data pointers [» 235] a direct data pointer. The two modules must be
implemented on the same CPU core in the same real-
time context.
11 Samplell: Module communication: | This sample contains two parts
PLC module calls a method of a C- * A C++ module which functions as a state machine that
module [» 236] provides an interface with methods for starting/
stopping and also for setting/maintaining the state
machine.
» Second PLC module for interacting with the first
module by calling methods from the C++ module
11a Samplella: Module communication: |This sample contains two classes in one driver (can also
C-module cites a method in the C- be done between two drivers)
module [» 263] * One module that provides a calculation method.
Access is protected through a Critical section.
* A second module that acts as the caller in order to use
the methods in the other module
12 Sample12: Module communication: I0|* Describes how two modules can interact with each
mapping used [» 264] other via mapping of symbols from the data area of
different modules. The two modules can be executed
on the same or different CPU cores.

214 Version: 1.7 TC3 C++

BECKHOFF

C++-samples

13 Sample13: Module communication: C-|* Describes how a TwinCAT C++ module calls methods
module calls PLC methods [} 265] of a PLC function block via TcCOM interface.
19 Sample19: Synchronous File Access Describes how the File 10 function can be used in a
> 268] synchronized manner with C++ modules.
The sample writes process values in a file. The writing of
the file is triggered by a deterministic cycle - the
execution of File 10 is decoupled (asynchronous), i.e.:
the deterministic cycle continues to run and is not
hindered by writing to the file. The status of the routine
for decoupled writing to the file can be checked.
20 Sample20: FilelO-Write [P 269] Describes how the File 10 function can be used with C++
modules.
The sample writes process values in a file. The writing of
the file is triggered by a deterministic cycle - the
execution of File 10 is decoupled (asynchronous), i.e.:
the deterministic cycle continues to run and is not
hindered by writing to the file. The status of the routine
for decoupled writing to the file can be checked.
20a Sample20a: FileIO-Cyclic Read / Write |A more extensive sample than S20 and S19. It describes
[» 269 the cyclic read and/or write access to files from a TC3 C+
+ module.
22 Sample22: Automation Device Driver Describes how the TwinCAT Automation Device Driver
(ADD): Access DPRAM [» 270] (ADD) is to be written for access to the DPRAM.
25 Sample25: Static Library [P 274] Describes how to use the TC3 C++ static library
contained in another TC3 C++ module.
26 Sample26: Execution order at one task |Describes the determination of the task execution
[» 275] sequence, if a task is assigned to more than one module.
27 Sample27: Using the JobTask Describes the use of a JobTask by means of four
variants.
30 Sample30: Timing Measurement Describes the measurement of the TC3 C++ cycle or
> 2771 execution time.
31 Sample31: Functionblock TON in Describes the implementation of a behavior in C++,
TwinCAT3 C++ [278] which is comparable to a TON function block of PLC /
61131.
37 Sample37: Archive data [» 280] Describes the loading and saving of the state of an object
during the initialization and de-initialization.
TcCOM TcCOM samples [» 281] Several samples are provided to illustrate the module
communication between PLC and C++.
15.2 Sample01: Cyclic module with 10

This article describes how to implement a TC3 C++ module which is using the module 10 mapped to
physical 10

Download

Here you can access the source code for this sample.
. Unpack the downloaded ZIP file.

1

2. Open the zip file that it contains in TwinCAT 3 by clicking on "Open Project...".
3. Select your target system.

4. Build the sample on your local machine (e.g. Build->Build Solution).

5. Activate the configuration by clicking on
= The sample is ready for operation.

TC3 C++ Version: 1.7 215

http://download.beckhoff.com/download/Software/TwinCAT/TwinCAT3/Samples/TC1300-C/Samples31/Sample01-Cyclic-with-module-IO/S01-CyclicIO.zip

C++-samples BEGKHOFF

Description

This demo describes the jump start to create a C++ module incrementing a counter each cyclic and assign
the counter in the logical output "Value" in the data-area.
The data-area can be mapped to physical IO or to another logical input of another module instance.

This sample is step by step described as quick start here [P 50].

15.3 Sample02: Cyclic C++ logic using 10 from I0-task

This article describes how to implement a TC3 C++ module which is using an image of an 10-task.

Download

Here you can access the source code for this sample.
. Unpack the downloaded ZIP file.

1

2. Open the zip file that it contains in TwinCAT 3 by clicking on "Open Project...".
3. Select your target system.

4. Build the sample on your local machine (e.g. Build->Build Solution).

5. Activate the configuration by clicking on
= The sample is ready for operation.
Source code, which is not automatically generated by the wizard, is identified with a start flag "//sample

code" and end flag "//sample code end".
In this way you can search for these strings in the files, in order to get an idea of the details.

Description

This sample describes the flexibility of C++ code when working with 10s configured at the task. This
approach enables a compiled C++ module to respond more flexibly, if a different number of 10s are linked to
the 10 task. One application option would be cyclic testing of analog input channels with a different number
of channels, depending on the project.
The sample contains
» the C++ module "TcloTasklmageAccessDrv" with a module instance "TcloTaskiIMageAccessDrv_Obj1"
« A "Task1" with an image, 10 input variables (Var1..Var10) and 10 output variables (Var11..Var20).
* They are linked: The instance is called by the task and uses the image of Task1.

The C++ code accesses the values via a data image, which is initialized during the transition from "SAFEOP
to OP" (SO).

In the cyclically executed method "CycleUpdate" the value of each input variable is checked by calling the
helper method "CheckValue". If it is less than 0, the corresponding output variable is set to 1, if it is greater
than 0, itis set to 2, if it is 0, the output is set to 3.

After activation of the configuration you can access the variables via the Solution Explorer and set them.
Double-click on the Task1 image of system for an overview.
The input variables can be opened and then set with the "Online" tab.

15.4 Sample03: C++ as ADS server

This article describes how to

* Create a TC3-C++ module acting as an ADS-server.
The server will provide an ADS interface to start / stop / reset a counter variable inside the C++
module. The counter is available as module output and can be mapped to an output terminal (analog

216 Version: 1.7 TC3 C++

http://download.beckhoff.com/download/Software/TwinCAT/TwinCAT3/Samples/TC1300-C/Samples31/Sample02-Cyclic-with-task-IO/S02-CyclicIOTask.zip

BECKHUFF C++-samples

or number of digital 10's)
How to implement the TC3 ADS-Server functionality written in C++ [P 217]

» Create a C#-ADS-Client to interact with C++-ADS-Server.
The client provides a Ul to connect locally or over network to ADS-Server with ADS-interface to count.
The Ul allows to start / stop / read / overwrite and reset the counter

Sample code: ADS Client UI written in C# [P 221]

Understanding the Sample

The sample uses capabilities to automatically determine an ADS port. This has the drawback that the client
needs to be configured every startup to access the correct ADS Port.

Alternatively, one can hard-code the ADS port in module like shown below.
Drawback here: The C++ module can’t be instantiated more than once since sharing an ADS port is not
possible.

—“/AKESUL T LAGSLOMMUNLCETIONMOOU LEe 1 5ETUDSTaTers (FILOMLN1ITUaTandr plNlTuata)

1
m_Trace.Log(tlVerbose, FENTERA);
HRESULT hr = 5_0K;
IMPLEMENT _ITCOMOBIECT _EVALUATE_INITDATA(pInitData);
hr = SUCCEEDED(hr) ? InitAmsPort(m_spSrv 8 @x3839) k hr;
L F = T I 5e |
// cleanup on failure 85 ADS Client LI |i”£”£|
if (FAILED(hr))
MetlD: 127.0.0.1.1.1
ShutdownsmsPort();
1 Part: (3039
m_Trace.log(tlVerbose, FLEAVE
return hr Connect Client port 32968 opened
} g Courtter started value = 0
Counter = 10130
SLLEEETERE IR i ity
// State transition from SAFEOP 1
S

15.4.1 Sample03: TC3 ADS Server written in C++

This article describes how to create a TC3-C++ module acting as a ADS-server.
The server will provide an ADS interface to start / stop / reset an counter variable insight the C++ module.

Download

Here you can access the source code for this sample:
. Unpack the downloaded ZIP file.

1

2. Open the zip file that it contains in TwinCAT 3 by clicking on "Open Project...".
3. Select your target system.

4. Build the sample on your local machine (e.g. Build->Build Solution).

5. Activate the configuration by clicking on
= The sample is ready for operation.
Description

This sample contains one C++ module acting as a ADS-server providing access to a counter which could be
started, stopped and read.

The header file of the module defines the counter variable "m_bCount" and the corresponding .cpp file
initialises the value within the constructor as well as implements the logic within the "CycleUpdate" method.

TC3 C++ Version: 1.7 217

http://download.beckhoff.com/download/Software/TwinCAT/TwinCAT3/Samples/TC1300-C/Samples31/Sample03-ADS-Server-Client/S03-ADSServer.zip

C++-samples BEGKHGFF

The method "AdsReadWriteInd" of the .cpp parses incoming messages and sends back the return values.
For one additionally added message type a define where added to the header file.

Details like the definition of the ADS message types are described within the following Cookbook, where you
can assemble the sample manually.

Cookbook

This is a step by step description about the creation of the C++ module.

1. Create a new TwinCAT 3 project solution

Follow the steps for creating a new TwinCAT 3 project [»_50]

2. Create a C++ project with ADS port

Follow the steps to create a new TwinCAT 3 C++ project [» 51].

In the dialog "Class templates” select "TwinCAT Module Class with ADS port".

3. Add the sample logic to the project

1. Open the header file "<MyClass>.h" (in this sample "Module1.h") and add the counter "m_bCount" to the
protected area as a new member variable:
class CModulel
: public ITComObject
, public ITcCyclic

J e e e

{
public:
DECLARE IUNKNOWN ()
protected:
DECLARE ITCOMOBJECT SETSTATE () ;
///<ButoGeneratedContent id="Members">
ITcCyclicCallerInfoPtr m spCyclicCaller;
///</AutoGeneratedContent>
ULONG m_ReadByOidAndPid;
BOOL m_ bCount;
}i
2. Open the class file "<MyClass>.cpp" (in this sample "Module1.cpp") and initialize the new values in the
constructor:
CModulel: :CModulel ()

{
memset (&m_Counter, 0, sizeof (m Counter));
memset (&m Inputs, 0, sizeof (m Inputs));
memset (&m Outputs, 0, sizeof (m Outputs));
m bCount = FALSE; // by default the counter should not increment
m Counter = 0; // we also initialize this existing counter

}
= The sample code has been added.
3.a. Add the sample logic to the ADS server interface.

Usually, the ADS server receives an ADS message, which contains two parameters ("indexGroup" and
"indexOffset") and perhaps further data "pData".

218 Version: 1.7 TC3 C++

BECKHUFF C++-samples

Designing an ADS interface
Our counter is to be started, stopped, reset, overwritten with a value or send a value to the ADS client on
request:

indexGroup indexOffset Description

0x01 0x01 m_bCount = TRUE, counter is
incremented

0x01 0x02 Counter value is transferred to
ADS client

0x02 0x01 m_bCount = FALSE, counter is no
longer incremented

0x02 0x02 Reset counter

0x03 0x01 Overwrite counter with value
transferred by ADS client

These parameters are defined in "modules1Ads.h". Add the blue code lines to add a new command for
IG_RESET.

#include "TcDef.h"

enum ModulelIndexGroups : ULONG

{
ModulelIndexGroupl = 0x00000001,
ModulelIndexGroup2 = 0x00000002, // add command
IG_OVERWRITE = 0x00000003 // and new command

}i

enum ModulelIndexOffsets : ULONG
{
ModulelIndexOffsetl = 0x00000001,
ModulelIndexOffset2 = 0x00000002
bi

Add the blue code lines in your <MyClass>::AdsReadWritelnd() method (in this case Module1.cpp).

switch (indexGroup)

{

case ModulelIndexGroupl:
switch (indexOffset)
{
case ModulelIndexOffsetl:

// TODO: add custom code here
m_bCount = TRUE; // receivedIG=1 IO=1, start counter
AdsReadWriteRes (rAddr, invokeId, ADSERR NOERR, 0,NULL);
break;

case ModulelIndexOffset2:

// TODO: add custom code here
// map counter to data pointer
pData = &m Counter; // received IG=1 I0=2, provide counter value via ADS
AdsReadWriteRes (rAddr, invokeId, ADSERR NOERR, 4 ,pData);
//comment this: AdsReadWriteRes (rAddr, invokeId,ADSERR NOERR, 0, NULL);
break;
}
break;
case ModulelIndexGroup?2:
switch (indexOffset)
{
case ModulelIndexOffsetl:

// TODO: add custom code here

// Stop incrementing counter
m bCount = FALSE;

// map counter to data pointer
pbata = &m_ Counter;
AdsReadWriteRes (rAddr, invokeId, ADSERR NOERR, 4,pData);
break;
case ModulelIndexOffset2:

// TODO: add custom code here
// Reset counter

m_Counter = 0;

// map counter to data pointer

TC3 C++ Version: 1.7 219

C++-samples BEGKHGFF

pbata = &m Counter;
AdsReadWriteRes (rAddr, invokeId, ADSERR NOERR, 4, pData);
break;
}
break;
case IG _OVERWRITE:
switch (indexOffset)
{
case ModulelIndexOffsetl:

// TODO: add custom code here // override counter with value provided by ADS-client
unsigned long *pCounter = (unsigned long*) pData;
m Counter = *pCounter;
AdsReadWriteRes (rAddr, invokeId, ADSERR NOERR, 4, pData);
break;
}
break;
}
break;
default:
__super::AdsReadWriteInd (rAddr, invokeId, indexGroup,indexOffset, cbReadLength, cbWriteLength,
pData;
break;

}

3.b. Add sample logic to the cyclic part
The method <MyClass>::CycleUpdate() is cyclically called - this is the place to modify the logic.

// TODO: Replace the sample with your cyclic code
m_Counter+=m Inputs.Value; // replace this line
m Outputs.Value=m Counter;

In this case the counter mCounter is incremented if the boolean variable m_bCount is true.

Insert this If-Case to your cyclic method

HRESULT CModulel::CycleUpdate (ITcTask* ipTask,
ITcUnknown* ipCaller, ULONG context)

{

HRESULT hr = S OK;

// handle pending ADS indications and confirmations
CheckOrders () ;

// TODO: Replace the sample with your cyclic code
if (m _bCount) // new part
{

m_Counter++;

}

m_Outputs.Value=m Counter;

}

4. Execute server sample

. Run the TwinCAT TMC Code Generator [P 56] in order to provide the inputs/outputs for the module.
. Save the project.

. Compile [» 56] the project.

. Create a module instance.

. Create a cyclic task and configure the C++ module for the execution in this context.

. Scan the hardware 10 and assign the symbol "Value" of outputs to certain output terminals (this is
optional).

7. Activate [P 62] the TwinCAT project.
= The sample is ready for operation.

o OB W N -

5. Determine the ADS port of the module instance

Generally the ADS port may be

» pre-numbered, so that the same port is always used for this module instance

220 Version: 1.7 TC3 C++

BEGKHOFF C++-samples

» kept customizable, in order to offer several module instances the option to have their own ADS port
assigned on startup of the TwinCAT system.

In this sample the default setting (keep flexible) is selected. First of all you have to determine the ADS port
that was assigned to the module that has just been activated.

1. Navigate to the module instance.

2. Select the Parameter Online tab.

= 0x8235 or decimal 33333 is assigned to the ADS port (this may be different in your sample). If more
and more instances are created, each instance is allocated its own unique AdsPort.

= The counter is still at "0" because the ADS message to start the incrementation has not been sent.

Solution Explorer = 0 X Untitled].tmc [Tmc Editor] Modulel.cpp ModulelAd

j Context | Parameter (Init) | Paremeter (Online) | Data Arca
oA Solution 'TwinCAT Project154' (1 project) | Obiect | | eter (i) | a

. TwinCAT Projectl54
b @3 SYSTEM
NC / Motion
Bf rLC
SAFETY
4 C++
4 o] Untitledl
i [Z Untitledl Project
4 @ Untitled]_Objl (CModulel)
4 Inputs
Value
Status
Data
o [Outputs
B Value
- Control
- Data

(000000002 AdsPort | 08235
(600000003 Counter |0

= The server part is completed - continue with ADS client sends the ADS messages [P 221].

Also see about this
Create TwinCAT 3 C++ Module instance [57]
Create a TwinCAT task and apply it to the module instance [59]

15.4.2 Sample03: ADS client Ul in C#

This article describes the ADS client, which sends ADS messages to the previously described ADS server.

The implementation of the ADS server depends neither on the language (C++ / C#/PLC/ ...) nor on the
TwinCAT version (TwinCAT 2 or TwinCAT 3).

Download

Here you can access the source code for this sample.

v" This code requires .NET Framework 3.5 or higher!

1. Unpack the downloaded ZIP file

2. Open the included sin file with Visual Studio

3. Create the sample on your local machine (right-click on the project and click on "Build")
4. Start the program, i.e. right-click on Project, Debug->Start new instance

TC3 C++ Version: 1.7 221

http://download.beckhoff.com/download/Software/TwinCAT/TwinCAT3/Samples/TC1300-C/Samples31/Sample03-ADS-Server-Client/S03-ADSClient.zip

C++-samples BEGKHOFF

Description

This client performs two tasks:

» Testing the ADS-server, which was described before.
» Providing sample code for implementing a ADS-client

Using the client
Selecting a communication partner

Enter the two ADS parameters to determine your ADS communication partner

* NetlD:
127.0.0.1.1.1 (for ADS partner also linked with local ADS message router)

Enter another NetID, if you want to communicate with an ADS partner connected to another ADS
router via the network.
First you have to create an ADS route between your device and the remote device.

AdsPort

Enter the AdsServerPort of your communication partner

Do not confuse the ADS server port (which has explicitly implemented your own message handler) with
the regular ADS port for the purpose of access to symbols (this is provided automatically, without the
need for user intervention).

Find the assigned AdsPort [P 217], in this sample the AdsPort was 0x8235 (dec 33333).

Create link with communication partner

Click on "Connect" to call the method TcAdsClient.Connect for the purpose of creating a link with the
configured port.

-

sl ADS Client UL ===
NetID: 127.001.1.1
Port:

Connect

!

Start

Read

Stop

Value: 0 [Ovamn‘ite I l Resst]

Use the buttons Start / Read / Stop / Overwrite / Reset to send ADS messages to the ADS server.
The specific indexGroup / indexOffset commands were already designed in the ADS interface of the ADS

server [p 217].

The result of clicking on the command buttons can also be seen in the module instance in the tab
"Parameters (online)".

222 Version: 1.7 TC3 C++

BECKHOFF

C++-samples

dsCommunicationsample |

| Object | Cortext | Parameter (init} | Parameter (Onling) | Data Area | Interfaces | Interface Painter |

PTCID Mame Online

Unit

0x00000002 AdsPort 0x839d
0x00000003 Counter :

127.001.1.1

(835

Cliert port 33715 opened
Counter stopped value = 2273
Courter = 2273

Value: 0 |Ovewite | | Resst |

e
v
[l

ERE[FIEY

date, @ skipped ======

C# program

This is the "core" code of ADS client for the GUI etc.; please download the ZIP file shown above.

using System;

using System.Collections.Generic;
using System.ComponentModel;
using System.Data;

using System.Drawing;

using System.Text;

using System.Windows.Forms;

using TwinCAT.Ads;

namespace adsClientVisu

{
public partial class form : Form
{

public form()

{

InitializeComponent () ;

}

private void Forml Load(object sender, EventArgs e)
{

// create a new TcClient instance

_tcClient = new TcAdsClient();

adsReadStream = new AdsStream(4) ;

adsWriteStream = new AdsStream(4);

}
/*

* Connect the client to the local AMS router

TC3 C++ Version: 1.7

223

C++-samples BEGKHOFF

*/

private void btConnect Click(object sender, EventArgs e)
{
AmsAddress serverAddress = null;
try
{
serverAddress = new AmsAddress (tbNetId.Text,
Int32.Parse (tbPort.Text));
}
catch
{
MessageBox.Show ("Invalid AMS NetId or Ams port");
return;

}

try

{
__tcClient.Connect (serverAddress.NetId, serverAddress.Port);
lbOutput.Items.Add ("Client port " + tcClient.ClientPort + " opened");

}
catch
{
MessageBox.Show ("Could not connect client");
}
}

private void btStart Click(object sender, EventArgs e)
{
try
{
_tcClient.ReadWrite (0x1, Oxl, adsReadStream, adsWriteStream);
byte[] dataBuffer = adsReadStream.ToArray();
1bOutput.Items.Add ("Counter started value = " + BitConverter.ToInt32 (dataBuffer,
}

catch (Exception err)
{
MessageBox.Show (err.Message) ;

}
}

private void btRead Click(object sender, EventArgs e)
{
try
{
_tcClient.ReadWrite (0x1, 0x2, adsReadStream, adsWriteStream);
byte[] dataBuffer = adsReadStream.ToArray();
1bOutput.Items.Add ("Counter = " + BitConverter.ToInt32 (dataBuffer, 0));
}

catch (Exception err)
{
MessageBox.Show (err.Message) ;
}
}

private void btStop Click(object sender, EventArgs e)
{
try
{
_tcClient.ReadWrite (0x2, 0Oxl, adsReadStream, adsWriteStream);
byte[] dataBuffer = adsReadStream.ToArray();
1bOutput.Items.Add ("Counter stopped value = " + BitConverter.ToInt32 (dataBuffer,
}

catch (Exception err)
{
MessageBox.Show (err.Message) ;
}
}

private void btReset Click(object sender, EventArgs e)
{
try
{
_tcClient.ReadWrite (0x2, 0x2, adsReadStream, adsWriteStream);
byte[] dataBuffer = adsReadStream.ToArray();

0));

0))s

224 Version: 1.7

TC3 C++

BECKHUFF C++-samples

1bOutput.Items.Add ("Counter reset Value = " + BitConverter.ToInt32 (dataBuffer, 0));
}

catch (Exception err)
{
MessageBox.Show (err.Message) ;
}
}

15.5 Sample05: C++ CoE access via ADS

This article describes how to implement a TC3 C++ modules which can access the CoE (CANopen over
EtherCAT) register of a EtherCAT terminal.

Download

Here you can access the source code for this sample.

. Unpack the downloaded ZIP file.

. Open the zip file that it contains in TwinCAT 3 by clicking on "Open Project...".
. Select your target system.

. Build the sample on your local machine (e.g. Build->Build Solution).

a b~ 0N -

. Note the actions listed on this page under Configuration.

6. Activate the configuration by clicking on
= The sample is ready for operation.
Description

This sample describes access to an EtherCAT Terminal, which reads the manufacturer ID and specifies the
baud rate for serial communication.

This sample describes the quick start for the purpose of creating a C++ module that increments a counter on
each cycle and assigns the counter to the logical output "Value" in the data area.

Configuration
1. Activate the EtherCAT address of the terminal concerned and assign it.

General | BtherCAT | Process Data | Startup I CoE - Online I EL6{boc | Online|

Type: ELEDDT Interface (R5232)
Product/Revision: EL&001-0000-0000

Auto Inc Addr: 1]
EtherCAT }-'-.-:Iu:lr 001 n Advanced Seftings...
Previous Port: Master

TC3 C++ Version: 1.7 225

http://download.beckhoff.com/download/Software/TwinCAT/TwinCAT3/Samples/TC1300-C/Samples31/Sample05-CoE-Access-via-Ads/S05-CoEAccess.zip

C++-samples BEGKHOFF

2. Activate inclusion of the ADS address in the advanced settings for the EtherCAT Terminal:

EtherCAT Addr: 1001 = Advanced Settings... I ‘ I

) =
| Advanced Settings I
A
=)~ General Behavior
. Behavior
Timeout Settings Startup Checking State Machine
Identification Check Vendor Id Auto Restore States
- FMMU / 5M Check Product Cods [] Wit for WeState is Ok
~Init Commands [] Check Revision Number Relnit after Communication Emor
[+ Mailbox -
4. Distributed Clock Log Communication Changes
[ESC Access [check Seral Mumber ———
h Fheck Idertficaion @OP () SAFEOP in Config Mode
Process Data (T) SAFEOP (O PREOP () INIT
— [[] Use LRD/LWR instead of LRW Irfo Data
; Include WC State Bitis) Include State
q [7] Frame Repeat Support | #] Include Ads Address |
3. Assign the ADS address (including netld and port) to the module input AdsAdress:
- m C++ FUIUIESS. e user u. -
4 TcAccessCokSdoViaAdsDrv AdsAddr . InfoData . Tern 3 (ELE00T) . Device 1 (EtherCAT) . Devices
» [7] TcAccessCoESdoViaAdsDrv Project
a IE‘ TecAccessCoESdoViaAdsDrv_Objl (CTeSdoAccessMe [Attach Variable AdsAddress (Input)
a4 Inputs
#1 Value i ar| Show Variables
#1 Status - Devices @ Unused
#1 Data =4 Device 1 [EtherCAT) () Used and unused

|51 Adsaddress Bt Tem 3 (ELB00T)] Exclude disabled
= & Adstdd > 1B 1550.0, AMSADDR [8.0] | [7] Excluds cther Der

=

i

4. The module parameters are read out and displayed by the sample code during the course of the

Object | Context | Parameter (Init) | Parameter (Cnline) | Data Area I Interfaces | Interface Po

Mame Value Online

DefaultadsPort (nffff (hefff

ContextAdsPort 0015e O015e

BaudRate 00005 00005

Vendoerld 000000000 0:00000002
CoEReadIndex 01018 01018

CoEReadSublndex 00001 00001

CoEWritelndex 04073 D073
CoEWriteSublndex 00000 00000

initialization: | [ESSSSSSSSSSSSS——————————————————————— |

15.6 Sample06: UI-C#-ADS client uploading the symbolic
from module

This article describes the implementation of an ADS client for

« communicating with an ADS server, which provides a process image (data area).
The connection can be local or remote via the network.

226 Version: 1.7 TC3 C++

BECKHUFF C++-samples

» Upload symbol information
* Read / write data synchronously
» Subscribe to symbols, in order to obtain values "on change" as callback.

Download

Access the source code for this client sample:

v' This code requires .NET Framework 3.5 or higher!

1. Unpack the downloaded ZIP file

2. Open the included sin file with Visual Studio

3. Create the sample on your local machine (right-click on the project and click on "Build")
4. Start the program, i.e. right-click on Project, Debug->Start new instance

The client sample should be used with example 03 "C++ as ADS server".

Please open sample 03 [P 217] before starting with this client-side sample!

Description
This sample illustrates the ADS options.

The details of the implementation are described in "Form1.cs", which is included in the download. The
connection via ADS with the target system is established in the "btnLoad_Click" method, which is called on
clicking on the "Load Symbols" button. From there you can explore the different GUI functions.

Background information:

For this ADS client it is irrelevant whether the ADS server is based on TwinCAT 2 or TwinCAT 3. Also, it
does not matter whether the server is a C++ module, a PLC module or an 10 task without logic.

The ADS client Ul

On starting of the sample the user interface (Ul) is displayed.

TC3 C++ Version: 1.7 227

http://download.beckhoff.com/download/Software/TwinCAT/TwinCAT3/Samples/TC1300-C/Samples31/Sample06-ADS-Client/S06-SymbolUploadClient.zip

C++-samples BEGKHOFF

gl Sampled6 |5_|E| | % |
—Symbols —Current Symbol
Name: I
Index Group: I
Index Cffset: I
Size: I
Datatype: I
Datatype Id: I
Value: I
Load Symbels | [T flat NetiD: [127.0.01.1.1 ADS Port: 350 \tirite using WiriteSymbol
—wiatch
Symbol Name: |
Walue: I ‘iatch Current Symbal | .
II Mew Value: I \wirite using Variable Handle |
—Symbol Info
Symbel Name: MAIN.INT32_1
Read Symbol Info | Find Symbol
. r— -

Selecting a communication partner

After starting the client, enter the two ADS parameters, in order to determine your ADS communication
partner.

* NetlD:
127.0.0.1.1.1 (for ADS partner also linked with local ADS message router)

Enter another NetID, if you want to communicate with an ADS partner connected to another ADS
router via the network.
First you have to create an ADS route between your device and the remote device.

+ AdsPort
Enter the AdsPort of your communication partner: 350 (in this sample)

Do not confuse the ADS server port with the regular ADS port.

o

1 Do not confuse the ADS server port (which was explicitly implemented in sample 03 for providing
your own message handler) with the regular ADS port for the purpose of access to symbols (this is
provided automatically, without the need for user intervention):

The regular ADS port is required to access symbols. You can find the AdsPort for the 1O task of
your instance or the module instance yourself (since the module is executed in the context of the 10
task).

228 Version: 1.7 TC3 C++

BECKHOFF

C++-samples

Navigate to 10 task "Task1" and note the value of the port: 350

Solution Explorer

e ERRRER R

r; Solution "TwinCAT Projectl54' (1 project)
4 | TwinCAT Projectl54
a [0 SYSTEM
i} Real-Time
4 % Tasks
B Task1|
iz Routes
T TcCOM Ohbjects
NC / Motion
| PLC
[E] saFeTY
4 @ C++
4 [e] Untitledl
i [Untitledl Project
b Bl Untitledl_Objl (CModulel)

v & Vo

Task |Drrline I Parameter {Online}l

Name: Task 1
Auto start
[7] Auto Priorty Management
Priority: B :

Gotoks: 10] 0000 me
Start tick modula): 0 F
[7] Separate input update

Pr

el

[=]

hizks

[T Waming by exceeding
" | Message bax

Watchdog Cycles: 1] ":

Port: 350
Options
170 &t task begin

[7] Disable
[Create symbals

Include extemal symbols

Bxtem sync

Solution Explorer

Enabled symbols for access available via ADS

= . - - . | Object | Context | Parameter {Init) I Parameter (Onling) I Data Area | Interfaces | Inteface F'ointer|
'; Solution "TwinCAT Project154' (1 project)
4[5 TwinCAT Project154 Contest: [1 -]
o [SYSTEM T
& Real-Time epend Un: [Manual Config v]
4 B Tasks [] Need Call From Sync Mapping
[B5 Taskl Data Areas: Interfaces:
=l= Routes . [0 Inputs’
I TcCOM Objects [@]1 Outputs’
NC / Metion
B pLC
|| saFeETY Data Pointer: Interface Pairter:
a @ C++
4 [Untitledl
» [7] Untitled1 Project
[@ Untitledl _Objl (CModulel)
[vo Resutt:
D Task | Name | Priority | Cycle Time (us) | ADS Port | Sort Or...
1 02000101 v Task1 1 10000 350 (default)

Individual symbols or whole data areas can be provided for access via ADS, or they can be deliberately not

provided.

Navigate to the "Data Area" tab of your instance and activate/deactivate the column "C/S".

In this sample all symbols are marked and therefore available for ADS access.

After the modifications please select "Activate configuration”.

TC3 C++

Version: 1.7

229

C++-samples

BECKHOFF

Solution Explorer
=]
E Solution 'AdsCommunicationSample’ (1 proje
4 [AdsCommunicationSample
b [SYSTEM
NC / Motion

SAFETY
4 Ces
4 fed Untitledl
i [7] Untitled1 Project
4 |@ Untitledl Objl (CModulel) |
4 Inputs
Value
#1 Status
#1 Data
a [Outputs
- Value
- Control
- Data

v [Vo

Load symbols

o rsscommuncaionsampie < R

| Object | Context | Parameter (init) | Parameter (Oniine) | Data Area | Interfaces | Interface Poirter |

| Area Mo | Marne | Type | Size E‘ Elements
-0 Inputs InputDst 112 v I 3 5ymbols
' | Value \UDINT o0 (|
| Status UDINT e e e |
Data \UDINT e e |
% .1 “Dutputs .DLri:.putSrc ;12 - |7 -BSymbols
' | Ve (UDINT aoors0n (I
| Control |UDINT e i |
Data 'UDINT sorse0 [~ |

Once the NetID and the ADS port have been set up, click on the "Load Symbols" button to make a
connection with the target system and load the symbols.

All available symbols are then visible. You can then:

* Write a new value:

Select a symbol in the tree on the left, e.g. "Counter”
Enter a new value in the "Value" field on the right and click on "Write using WriteSymbol".
The new value is written to the ADS server.

After writing a new value with "Write using WriteSymbol", the C# application is assigned a callback with

the new value.

230

Version: 1.7

TC3 C++

BECKHGFF C++-samples

» Subscribe in order to obtain callback when the value changes.
Select a symbol in the tree on the left, e.g. "Counter”
Click on "Watch Current Symbol"

ampleQt : =B

—Symbeols - 1 7 Current Symbol
AdsCommunicationModule _Cbj1 {CAdsCommunicationModule) AdsPort Name: !

AdsCommunicationMadule_Obj1 {CAdsCommunicationMaodule) Courter
AdsCommunicationModule _Cbj1 {CAdsCommunicationModule). Inputs . Data Index Group: !
AdsCommunicationModule _Obj1 {CAdsCommunicationModule). Inputs Status
AdsCommunicationMadule_Obj1 {CAdsCommunicationMaodule). Inputs Value Index Offset: !
i AdsCommunicationMadule _Obj1 {CAdsCommunicationModule) Outputs Contral
AdsCommunicationModule_Cbj1 {CAdsCommunicationModule) Outputs Data Size: !
o AdsCommunicationModule_Obj1 {CAdsCommunicationModule] Cutputs Value

Datatype: !

Diatatype |d: !

Value: !

Load Symbeols I [flat NetiD: [127.00.1.11 ADS Port: 350 \nirite using WriteSymbol

—Wwatch
Symbol Name: I

Walue: I ‘whatch Current Symbol I

NewValue: | Viirite using Variable Handle |

—Symbal Info

Symbol Name: [MAIN INT32_1

Read Symbol Info I Find Symbal

15.7 Sample07: Receiving ADS Notifications

This article describes how to implement a TC3 C++ module which receives ADS Notifications about data
changes on other modules.

Since all other ADS communication has to be implemented in a similar way, this sample is the general entry
point to initialize ads communication from TwinCAT C++ modules.

Download

Here you can access the source code for this sample:

1. Unpack the downloaded ZIP file.

2. Open the zip file that it contains in TwinCAT 3 by clicking on "Open Project...".
3. Select your target system.
4

. Build the sample on your local machine (e.g. Build->Build Solution).

5. Activate the configuration by clicking on
= The sample is ready for operation.
Description
This sample describes the reception of ADS notifications in a TwinCAT C++ module.

The solution contains two modules for this purpose.

« A C++ module, which registers for querying ADS notifications of a variable.

TC3 C++ Version: 1.7 231

http://download.beckhoff.com/download/Software/TwinCAT/TwinCAT3/Samples/TC1300-C/Samples31/Sample07-AdsNotifications/S07-AdsNotifications.zip

C++-samples BEGKHOFF

» Put simply: a PLC program, which provides a variable "MAIN.PIcVar".
If its value changes, an ADS notification is sent to the C++ module.

+ The C++ module utilizes the message recording options. For a better understanding of the code,
simply start the sample and note the output / error log when you change the value "Main.PlcVar" of the
PLC module.

The address is prepared during the module transition PREOP->SAFEOP ("SetObjStatePS"). The
"CycleUpdate" method contains a simple state machine, which sends the required ADS command.
Corresponding methods show the receipts.

The inherited and overloaded method "AdsDeviceNotificationInd" is called when a notification is received.

During shutdown, ADS messages are sent during transition for the purpose of logoff ("SetObjStateO0S"), and
the module waits for receipts of confirmation until a timeout occurs.

@ Start of the module development

1 Creating a TwinCAT C++ module with the aid of the ADS port wizard. This sets up everything you
need for establishing an ADS communication. Simply use and overwrite the required ADS methods
of "ADS.h", as shown in the sample.

See also

ADS Communication [P 173]

15.8 Sample08: provision of ADS-RPC

This article describes the implementation of methods that can be called by ADS via the task.

Download

Here you can access the source code for this sample.
. Unpack the downloaded ZIP file.

1

2. Open the zip file that it contains in TwinCAT 3 by clicking on "Open Project...".
3. Select your target system.

4. Build the sample on your local machine (e.g. Build->Build Solution).

5. Activate the configuration by clicking on
= The sample is ready for operation.

Description

The download contains 2 projects:

« The TwinCAT project, which contains a C++ module. This offers some methods that can be called by
ADS.

+ Also included is a Visual C++ project that calls the methods from the User mode as a client.

Four methods with different signatures are provided and called. These are organized in two interfaces, so
that the composition of the ADS symbol names of the methods becomes clear.

Understanding the sample

The sample consists of the TwinCAT C++ module, which offers the RPC methods and a C++ sample
program that calls them.

TwinCAT C++ module

The TwinCAT C++ project contains a module and an instance of the module with the name "foobar".

232 Version: 1.7 TC3 C++

http://download.beckhoff.com/download/Software/TwinCAT/TwinCAT3/Samples/TC1300-C/Samples31/Sample08-AdsRPC/S08-ADSRPC.zip

BEGKHOFF C++-samples

RPC methods are normal methods that are described by interfaces in the TMC editor and are additionally
enabled by an "RPC enable" checkbox. The options are described in greater detail in the Description of the
TMC Editor [P 79].

In this module two interfaces are described and implemented, as can be seen in the TMC Editor:

Untitled.tme [TMC Editor] = |
S IEA[IEN

4 33 TMC Module Classes -0 _ _
4 %% Datz Types e Shows the implemented interfaces of the module.
4 —0 |RpcTest
4 %% Methods |} 1
M Calln\WHResult - -
W Callln Name Interface ID Contextld Disable Code Generation
4 —o IRpcTest? [TComObject {00000012-0000-0000-E000-000000000064}
4 5% Methods [TeCyclic {03000010-0000-0000-E000-000000000064} =
M AddWOHResult [TcADI {03000012-0000-0000-E000-D00000000064}
W AddWHResult [TeWatchSource {03000018-0000-0000-E000-000000000064}
4 ?%%ﬁodule‘l IRpcTest {fdaZe12e-d291-4178-3133-4bdalad5bibe} =
=9 Implemented Interfaces | |RpcTest2 {1988bcf1-52ee-48ha-abad-2b864 1d5c 7] [
I !5 Parameters
I Data Areas
B Data Pointers
4 % Interface Pointers
— CychcCaller
Deployment

The methods, four in all, have different signatures of call and return values.

Their ADS symbol name is formed according to the pattern: ModuleInstance.Interface#MethodName
Particularly important in the implementing module is the Contextld, which defines the context for the
execution.

TC3 C++ Version: 1.7 233

C++-samples BEGKHOFF

As can be seen in the C++ code itself, the methods are generated by the code generator and implemented
like normal methods of a TcCOM module.

01T (V1S W T e SRl Untitled].tmc [TMC Editor]
| Untitledl -| > cModulel -|@ AddModuleToCaller()

[/ f<AutoGeneratedContent id="ImplementationOf_IRpcTest":
EIHRESULT CModulel::CallInWHResult{LONG in)

¢ HRESULT hr = 5 0K;
return hr;
L}
EIHRESULT CModulel::CallIn{LONG in)
1
HRESULT hr = 5 0K;
return hr;
1

Jl i</ AutoGeneratedContent:

Jf f<AutoGeneratedContent id="ImplementationOf IRpcTest2":
EIHRESULT CModulel: :AddWOHResult(LONG a, LONG b, LONGE sum)

{
HRESULT hr = 5_0K;
sum = a+b;
m_Trace.lLog(tlAlways, FNAMEA "got called with #d %d -> ¥d", a, b, sum);
return hr;
|}
EIHRESULT CModulel::AddWHResult(LONG a, LONG b, LONGE sum)
1
HRESULT hr = 5_0K;
sum = a + b;
m_Trace.lLog(tlAlways, FNAMEA "got called with %d %d -> HRESULT %d ", a, b, sum);
return hr;
¥

/1 </ AutoGeneratedContent

If the type information of the methods is to be available on the target system, the TMI file of the module can
be transferred to the target system.

Solution Explorer R Bl TwinCAT Projectl + 2 SampleRPC.cpp Untitledl.tmc [TMC Editor]* Meodulel.cpp
@t | - @ | £ = Object | Cortext | Parameter {Int) | Data Area | Interfaces | Interface Poirter |
Search Solution Explorer (Ctrl+a) P~
Object Id: 01010010 [#] Copy TMIto Target
f] Solution 'TwinCAT Projectl’ (2 projects) .
4 [%] SampleRPC Object Name: foobar [Share TMC Description
P 5 External Dependencies Type Name: CModulel
b_*+ SampleRPC.cop GUID: GEF61388-9D2D-410A-A2D3-BEIB0IDAILE
4] TwinCAT Projectl
bl SYSTEM Class Id: 6EF61388-3D2D-410A-A2D3-BESB09DA4ED
MOTION Class Factory: Untitled 1
PLC Parent Id: (00000000
SAFETY
4 E Co+ Init Sequence: 50 —

4 Untitled1

b [Pl Untitledl Project
b [foobar

The TwinCAT OPC-UA server offers the option to also call these methods by OPC-UA — the TMI files are
required on the target system for this.

C++ example client

234 Version: 1.7 TC3 C++

BEGKHOFF C++-samples

Directly after starting, the C++ client will fetch the handles and then call the methods any number of times;
however a RETURN is expected between the procedures. Every other key leads to the enabling of the
handle and the termination of the program.

The outputs illustrate the calls:

DK: AdsSyncReadWriteReq <getHdl foohar.IRpcTestH#HCallln2

DK: AdsSyncHeadWriteReq <getHdl foohar.IRpcTest#CalllnWHResult?
DK: AdsSyncReadWriteReq <getHdl foohar.IRpcTest2HAddWOHResult
DK: AdsSyncHeadWriteReq <getHdl foohar.IRpcTestZ2#AddWHResult>

Presz key to call all methods

Calling foobhar.IRpcTest#Callln
Send: B

Calling foobhar.IRpcTestH#CalllnWHResult
Value given: 1
ReturnCode:- @

Calling foobhar.IRpcTestZ2HAddWOHResult
Value given Az 1

Value given B: 2

Ualue got <A+B>: 3

Calling foobar.IRpcTestZ#iAddWHResult
Value given Az 1

Value given B:- 2

ReturnCode:- @

Value got <A+B>: 3

15.9 Sample10: module communication: Using data pointer

This article describes the implementation of two TC3 C++ modules, which communicate via a data pointer.

Download

Here you can access the source code for this sample:

1. Unpack the downloaded ZIP file.
2. Open the zip file that it contains in TwinCAT 3 by clicking on "Open Project...".

3. Select your target system.
4. Build the sample on your local machine (e.g. Build->Build Solution).

5. Activate the configuration by clicking on
= The sample is ready for operation.

Description

This communication is based on a "split" data area: Provided by a module and accessible from another
module via pointers.

It is not possible that two different data pointers are linked with the same entry in an output or input data
area; without this limitation there could be synchronization problems. For this reason a ModuleDataProvider
module consolidates input and output in a standard data area, which is not subject to this restriction.

All'in all, this sample includes the following modules:

» ModuleDataProvider provides a data area, which can be accessed by the other modules.
The data area contains 4 bits (2 for input, 2 for output) and 2 integers (1 for input, 1 for output).

* ModuleDatalnOut provides "normal" input variables, which are written to the data area of the
ModuleDataProvider, and output variables, which are read from the data area.
This instance of the CModuleDatalnOut class serve as a simulation for real 0.

» ModuleDataAccessA accesses the data area of ModuleDataProvider and cyclically processes Bit1 /
BitOut1 and the integer.

TC3 C++ Version: 1.7 235

http://download.beckhoff.com/download/Software/TwinCAT/TwinCAT3/Samples/TC1300-C/Samples31/Sample10-ModuleCommunication-DataPointer/S10-Mod2ModDataPointer.zip

C++-samples BEGKHOFF

* ModuleDataAccessB accesses the data area of ModuleDataProvider and cyclically processes Bit2 /
BitOut2 and the integer.

The user of the sample triggers ModuleDatalnOut by setting the variables Valueln / Bit1 / Bit2:
* When the input "Bit1" is set, the output "Switch1" is set accordingly.
* When the input "Bit2" is set, the output "Switch2" is set accordingly.
* When the input "Valueln" is set, the output "ValueOut" is incremented twice in each cycle.

All modules are configured such that they have the same task context, which is necessary since access via
pointers offers no synchronization mechanism. The order of execution corresponds to the order specified on
the context configuration tab. This value is passed on as parameter "SortOrder" and stored in the smart
pointer of the cyclic caller (m_spCyclicCaller), which also contains the object ID of the cyclic caller.

Understanding the sample

The module ModuleDatalnOut has input and output variables. They are linked with the corresponding
variables of the data provider.

The module ModuleDataProvider provides an input and output data array and implements the ITcloCylic
interface. The method InputUpdate copies data from the input variables to the Dataln symbol of the standard
data area "Data", and the method OutputUpdate copies data from the DataOut symbol to the output
variables.

The modules ModuleDataAccessA and ModuleDataAccessB contain pointers to data areas of the data
provider via links. These pointers are initialized during the transition from SAFEOP to OP.
ModuleDataAccessA cyclically sets BitOut1 according to Bit1. ModuleDataAccessB accordingly, with
BitOut2 / Bit2. Both increment ValueOut through multiplication of the internal counter with the value Valueln.

It is important that all modules are executed in the same context, since there is no synchronization
mechanism via data pointers. The execution order is defined by the "Sort Order" in the "Context" tab of the
respective module. This is provided as parameter "SortOrder" in the SmartPointer (m_SpCyclicCaller), which
also includes the ObjectID.

15.10 Sample11: module communication: PLC module
invokes method of C-module

This article describes the implementation:

+ of a C++ module [P 237] that provides methods for controlling a state machine.
Follow this step-by-step introduction with regard to the implementation of a C++ module that provides
an interface to the state machine.

+ of a PLC module [P 251] for calling the function of the C++ module
The fact that no hard-coded link exists between the PLC and the C++ module is a great advantage.
Instead, the called C++ instance can be configured in the system manager.
Follow this step-by-step introduction with regard to the implementation of a PLC project that calls
methods from a C++ module.

Download

Get the source code for this sample:
. Unpack the downloaded ZIP file.

1

2. Open the zip file that it contains in TwinCAT 3 by clicking on "Open Project...".
3. Select your target system.

4. Build the sample on your local machine (e.g. Build->Build Solution).

5. Activate the configuration by clicking on
= The sample is ready for operation.

236 Version: 1.7 TC3 C++

http://download.beckhoff.com/download/Software/TwinCAT/TwinCAT3/Samples/TC1300-C/Samples31/Sample11-ModuleCommunication-MethodCalls/S11-Mod2ModMethod.zip

BECKHUFF C++-samples

15.10.1 TwinCAT 3 C++ module providing methods

This article describes the creation of a TwinCAT 3 C++ module that provides an interface with several
methods that can be called by a PLC and also by other C++ modules.

The idea is to create a simple state machine in C++ that can be started and stopped from the outside by
other modules, but which also allows the setting or reading of the particular state of the C++ state machine.

Two further articles use the result from this C++ state machine.

* Calling the function from the PLC logic [» 236] - i.e. affecting the C++ code from the PLC

 Calling the function from the C++ logic [» 263] - i.e. interaction between two C++ modules

This article describes:
+ Step 1: create a new TwinCAT 3 project [P_237]
» Step 2: create a new TwinCAT 3 C++ driver [P 238]

» Step 3: generate a new TwinCAT 3 interface [P 240]
» Step 4: add methods to the interface [P 241]
+ Step 5: add a new interface to the module [P 244]

 Step 6: start the TwinCAT TMC code generator to generate code for the module class description
[» 246]

+ Step 7: implementation of the member variables and the constructor [P 246]

+ Step 8: implementation of methods [P 247]

+ Step 9: implementation of a cyclic update [»_248]

« Step 10: compilation of code [P 249]
» Step 11: creating an instance of the C++ module [» 250]
» Step 12: finished; check results [P 251]

Step 1: create a new TwinCAT 3 project

First of all, create a TwinCAT project as usual.

TC3 C++ Version: 1.7 237

BECKHOFF

C++-samples

(e =]

Mew Project
P Recent NET Framework 4.5 * Sortby: Default il Search Installed Templates (Ctrl+E)
Type: TwinCAT Project

4 Installed
B TwinCAT XAE Project (XML format)

4 Templates
b Visual Basic
b Visual C#
b Visual C++
b Visual F#
SQL Server
EtherCAT AP Project
i Other Project Types
b TwinCAT Measurement
TwinCAT Project

Samples

TwinCAT Project
TwinCAT XAE SystemManager

Configuration

P Online

MName: TwinCAT Projectl
:

Cihternp',
Create directory for solution

Location:
[] Add to source control

TwinCAT Projectl

Selution name:

| ok || canca
Step 2: create a new TwinCAT 3 C++ driver
1. Right-click on C++ and Add New ltem...
m TwinCAT Projectl - Microsoft Visual Studio
FILE EDIT VIEW PROJECT BUILD DEBUG TWIMCAT
-0 lB-D-E@e - Q-
‘o B2 (& 'f.-_ <Local> -
Solution Explorer
@M o-a@ &R
Search Solution Explorer (Ctrl+)
fa] Solution TwinCAT Projectl’ (1 project)
4 ol TwinCAT Projectl
b @l SYSTEM
MOTION
PLC
‘0 Add Mew Item... Ins
*a Add Existing Item... Shift+Alt+ A
& Mappings
Version: 1.7 TC3 C++

238

BECKHOFF

C++-samples

2. Select the template "TwinCAT Driver Project” and enter a driver name, "StateMachineDrv" in this

sample. Click on Add to continue.

Add New Item - TwinCAT Projectl

4 Installed Sort by: Default -

E TwinCAT Driver Project

TwinCAT C++ Driver

P Online

E TwinCAT Static Library Project
MNarne: StateMachineDrv
Location: Chtemp\ TwinCAT Project]\ TwinCAT Projectlt

Eawall

Search Installed Templates (Ctrl+E) P~

TRt DT (s (s Type: TwinCAT C++ Driver
Creates a TwinCAT driver project.

TwinCAT C++ Driver

- Browse...

[Add

|[cancel |

3. Select a template to be used for this new driver. In this sample "TwinCAT Module Class with Cyclic 10" is
selected, since the internal counter of the state machine is available for assigning to the 10.

4. Click on Add to continue.

W TwinCAT Module Class with Cyclic I0

TwinCAT C++ Maodule

5. Specify a name for the new class in the C++ driver "StateMachineDrv".
The names of the module class and the header and source files are derived from the specified "Short

Name".

TC3 C++

Version: 1.7

239

C++-samples BEGKHOFF

6. Click on OK to continue.

- - 1
TRnCAT Class Wizard 2 |

Short name StateMachineModule
Class name CStateMachineModule
Header file name StateMachineModule.h
Source file name StateMachineModule.cpp

| el | ok

= The wizard then creates a C++ project, which can be compiled error-free.

Step 3: create a new TwinCAT 3 interface

Name conflict
A name collision can occur if the driver is used in combination with a PLC module.
* Please do not use keywords as names that are reserved for the PLC.

240 Version: 1.7 TC3 C++

BECKHOFF

C++-samples

1. Start the TMC editor by double-clicking on StateMachineDrv.tmc.

Solution Explorer
& o-d@ &R
Search Solution Explorer (Ctrl+0) P~

fa] Solution 'TwinCAT Projectl’ (1 project)
4 ol TwinCAT Projectl
b @l SYSTEM
MOTION
PLC
SAFETY
4 E C++
r StateMachineDry
4 %] StateMachineDrv Project
=3 External Dependencies
=9 Header Files
= Source Files

hk ¥ VT v

StatebachineDrv.tmc [TMC Editor] +

o & @

|| StateMachineDire.tmc

winlLAT BT Files
b = TwinCAT UM Files

2. Select Data Types within the TMC editor

3. Add a new interface by clicking on Add a new interface

= A new entry linterface1 is then listed.

4. Open linterface1 by double-clicking in order to change the properties of the interface.

F 1‘: TMC
¥ Data Types
4] Modules
F @I CStateMachineModule
2 Implemented Interfaces
[.. Parameters
[Data Areas
Iy Data Pointers
I % Interface Pointers

E_q Deployment

1

5. Enter a meaningful name - in this sample "IStateMachine"

i 2:: TMC
| %o Data Types ‘:" Add, remove and reorder Data Types.
4 g7 Modules
4 @ CStateMachineMadule @ 8= | | @l &Bye~ ! E
—_% Implemented Interfaces
| !! Parameters Name Guid Specification Size [Bits] Is Aligned
| Datz Areas |StateMachine {9ffdc3fe-4abb-£a97-8f37-1e5b15cb 1bb5} Interface 32

Wy Data Pointers

o .
[Interface Pointers

Deployment

= The interface has been created.

Step 4: add methods to the interface

1. Click on Edit Methods... to get a list of the methods of this interface:
Click on the + button to generate a new default method, Method1.

TC3 C++

Version: 1.7

241

C++-samples

BECKHOFF

2. Replace the default name Method1 by a more meaningful name, in this sample Start.

4 E_'g TMC
a %% Data Types
4 —o |StateMachine
4 %9 Methods
n Start
4 Modules
i @ CStateMachineModule
:% Implemented Interfaces
I B Parameters
I [iata Areas
iy Datz Pointers

I :(f Interface Pointers

Deployment

0 Edit the properties of the method.

General properties

Mame Start

Define the data type

HRESULT ()
Descipton

Type Information

Select

Mame HRESULT

MNamespace

Guid {18071995-0000-0000-0000-000000000015}

Define the parameters of the method

=41

Mame Type Description DefaultValue

3. Add a second method and name it Stop.

2 30 TMC
4 §* Data Types »9 Edit the properties of the method.
4 —o |StateMachine
4 %9 Methods .
W Start General properties
4 Modules Mame Stop
4 @ CStateMachineModule
—2 Implemented Interface Define the data type
=
I S5 Farameters
[Data Areas Select HRESULT E]

By Data Painters

I :c‘ Interface Pointers

Deployment

Desciption
Type Information

MName HRESULT

Mamespace

Guid {18071395-0000-0000-0000-000000000015}

Define the perameters of the method

=11

Mame Type Descnption Default'Value

4. Add a third method and name it SetState.

242

Version: 1.7

TC3 C++

BECKHOFF

C++-samples

5. Subsequently, you can add parameters by clicking on Add a new parameter or edit parameters of the

SetState method.

2 95 TNC
a4 %* Data Types
4 —o |StateMachine

0 Edit the properties of the method.

4 4# Methods 5
@ Stert General properties
M Stop
Name SetState
Pl Modules
4 @ CStateMachineModule Define the data type
—2 Implemented Interfaces
—
I By Parameters Select HRESULT D
b B Do Areas Descrtn
Iy Data Pointers T I i
| :‘(Interface Pointers ¥pe Imarmatien
Deplayment Name HRESULT
MNamespace
Guid {18071595-0000-0000-0000-000000000019}
Define the parameters of the method
dp -1 1
Mame Type Diescription Default Value
===]
= The new parameter, Parameter1, is generated by default as Normal Type INT.
6. Click on the name Parameter1 and change the name in the editing field to State.
7. After Start, Stop and SetState have been defined, define a further method.
8. Rename it "GetState".
9. Add a parameter and call it pState (which is conceived to become a pointer later on).
10. Change Normal Type to Is Pointer.
2 38 TNC
EE: 2+ Data Types 0 Edit the properties of the method.
4 —o |StateMachine
a4 %9 Methods :
W Start General properties
M Stop
W SetState Mame GetState
4 Modules Define the data type
a @ CStateMachineMadule
—2 Implemented Interfaces Select HRESULT E]
| !5 Parameters Description
| Data Areas h
3 Datz Pointers Type Infarmation
I — Interface Pointers Mame HRESULT
Deployment Namespace
Guid {18071995-0000-0000-0000-000000000015}
Define the parameters of the method
=]t
Name Type Description Default Value

=

Iz Pointer

TC3 C++

Version: 1.7 243

C++-samples BEGKHOFF

= You then obtain a list of all methods. You can change the order of the methods with the

buttons.
4 38 TMC .
4 %» Data Types H"‘ Add, remove and reorder Methods.
4 —o |StateMachine
| %o Methods e -] 1
4 ‘E Modules
4 @ CStateMachineModule Retumn Type Mame
—2 Implemented Interfaces HRESULT Start
I Bg Parameters HRESULT Stop
[Data Areas HRESULT SetState
i Data Pointers HRESULT GetState
I :cf Interface Fointers
a0 Deployment

Step 5: add a new interface to the module

1. Select the module that is to be extended by the new interface - in this case select the destination
Modules->CStateMachineModule.

2. Extend the list of implemented interfaces by a new interface with Add a new interface to the module by
clicking on the + button.

Pl {: TMC 0
a %o Data Types —p Shows the implemented interfaces of the module.
4 —o |5StateMachine
4 4% Methods .E; - | 1
@ Start _ :
W Stop MName Interface 1D Disable Code Generation
B SetState ITComObject {00000012-0000-0000-E000-000000000064}
W GetState [TeCyclic {03000010-0000-0000-E000-000000000064) [T
4 B Modules ITeADI {03000012-0000-0000-E000-000000000064)
4 ffe] CStateMachineModule ITeWatchSource {03000018-0000-0000-E000-000000000064}
—_g Implemented Interfaces
| By Parameters
I Data Areas
Iy Data Pointers
I :f: Interface Pointers
o Deployment

244 Version: 1.7 TC3 C++

BEGKHUFF C++-samples

3. All available interfaces are listed - select the new interface IStateMachine and end with OK.

T T —

Mame Guid Specification I
IstateMachine (local) {9ffdc3fe-4abb-4a97-8f97-1e5b15chblbb5} Interface
ITcAppServices {08500102-0000-0000-000-000000000064} Interface
ITcAppServices2 {08500104-0000-0000-e000-000000000064} Interface
ITcBaseClassFactery {00000018-0000-0000-000-000000000064} Interface
ITeCyclicCaller 10200001 e-0000-0000-000-000000000064} Interface
ITeloCyclic {03000011-0000-0000-e000-000000000064} Interface
IMcleCyclicCaller {0300001f-0000-0000-e000-000000000064} Interface
IMeNeDeConvert {05000005-0000-0000-000-000000000064} Interface

ITeNeDeConvert2 {05000006-0000-0000-e000-000000000064} Interface
ITComCreatelnstance {00000031-0000-0000-000-000000000064} Interface
ITComLicenseServer {01010000-0000-0000-000-000000000064} Interface

ITComObjCon {00000016-0000-0000-£000-000000000064} Interface
IMComObjectServer {00000030-0000-0000-000-000000000064} Interface
ITComObjind 100000013-0000-0000-2000-000000000064} Interface
ITComObjReq {00000015-0000-0000-£000-000000000064} Interface
ITComObjRes {00000014-0000-0000-£000-000000000064} Interface
ITcPostCyclic 102000025-0000-0000-£000-000000000064} Interface

ITcPostCyclicCaller 103000026-0000-0000-£000-000000000064} Interface
ITcPrelnputCyclic {02000017-0000-0000-£000-000000000064} Interface

ITcRTime {0200000d-0000-0000-e000-000000000064} Interface
ITcRTimeTask {02000003-0000-0000-2000-000000000064} Interface
| ITeTask {02000002-0000-0000-000-000000000064} Interface
|
[] Show hidden data types [0K] [Cancel]

= The new interface IStateMachine is part of the module description.

2 B8 TNC o _ _
| % Data Types -0 Shows the implemented interfaces of the module.
4 E Modules
4 @ CStateMachineMaodule el 11
—_% Implemented Interfaces . -
| L-‘EI Parameters Mame Interface 1D Disable Code Generation
I Data Areas [TComObject {00000012-0000-0000-E000-000000000064}
Iy Datz Pointers TeCydlic {03000010-0000-0000-E000-000000000064} [
I == Interface Pointers [TeADI {03000012-0000-0000-E000-000000000064}
[E] Deployment TcWatchSource {03000018-0000-0000-E000-D00000000064}
|StateMachine {9ffdc3fe-4a6b-4a97-8197-1e5b15cb1bb5} []

TC3 C++ Version: 1.7 245

C++-samples

BECKHOFF

Step 6: Start TwinCAT TMC code generator

1. In order to generate the C/C++ code on the basis of this module, right-click in the C/C++ project and then

select the TwinCAT TMC Code Generator.

Solution Explorer MR I8 Cpploduletmc [TMC Editor] & X

@ o-dv [

Search Solution Explorer (Ctrl+)

fa] Solution 'TwinCAT PlcToCppProject’ (1 project)
4 ol TwinCAT PlcToCppProject
b @l SYSTEM
MOTION
PLC
SAFETY
F E C++
4 CppModule
d @ CppModrsl= Draiat

b &S

b=

b .

4 o bl Build
[Rebuild

b E; Clean

o~

o & @

4 :E:TMC

4 * Data Types
4 —9 |StateMachine
4 5% Methods
W Start
W Stop
M SetState
M GetState
4 %] Modules
4 M CModulel
—2 Implemented Interfaces
I Bg Parameters
[Data Arcas
Wy Data Pointers
I =% Interface Pointers
E Deployment

= The module StateMachineModule.cpp now contains the new interfaces

CModule1: Start()

CModule1: Stop()

CModule1: SetState(SHORT State)
CModule1: GetState(SHORT™* pState).

Step 7: implementation of the member variables and the constructor

Add the member variables to the header file StateMachineModule.h.

246 Version: 1.7

TC3 C++

BECKHOFF

C++-samples

Solution Explorer
@& o-d@ © &R

Search Selution Explorer (Ctrl+a) P~
fa] Solution 'TwinCAT Project PLC calling C-Me
F H_'I TwinCAT Project PLC calling C-Method
b @l SYSTEM
MOTION
Ol PLC
P PLC-calling-statemachine
SAFETY
a E C++
P StateMachineDry
4 [B] StateMachinelrv Project
b =2 External Dependencies
4 &g Header Files
B Resourceh
StateMachineDrvClassF
StateMachineDrvInterfa
StateMachineDneServic
StateMachineModule.h
TcPch.h

[EC I E IR F= R P

Step 8: implementation of methods

StateMachineModuleh + X

(Global Scope)

100 %%

HRESULT AddModuleToCaller();
VOID RemoveModuleFromCaller();

///<AutoGeneratedContent id="Members":
TcTracelevel m_TraceLevelMax;
StateMachineModuleParameter m_Parameter;
StateMachineModuleInputs m_Inputs;
StateMachineModuleOQutputs m_Outputs;
ITcCyclicCallerInfoPtr m_spCyclicCaller;

///</AutoGeneratedContent:

// Tracing
CTcTrace m_Trace;

// TODO: Custom variable
UINT m_counter;

BOOL m_bRun;

SHORT m_State;

1s
- 4

Implement the code for the four methods in the StateMachineModule.cpp:

TC3 C++

Version: 1.7

247

C++-samples

BECKHOFF

[/ <sutoGeneratedContent id="Implementation

S|HRESULT CModulel::Start()

1
HRESULT hr = 5_0K;
m_bRun = TRUE;
return hr;

1

S|HRESULT CModulel::Stop()

1
HRESULT hr = 5_0K;
m_bRun = FALSE;
return hr;

1

S[HRESULT CModulel::SetState(SHORT State)
1
HRESULT hr =
m_5tate = 5ta
return hr;

5_0K;
te;

}

SHRESULT CModulel::GetState(SHORT* pState)
1
HRESULT hr = S_0K;
*pState = m_State;
return hr;

}

///</AutoGeneratedContents

Step 9: implementation of a cyclic update

i

_IstateMachine">

The C++ module instance is cyclically called, even if the internal state machine is in Stop mode.

« If the state machine is not to be executed, the m_bRun Flag signals that the code execution of the

internal state machine is to be quit.

« [f the state is "1" the counter must be incremented.
« |f the state is "2" the counter must be decremented.

» The resulting counter value is assigned to Value, which is a member variable of the logical output of
the data area. This can be assigned to the physical IO level or to other data areas of other modules at

a later time.

248 Version: 1.7

TC3 C++

BECKHOFF

C++-samples

Solution Explorer

@ -

< MR

Search Solution Explorer (Ctrl+)

4 [Off PLC
3 PLC-calling-statemachine
SAFETY
4 E C++
P StateMachineDre
4 [%] StateMachineDrv Project
b =3 External Dependencies
4 &g HeaderFiles
B Resource.h
StateMachineDrvCla
StateMachineDnvnt:
StateMachineDrvSer
StateMachineMaodul
B TcPch.h
4 &g] Source Files
G StateMachineDrv.rc
+¢ StateMachineDreCla
++ StateMachineModul
++ TcPch.cpp
b =8 TMC Files
b B TwinCAT RT Files

FEFE

[E2)

Step 10: compilation of code

L ELO T LTI N SRl StateMachineModule.h

= CStateMachineModule

= @ CycleUpdate(ITcTask * ipTask, [TcUnknown * i
///<AutoGeneratedContent id="ImplementationOf_ITcCyclic">
EIHRESULT CStateMachineModule::CycleUpdate(ITcTask* ipTask, ITcUnknown* ipCaller, ULONG_PTR context)

HRESULT hr = S_0K;

// TODO: Replace the sample with your cyclic code
if (!m_bRun)
return hrj

switch (m_State)

{

case 1:
m_counter+t;
break;

case 2:
m_counter--;
break;

m_Outputs.Value=m_counter;

return hrj

///</hutoGeneratedContent>

1. Following the implementation of all interfaces, compile the code by right-clicking on the state machine

and selecting Build.

O TwinCAT Project PLC ¢

alling C-Method - Microsoft Yisual Studio

FILE EDIT VIEW PROJECT BUILD DEBUG TWINCAT PLC TEAM SQL
G - ?ﬁ - .:"D - i)ﬂ (N 1Y L LW] L | [N e =1
. i s TwinCAT TMC Code Generator
‘B Be\N® TwinCAT Publish Modules l
Solution Explorer & Build cl
ar - d @ Rebuild
Search Solution Explorer (Ctrl Clean |
4 PLC Project Only b
b [PLC-calling-s Scopeto This
HeAE Mew Sclution Explorer View m;
4 E C++
4 StateMachine Profile Guided Optirnization k
4 i) StateMac Calculate Code Metrics
b EZ Extern: _ _
4 5 Heade Project Dependencies...
B Res Project Build Order...
B Sta Build Customizations...
B Sta add b
Star
B St References...
B Tcf B Class Wizard... Ctrl+ Shift+ X

2. Repeat the compilation and optimize your code until the result looks like this:

TC3 C++

Version: 1.7 249

C++-samples BEGKHOFF

Output
Show output from: |Build '| | 3 | Sl | = | =]
1> Touching “C:\TwinCAT3\SDK_prodEcts\TwinCAT RT (x86)\Debug\StateMachineDrv\StateMachineDrv.lastbuildstate”.
1>
1>Build succeeded.
1>

1>Time Elapsed ©@:08:91.808
========== Build: 1 succeeded, @ failed, @ up-to-date, @ skipped ==========

=

Step 11: creating an instance of the C++ module
1. Right-click on the C++ project and select Add New Item... to create a new module instance.

Solution Explorer S 8 StatellachineModule.cpp & X StateMachineModule.h

m o-g &L =* (CStateMachineModule
. i . !/ /<futoGeneratedContent id="Implementatic
SR L e P - EIHRESULT CStateMachineModule::CycleUpdate(]
fad Solution ‘TwinCAT Project PLC calling C- = 1
4 ol TwinCAT Project PLC calling C-Meth HRESULT hr = 5_OK;
b @l SYSTEM .
MOTION a'_".-" TODO: Replace the sample with your
P F'LC if {!m_bRun)
return hr;
[+ @ PLC-calling-statermachine
SAFETY switch {m_State)
4 [Rd Cov {
- Statefdachin=le case 1:
4 &5 °'0O AddNewltem.. Ins
b E X Remove Del

4 &

Rename

Save StateMachinelry As...

Bl Covem Tt a R Aol Al e Aerbhinen

2. Select the module that is to be added as a new instance — in this case CStateMachineModule.

Insert TcCom Object T W —]

Search: I are: Statet achineDry_Obj1 [CState achinetdoduls) [ak,]

Type: EI--@ C++ Module Vendar [Cancel]
EI@ C++ Maodules

{il CStatetd achinetdodule [Maodule] . o
Multiple: 1 IZ'

|nzert Instance. .

Feload

3. Assign the instance to a task:

250 Version: 1.7 TC3 C++

BEGKHOFF C++-samples

R A Sl TwwinCAT Project PLC calling C-Method & X

Solution Explorer StateMachineModule.cpp

T - _I —
@ o-a@ *#R ‘wjmemrw}lﬂataﬂmalﬂafmlheﬁmFMQ
Search Solution Explorer (Ctrl+) 2
Context: [1
fad Solution 'TwinCAT Praject PLC calling C-Me
4 o] TWinCAT Project PLC calling C-Method Depend On: [Manual Config
4 [svsTEM Need Call From Sync Mapping
L Llcensv.? Data Areas: Interfaces:
@ Real-Time
4 [¥]0 'Inputs’
1 Outputs’
Bl Task1 ?
clas|
sls Routes Data Pointer: Interface Pointer:
TcCOM Ohjects
MOTION

4 WPLC

P PLC-caIIing-statemachine

SAFETY Result:
F] C++
P StateMachinelire = |Task Name
StateMachinelry Project Ulﬂlﬂﬂlﬂ
a StateMachineDrv_Objl [*lat{ 00000000
| — YT 08500010 :PchuxTask'
b [l Outputs
> « Evo

Step 12: finished - check the result
1. Navigate to the module listed in the solution tree and select the Interfaces tab on the right-hand side.
= The new interface "IStateMachine" is listed

Selution Explorer = A @l TwinCAT Project PLC calling C-Method & > JSeTE W EN I It (1Nl StateMachineModule.h
@ eo-d@ &R | Obiect | Context | Parameter (iit) | Data Area | Interfaces | interfacs Pointer |
Search Solution Explorer (Ctrl+ Q) P~
o . . i) | Name
&7 Solution ‘TwinCAT Project PLC calling C-Me
4]l TwinCAT Project PLC calling C-Method 00000012-0000-0000-E000-000000000064 ITComObject
4 gl svysTEM 03000010-0000-0000-E000-000000000064 IMcCyclic
[License 03000012-0000-0000-E000-000000000064 ITcADI
) % ?eal'(':'me 03000018-0000-0000-E000-000000000064 ITcWatchSource
%asTaskl OFF4C3FE-446B-4A07-8F97-1ESBLSCELBES IStateMachine
[PlcTask
=f= Routes
TeCOM Objects
MOTION
4 [PLC
[PLC-caIIing-statemachine
SAFETY
Fl ﬂ C++

4 StateMachineDrv

4
4| [stateMachineDrv_Objl {cs:}
b 1 1 ey

b I Outputs

15.10.2 Calling methods offered by another module via PLC

This article describes how a PLC can call a method that is provided by another module; in this case the
previously defined C++ module.

» Step 1: check available interfaces [P 252]

» Step 2: create a new PLC project [P 253]

TC3 C++ Version: 1.7 251

C++-samples BEGKHOFF

+ Step 3: add a new FB-StateMachine [P_253] (which acts as the proxy that calls the C++ module
methods)

» Step 4: clean up the function block interface [P 256]

+ Step 5: add FB methods "FB init" and "exit" [»_257]

+ Step 6: implement FB methods [P 258]

« Step 7: call FB-StateMachine in the PLC [» 261]

» Step 8: compile PLC code [P 262]

« Step 9: link PLC FB with C++ instance [P 262]

» Step 10: observe the execution of the two modules, PLC and C++ [P 263]

Step 1: check available interfaces
Option 1:
1. navigate to C++ module instance

2. Select the Interfaces tab.
= The IStateMachine interface is in the list with its specific IID (Interface ID)

B T T o1 G G >l Tw/inCAT Project PLC calling C-Method + X el ETGIENEE TR <1 StateMachineModule.h
G o-a *[[Object | Context | Parameter (int) | Data Area | Interfaces | interface Pointer
Search Solution Explorer (Ctrl+a) -
o :] o MName
R Solution ‘TwinCAT Project PLC calling C-Me
4l TwinCAT Project PLC calling C-Method 00000012-0000-0000-E000-000000000064 ITComObject
4 HS\"STEM 03000010-0000-0000-E000-000000000064 IMeCyclic
[® License 03000012-0000-0000-E000-000000000064 ITcADI
) gl $EEL'ST”“E 03000018-0000-0000-E000-000000000064 ITcWatchSource
%ﬂsTask 1 OFF4C3FE-4AGB-4A97-8FI7-1E5B15CB1BRS I5tateMachine
[PleTask
=l= Routes
TcCOM Objects
MOTION
4 PLC
b [PLC-calling-statemachine
SAFETY
rl ﬂ Ce+

P StateMachineDrv

4
A| [5] StateMachineDrs_Objl (CStaf
[N 1 I s

b [Outputs

Option 2:
1. navigate to System
2. Select the Interfaces tab.

252 Version: 1.7 TC3 C++

BEGKHUFF C++-samples

= The IStateMachine interface is in the list with its specific IID (Interface ID)

Solution Brplorer s Praject PLC calling C- StateMachineModule.cpp StateMachineModule.h
.
@ o-d #R | General | Settings | Data Types | Interfaces | Functions
Search Solution Explorer (Ctrl+d) 2~
=
5] Solution TwinCAT Project PLC calling C-M¢ | | | ™2™ Lt) Methods Extend Befient
A PLC calling C-Method TTcWUserStarage 36897409-476A... 6 TTcUnknown (00000001-0000-0000-E000-0... | (0)
ITcWStorageAccess 654FBDE7-1EC... 5 ITcUnknown (00000001-0000-0000-E000-0... | (0)
TTcWSystemStorage A222292-9757... 5 ITcUnknown (00000001-0000-0000-E000-0... | (0)
g. ?eaL'T'"‘E IeloAmpPingRecy 03010096-0000-... 2 TTcUnknown (00000001-0000-0000-E000-0... | (2]
Fl asks
& Task1 ITcloArpPing 0301009E-0000-... 5 ITcUnknown (00000001-0000-0000-E000-0... | [0]
[PlcTask ITeloUdpProtocolRecy 03010095-0000-... 1 ITcUnknown (00000001-0000-0000-E000-0... | [1]
g7z Routes ITcloUdpProtocel 03010097-0000-... 4 ITcUnknown (00000001-0000-0000-E000-0... | [0]
(@] TeCOM Objects ITecloTepProtocolRecy 03010099-0000-.. 2 ITcUnknown (00000001 -0000-0000-E000-0... | [1]
3 TTeloTepProtocol 03010098-0000-... 11 TTcUnknown (00000001-0000-0000-E000-0... | [0]
TTclolpStackContral 0301009D-0000... 2 TTcUnknown (00000001-0000-0000-E000-0... | [0]
4 IehlTuata QS010001.0000. 4 ITcUnknown (00000001-0000-0000-E000-0... | [0]
4 [StateMachineDrv 9FFACIFE-4AGE... ITeUnknown (00000001 -0000-0000-E000-0... 4
b [l StateMachineDrv Project
4 [{§] StateMachineDrv_Objl (CState hd
3 Inputs [Show Hidden Interfaces
Oy es..
4 Fro {attribute "ct++_compatible'} -
2, Devices {attribute "vtable order' := 'Start;Stop;SetState;GetState’}
LIS INTERFACE IStateMachine EXTENDS ITcUnknown
a’) Mappings .
</interface> -
The lower section shows the stored code in different programming languages.
Step 2: Creating a new PLC project
" H 1} n H H LU
A "standard PLC project" called "PLC-calling state machine" is created.
1. Right-click on the PLC node.
2. Select Standard PLC Project.
3. Adapt the name.
Solution Explorer = TwinCAT Project PLC calling C-Method # X StateMachineModule.cpp StateMachineModule.h
o-g
@ o-d@ »E General | Pic Settings
Search Solution Explorer (Ctrl+) P~
k] Solution TwinCAT Project | Adq New frem - TwinCAT Project PLC calling C-Method =]
4 ol TwinCAT Project PLC cg
4 @ svsTem 4 Installed Sort by: Default - Search Installed Templates (Ctr+E) P =
License
PleT lat 3
@ Real-Time ¢ lemprates . Standard PLC Project Plc Templates Type: Plc Templates
a % Tasks b Online Creates a new TwinCAT PLC project
[En Task1 Empty PLC Project Plc Templates SR C RS B I T
[&1 PlcTask
%= Routes
B8] T<COM Objects
MOTION
b [0 Untitledl
SAFETY
4 E C++
4 T}
b [l StateMachine|
4 li‘ StateMachine|
3 Inputs -
b [Outputs F
i L’O Name: PLC-calling-Statemachine r
% Devices Location: Ci\Users\henningm.BECKHOFF\Desktop'tmp\511-Mod2ModMethod\ TwinCAT Project PLC calling ~
4 Bappi
e [awa |

= The project has been successfully created.

Step 3: Add a function block (FB) (which serves as the proxy for calling the C++ module methods)
1. Right-click on POUs

TC3 C++ Version: 1.7 253

C++-samples

BECKHOFF

2. Select Add->POU....

m TwinCAT Project PLC calling C-Method - Microsoft Visual Studio

FILE EDIT WIEW PROJECT BUILD DEBUG TWINCAT PLC TEAM SQL TOOLS TEST SCOPE ADS AMNALYZE
e A-mea X G ST T @ pou..) i)
wE B2 <Local» - . @& 8 POUfor implict checks... Lhir ~
DUT...
Solution Explorer AW 8 TwinCAT Project PLC callin ﬁg StateMachi
S o-d@ &R @ Global Variable List... —_—
- E H -
= General El Referenced Task...
Search Solution Explorer (Ctrl+ Q) P~ @ Visualization..
[Z1 PlcTask - ﬁl TwinCAT Sy Visualization Manager...
s Routes] v3.1{Build 4 ﬂ Recipe Manager...
[E8] TcCOM Objects >
] MOTION TwinCAT Image Pool...
4 PLC = Interface...
4 PLC-caIIing-Statemachine P& Paramneter List...
4 EPLC-caIIing-Statemachine Copyright BE Texct List
P[4 External Types hittp o/
b i References @ Class Diagram...
CJ DUTs *a Existing lem... Shift+Alt+4A
L4 GVLs ‘M Mew Folder
4 Existing Folder Content...
E Yl Add 3 g
3 VISUs [gs Import PLCopen¥ML...
2 P p
b g PicTa g2 Export PLCopenXML...
[&] PLC-calli
SAFETY ¥ Cut Ctrl+X
] EC.H. ol Copy Ctrl+C
4 StateMachin 3 Delete Del
b % StateMac I Rename
4 StateMac
b Input: & Properties Alt+Enter Auto Start Port
[N T TEmT PLC-calling-Statermnachine X 851

3. Define a new FB to be created, which will later act as a proxy for calling C++ classes: Enter the name of

the new FB: FB_StateMachine.

254 Version: 1.7

TC3 C++

BECKHOFF

C++-samples

4. Select Function Block, then Implements and then click on the ... button.

Add POU

25’

@ Create a new POU (Program Organization Unit)

Marme:
FB_StateMachine
Type:
() Program
@ Function Block
[Extends:
Implements:

Method implementation language:

[St’uch..lred Text (ST)

() Function

Implementation [anguage:

[Structhed Text (5T)

Cpen][Cancel]

4

5. Select the interface either via the Text Search tab or the Categories tab by deselecting Structured

View:

Input Assistant

(=]

Categories

Interfaces NP YT Lune Origin it

= IstateMachine INTERFACE
T TTCR DT
=0 ITcAppServices
=3 ITcAppServices2 INTERFACE £
= ITcBaseClassFadory INTERFACE
= ITeCyclic
=0 ITeCyclicCaller i
=0 ITcEthernetAdapter
= ITcFileAccess INTERFACE
=2 ITcloCyclic INTERFACE
=2 ITcIoCyclicCaller
=0 ITcloECatLrwMemory INTERFACE
=0 ITcIoEthProtocol INTERFACE
= ITcMcDcConvert INTERFACE
=2 ITcNcDcConvert2 INTERFACE
=2 ITcNcTrafo INTERFACE i
[T structured view

Ninr imentatinn:

6. Select IStateMachine and click on OK.

Insert with arguments

Insert with namespace prefix

TC3 C++ Version: 1.7

255

C++-samples BEGKHOFF

= The IStateMachine interface is then listed as the interface to be implemented.
7. Select Structured Text (ST) as Method implementation language.
8. Select Structured Text (ST) as implementation language.
9. End this dialog with Open.

" Add POU)

@ Create a new POU (Program Organization Unit)

Mame:
FB_StateMachine
Type:
") Program

@ Function Block

[] Extends: s

Implements: [StateMachine E]

Method implementation language:

[Struch.lred Text (5T) -]
() Function

Implementation language:
Structured Text (ST) -]

= You have successfully added the FB.

Step 4: Customizing the function block interface

As a result of creating an FB that implements the IStateMachine interface, the wizard will create an FB with
corresponding methods.
The FB_StateMachine makes 4 methods available:

+ GetState

» SetState

« Start

» Stop

1. Delete Implements IStateMachine. Since the function block should act as proxy, it does not implement
the interface itself. Therefore, it can be deleted.

2. Delete the methods TcAddRef, TcQuerylInterface and TcRelease. They are not required for a proxy
function block.

256 Version: 1.7 TC3 C++

BECKHOFF

C++-samples

= The result is:

Solution Explorer AR FE Statemachine = X TwinCAT Project PLC calling C-Method

& o-am FR

Search Solution Explorer (Ctrl+)

Fi PLC-calling-5tatemachine o
4 :—; PLC-calling-5tatermachine
b [J Bxternal Types

[[-2] References

1

P~

e T L T R

o

FUNCTION BLOCK FB Statemachine
VAR INFUT

END VAR

VAR _OUTFUT

END VAR

VAR

END VAR

Cd DUTs
C3 GVLs
4 [POUs

4 7] FB_Staternachine (Ft
4 GetState
Gy SetState
|Gy Start
ﬁ;l Stop

& MAIN (PRG)

3 vIsUs

[H'B;j PlcTask (PlcTask)
@ PLC-calling-5taternachine .

Step 5: Add FB methods "FB_init" (constructor) and "FB_exit" (destructor)
1. Right-click on FB_StateMachine in the tree and select Add / Method...

Solution Explorer ARl FE Statelachine®™ & X TwinCAT Project PLC calling C-Method

m ® -G Eﬂ y? Ej 1 FUNCTION BLOCK FE StateMachine
Z WAR INFUT
Search Solution Explorer (Ctrl+) Jolb 2 EHD_m
=f= Routes - 41 VAR OUTPOUT
@] T<COM Objects 5| EED VAR
MOTION i Iy
4 [OfrLc o ERR
4 PLC-calling-Staternachine i
4 :—3 PLC-calling-5taternachine I
b [d Bdernal Types 1
[+ [-3] References
£ DUTs
Cd GVLs
4 [POUs
4 B FBS
ﬁ;l G Add b
[S¢ [#2 Import PLCopenXML... Method...
E“ :: % Export PLCopenXML... Property...
u':j ::Mh ¥ cut Chrl+3 & Transition...
[VISUs Ol Copy Ctrl+C ‘M MNew Folder
b @& PleTask(3 Delete Del
[@] PLC-calling: y.. o
SAFETY
4 E C++ e Open
4 StateMachineDi Open With...
[: % ::::ZE:E::; Properties Alt+Enter

TC3 C++

Version: 1.7 257

BECKHOFF

C++-samples

2. Add the methods FB_exit and FB_init - both with Structured Text (ST) as the implementation language.
They are available as predefined name.

Add Method ==

o)

o

Iﬁa Create a new method

Marme:

8

FB_exit |

FE_init
FB_reinit

Implementation language:
[St’uch..lred Text (ST)

Access specifier:

[d

Open] [Cancel

3. Exit the dialog in each case by clicking on Open.
= In the end, all required methods are available:

4 PLC
P PLC-caIIing-stater‘nachine
4 =] PLC-calling-staternachine Project
» [External Types
» |+g] References
[DUTs
[1 GVLs
4 | POUs
4 FB_StateMachine (FE)
5y FB_exit
5 FB_init
5y GetState
5 SetState

(G Start
E,} Stop
MAIN (PRG)

Step 6: implement FB methods

Now all methods have to be filled with code.

258 Version: 1.7 TC3 C++

BEGKHOFF C++-samples

Missing attributes lead to unexpected behavior

Attribute statements in brackets represent code to be added.

More precise information on the attributes is given in the PLC documentation.

1. Implement the variable declarations of the FB_Statemachine. The FB itself does not require cyclically
executable code.

FB_StateMachine.FB_exit FB_StateMachine.FB_init Z=E CIE RTINS T TwinCAT Project PLC calling C-Method
5 END VAR
= & VAR
7 attribute 'TclnitSymbol
8 cidInstance : OTICID;
5 ipStateMachine : IStateMachine; // interface pointer to the C++ StateMachine module instance

10 hrInit : HRESULT;
11 END VAR

2. Implement the variable declarations and the code area of the method FB_ exit.

FB_StateMachine.FB_eat™ & X JEiBS =M ETa A= 0T FB_Statebdachine™
1 METHOD FE exit : BOOL
= 2z VAR INPUT
3 bInCopyCode : BOOL; /4 if TRUE, the exit method 15 called
2 END VAR
5

L
[N
= 1 IF WOT bInCopyCode THEN // no onlins change
i FW_SafeRelease (ADR(ip3tateMachine));
3 END IF
3. Implement the variable declarations and the code area of the method FB_init.
FB_StateMachine.FB_ext™ FB_StateMachine.FB_init* + X JEiRSwiat Ela i o TwinCAT Project PLC calling C-Method
1 METHOD FB init : BOOL
= 2 VAR INPUT
E bInitRetaing : BOOL; // if TRUE, the retsin varisbles are initislized (warm start / cold start)
4 bInCopyCode : BOOL; // if TRUE, the instance afterwvards gets moved inte the copy code (online change)
s END VAR
[&
- 1 IF NOT bInCopyCode THEN // no online change
= z IF ipStateMachine = 0 THEN
- kS hrInit := FW_ObjMgr_GetCbjectInstance(oid:=ocidInstance,
4 iid:=TC_GLOBAL_IID LIST.IID IStateMachine,
5 pipUnk:=ADR (ipStateMachine));
& END_IF
7 END_IF
g

TC3 C++ Version: 1.7 259

C++-samples

BECKHOFF

4. Implement the variable declaration and the code area of the method GetState
(the generated pragmas can be deleted as they are not required for a proxy FB).

RN = L Rl T A e e = - FBStateMachine FB_exit™ FB_StateMachine.FB_init*

1 METHOD GetState : HEESULT
- z VAR INFUT
3 p3tate : POINTER TO INT;
4 END VAR
=
L .
- 1 IF (ipStateMachine <> 0) THEHN
Z FetState:= ipStateMachine.FetState (pState);
3 END IF

5. Implement the variable declaration and the code area of the method SetState
(the generated pragmas can be deleted as they are not required for a proxy FB).

FB_StateMachine. SetState™ & X JRiiSeins i Ela IR el= el FB_StateMachine.FB_exat™
1 METHOD SetState : HRESULT
- Z VAR INFUT
3 State : INT:
4 EHND VAR
. —
[I
- 1 IF {ipStateMachine <> () THEN
2 SetState:= ipStateMachine.SetState (State)
2 END IF

6. Implement the variable declaration and the code area of the method Start
(the generated pragmas can be deleted as they are not required for a proxy FB).

S E G ENG TGRS E el FB Statebachine. SetState™ FB_StateMachine Get5tate™

1 METHOD Start : HRESULT

-

IF ({ipStateMachine <> () THEHN
Start:= ipStateMachine.3tart();
END IF

w R

7. Implement the variable declaration and the code area of the method Stop
(the generated pragmas can be deleted as they are not required for a proxy FB).

2 T T RS LT R FE_Statefachine. Start FB_StateMachine SetState™

1 METHOD Stop : HRESULI

[o
- 1 IF {ipStateMachine <> 0) THEN
2 Stop:= ipStateMachine.Stop():
3 END IF

260 Version: 1.7

TC3 C++

BECKHOFF C++-samples

= The implementation of the "FB_StateMachine", which acts as the proxy for calling the C++ module
instance, is completed.

Step 7: call FB in the PLC
The FB_StateMachine is now called in the POU MAIN.

This simple sample acts as follows:
* Cyclic incrementation of a PLC counter nCounter

» If nCounter = 500, the C++ StateMachine is started with the state "1" in order to increment its internal C
++ counter. Then read the state of C++ using GetState().

¢ If nCounter = 1000, the C++ state machine is set to the state "2" in order to decrement its internal C++
counter. Then read the state of C++ using GetState().

» If nCounter = 1500, the C++ StateMachine is stopped. The PLC counter is also set to 0, so that
everything starts again from the beginning.

TwinCAT Project PLC calling C-Methed FB_StateMachine.GetState
FROGRAM MATH
WAR
nCounter : INT;
nCurrent3tate : INT;
fh5tateMachine : FB_S3tateMachine;
END VAR

[T - LR % T =]

[=}]

-1

nCounter := nCounter +1;

IF nCounter = 500 THEHN

fbkStateMachine

1
ol W Rk

[=}]

-1

END IF

IF nCounter = 1000
fkStateMachine

[Y = ¥ §)

I I
[% I

END IF
IF nCounter = 1300

18 nCounter := 07
17 END IF

fkStateMachine.
fkStateMachine.

fkStateMachine.

fkStateMachine.

.Jetdtate(l);
FetState (ADR (nCurrentState)) »
Start():

THEH
.SetState (2);
FetState (ADR (nCurrentState))

THEHN
Stop () -

TC3 C++

Version: 1.7

261

C++-samples

BECKHOFF

Step 8: compile PLC code
1. Right-click on the PLC project and click on Build.

ﬂ TwinCAT Project PLC calling C-Methed - Microsoft Visual Studio

FILE EDIT VIEW PROJECT BUILD DEBUG
i @l Xaa P
& ','.‘ <Local>

TWINCAT PLC

Solution Explorer Al [VAIN® = 2 FB_StateMachine.Stop

SCOPE ADS ANALYZE WINDO

TwinCAT RT

TEAM 30L
P TwinCAT Debugger -

TOOLS TEST
Debug -
| = :E‘ Henning Mersch | = PLC_calling_Statemachir ~

FB_StateMachine.Start FB_StateMachine. SetState™

E Save as library ...
3 VIsU: Save as library and install ...
b PlcTe Rermaove Del
28] PLC-call
SAFETY Properties Alt+Enter

= The compilation result shows "1 succeeded - 0 failed".

& eo-ailm &R 1 PROGRAM MAIN
= 2 VAR
Search Selution Explorer (Ctrl+) P~ 3 nCounter : INT:
=f= Routes - 4 fbStateMachine : FB_StateMachine;
[&B] TcCOM Objects 5| EHD VAR
MOTION , - —
4 PLC 1 nCounter := nCounter +1;
M} PLC-calling-Statemachine Z
] % PLC-callipasi = 2 IF nCounter = 500 THEN
b [J Exter SetState(l):
Start():
b (= Refer o pag g
3 DUT: .
3 GVLs Rebuild
4 [= POU Check all objects THEN
‘ ,ﬁ A al SetState(2):
I ean
* Add
S
I_E H Add Solution to Source Control... [TEER
h Stop() 7
B (g2 Import PLCopenXML...
! |g# Export PLCopenXML...

Show output from: Build

Rebuild All started:
PLC.PlcCaller :
PLC.PlcCaller :
generate TMC information...

import symbol information...
PLC.PlcCaller :
========== Rebuild All:

Step 9: link PLC FB with C++ instance

The benefits of all previous steps now become apparent:

Project: PlcCaller, Configuration:
message: The application is up to date
message: Build complete -- @ errors, @ warnings

meszzage: generate boot information...
1 succeeded, @ failed, @ skipped ==========

= = |
Debug TwinCAT RT (x64)

ready for download!

The PLC FB FB_StateMachine can be configured with regard to linking with every instance of the C++
module StateMachine. This is a very flexible and powerful method of connecting PLC and C++ modules on

the machine with each other.

1. Navigate to the instance of the PLC module in the left-hand tree and select the Symbol Initialization tab

on the right-hand side.

= All instances of FB_StateMachine are listed; in this example we have only defined one FB instance in

POU MAIN.

262 Version: 1.7

TC3 C++

BEGKHOFF C++-samples

2. Select the drop-down field Value and then the C++ module instance that is to be linked to the FB

instance.
Solution Explorer o X MAIN FB_StateMachine.Stop FB_StateMachine.Start FB_StateMachine.SetState TwinCAT Project PLC calling C-Method +# X
T
@ o-a &F |Db’ed | Conted | Parameter (Init) | Data ﬂ'&‘ﬂ Symbol Initialization ‘ I
. e——
Search Solution Explorer (Ctrl+) P~
b [References . |Name |Va|ue Unit Type Comment
3 DUTs MAIN.fbStateMachine.oidInstance 00000000 D
3 GVLs
4 [POUs 02010020 'PlcTask'

4@ Rl (i 01010010 ‘StateMachineDrv_Objl (CStateMachineModule)’
ﬁ} FB_exit
I_ZIGI FB_init
5 GetState
[SetState
5 start
|_;|\7| Stop

[F] MAIN (PRG)
3 VISUs
!ﬂ PLC-calling-5tatemachi

PLC-calling-Stat hine:
.I (@ caling-otatemac '"'EI Enpglsil

2]

4 ﬂ C++ T - 0 Errors ! 0 Warnings o 14 Messages Clear Search Error List
4 [l StateMachineDry Description & File Line Cal... Proje
b [% StateMachineDrv Project
4 [fH] StateMachineDrv_Objl (CS'
3 Inputs

= PLC and C++ module are connected to each other.

Step 10: observe the execution of the two modules, PLC and C++

Following the activation of the TwinCAT configuration and the downloading and starting of the PLC code, the
execution of the two codes, PLC and C++, is simple to observe:

1. After the Login and Start of the PLC project, the editor is already in online mode (left-hand side — see
following illustration).

2. In order to be able to access online variables of the C++ module, activate the C++ debugging [P 61] and
follow the steps in the quick start [P 50] in order to start the debugging (right-hand side of the following

illustration).
Disassembly MAIN [Onling] & X Sl TwinCAT Live Watch & X -
Expression Type Value E > m_ePendState .
@ nCounter INT 1354 D [» m_accessCnt
@ nCurrentState INT 2 b m_Trace
+ & fbStateMachine FB_5StateMachineCaller ! aceleySiax
[m_Parameter
@ nErr DINT 0 > m_Inputs
» m_Outputs
& m_spCyclicCaller
m_counter
4 4 m_bRun
— - . m_State
1@ nCounter M| = nConnter{ESN) +1- > 001010020 PlcCaller Instance
- 0id:01020003 TeDebuggerTask -
= 3 IF nCounter i34 | = 500 THEN
4@ FbStateMachine.SetState|{1J H Nam.e aluc Type
5 fbStateMachine.Getstate (ADR(nCurrentStatel 2) : (0id01010010).m_State 2 =hort
~ R (001010010}, m_counter 147 unsigned int
& fb5tateMachine.Start () ;
7 END_IF
8
= E IF nCounter i34 | = 1000 THEN
10 fbStateMachine.SetState (2);
11 fbStateMachine.GetState (ADR(nCurrentState 2 |));
1z END IF
13 -
= 14 IF nCounter[i34 | = 1500 THEN
15 fbStateMachine.Stop():
16 nCounter| 1354 | := 0;

17 END_IFEETEN]

15.11 Sample11a: Module communication: C module calls a
method of another C module

This article describes how TC3 C++ modules could communicate via method calls. The method protects the
data with a critical section thus the access could be initiated from different contexts / tasks.

TC3 C++ Version: 1.7 263

C++-samples BEGKHOFF

Download

Here you can access the source code for this sample.
1. Unpack the downloaded ZIP file.
2. Open the zip file that it contains in TwinCAT 3 by clicking on "Open Project...".
3. Select your target system.
4. Build the sample on your local machine (e.g. Build->Build Solution).

5. Activate the configuration by clicking on
= The sample is ready for operation.

Description

The project contains three modules:

« The instance of the CModuleDataProvider class hosts the data and protects against access via the
"Retrieve" and "Store" methods through a Critical section.

» The instance of the module class "CModuleDataRead" reads the data from the DataProvider by calling
the Retrieve method.

» The instance of the module class "CModuleDataWrite" writes the data from the DataProvider by calling
the Store method.

The read/write instances are configured for access to the DataProvider instance, which can be seen in the
"Interface Pointer" menu on the instance configuration.

The context (task), in which the instances are to be executed, can also be configured there. In this sample
two tasks are used, TaskRead and TaskWrite.

The "DataWriteCounterModulo" parameters of "CModuleDataWrite" and DataReadCounterModulo
("CModuleDataRead") enable the moment to be determined, at which the module instances initiate the
access.

CriticalSections are described in the SDK in TcRtInterfaces.h and are therefore intended for the real-time
context.

15.12 Sample12: module communication: Using 1O mapping

This article describes how two TC3 C++ modules could communicate via the usual 10 mapping of TwinCAT
3: Two instances are linked via IO mapping and access the variable value periodically.

Download

Here you can access the source code for this sample.
1. Unpack the downloaded ZIP file.
2. Open the zip file that it contains in TwinCAT 3 by clicking on "Open Project...".
3. Select your target system.
4. Build the sample on your local machine (e.g. Build->Build Solution).

5. Activate the configuration by clicking on
= The sample is ready for operation.

Description

Both instances are realized by means of a module class "ModuleInToOut": The class cyclically copies its
input data area "Value" to its output data area "Value".

The "Front" instance acts as front end for the user. An input "Value" is transferred to the output "Value" via
the method cycleupdate(). This output "Value" of "Front" is assigned to (linked with) the input "Value" of the

264 Version: 1.7 TC3 C++

http://download.beckhoff.com/download/Software/TwinCAT/TwinCAT3/Samples/TC1300-C/Samples31/Sample11-ModuleCommunication-MethodCalls/S11a-Mod2ModCS.zip
http://download.beckhoff.com/download/Software/TwinCAT/TwinCAT3/Samples/TC1300-C/Samples31/Sample12-ModuleCommunication-IOMapping/S12-Mod2ModIOMapping.zip

BEGKHOFF C++-samples

instance "Back".
The "Back" instance copies the input "Value" to its output "Value", which can be monitored by the user (see
the following quick start steps to start debugging: Debugging a TwinCAT 3 C++ project [P 63])

Ultimately, the user can specify the input "Value" of the "Front" instance and monitor the output "Value" of
"Back".

15.13 Sample13: Module communication: C-module calls
PLC methods

This article describes how a TwinCAT C++ module calls a methods of a PLC function block via the TcCOM
interface.

Download
System requirements: TwinCAT 3.1 Build 4020

Here you can access the source code for this sample.
. Unpack the downloaded ZIP file.

1

2. Open the zip file that it contains in TwinCAT 3 by clicking on "Open Project...".
3. Select your target system.

4. Build the sample on your local machine (e.g. Build->Build Solution).

5. Activate the configuration by clicking on
= The sample is ready for operation.

Description

This sample provides for communication from a C++ module to a function block of a PLC by means of
method call. To this end a TcCOM interface is defined that is offered by the PLC and used by the C++
module.

The PLC page as a provider in the process corresponds to the corresponding project of the TcCOM Sample

01 [» 281], where an PLC is considered after PLC communication. Here a Caller is now provided in C++,
which uses the same interface.

The PLC page adopted by TcCOM Sample 01 [» 281]. The function block registered there as TcCOM module
offers the object ID allocated to it as an output variable.
It is the C++ module’s task to make the offered interface of this function block accessible.

v" A C++ project with a Cycle IO module is assumed.

TC3 C++ Version: 1.7 265

http://download.beckhoff.com/download/Software/TwinCAT/TwinCAT3/Samples/TC1300-C/Samples31/Sample13-CppToPLC/S13-CppToPLC.zip

C++-samples BEGKHOFF

1. In the TMC editor, create an interface pointer of the type |_Calculation with the name Calculationn). Later
access occurs via this.

CppCaller.tme (Tve Eaitor] - < |
@
4 E.[g TMC Medule Classes . . .

I %% Data Types —(Edit the properties of the Interface Pointer.

4 1 Modules
4 [fz] CCppCallerModule

—2 Implemented Interfaces Cozol iz =
I By Parameters
I Data Areas MName Calculation
B Data Pointers -
4 =% Interface Pointers Choose interface type
— CyclicCaller
Select |_Caleulation (local) ()
=8 Deployment
Type Information
Namespace
Guid 14d0cS030-560a-45f3-897b-05120422b033}
Configure the parameter I1D User defined...
Unique 1D Value #x00000002

Constant Name FID_CppCallerModuleCalculation
Optional interface pointer settings

Comment

Context ID

|| Dizable code generation

2. The Data Area Inputs have already been created by the module wizard with the type Input-Destination.
Here in the TMC editor you create an input of the type OTCID with the name oidProvider, via which the
Object ID will be linked from the PLC later.

cppcatlertme ric Eaor) -+ |

okl

4 E_'g TMC Module Classes
| %% Data Types Edit the properties of the Symbol.

4 5] Modules
4 fiz] CCppCallerModule

—2 Implemented Interfaces E=rEnl
I Bg Parameters
4 Data Areas Name oidProvider
« 5 Inpts Speciicaton

] Symbals

oidProvider Choose data type
B Datz Pointers

I =% Interface Pointers Select OTCID E]

Deployment
Descrption | Normal Type -

Type Information

MNamespace

Guid {18071355-0000-0000-0000-00000000000F}

3. All other symbols are irrelevant for the sample and can be deleted.

266 Version: 1.7 TC3 C++

BEGKHOFF C++-samples

= The TMC-Code-Generator prepares the code accordingly.
In the header of the module some variables are created in order to carry out the methods calls later.

4 E Co++ CppCallerModuleInputs m_InEutsJ'.
4 CppCaller ITcCyclicCallerInfoPtr m_spCyclicCaller;
4 [%] CppCaller Project I CalculaticnPtr m_spCalculation;
I ['g External Dependencies i
4 L. Header Files

J/ TODO: Custom wvariable

CppCallerClassFactory.h SHORT m a3
CppCallerlnterfaces.h SHORT m resAdd;
CppCallerModule.h SHORT m resSub:
CppCallerServices.h 1; -
Resource.h

TcPech.h

[=B References
In the actual code of the module in CycleUpdate() the interface pointer is set using the object ID
transmitted from the PLC. It is important that this happens in the CycleUpdate() and thus in real-time
context, since the PLC must first provide the function block.
When this has taken place once, the methods can be called.

Solution Explorer * & X CppCallerModule.h CppCallerModule.cpp + X [Sfle]] 55| CppCallertmc [TMC Editor]
Gﬁ‘ - & @| o f = CppCaller - = CCppCallerModule -l@
CIHRESULT CCppCallerModule: :SetObjState0s
Search Solution Explerer (Ctrl+;) P~ 7 ppeatierfiodule N jstates()
"] Selution TeCOM_Sampledl_PlcToPle' (L project) m_Trace.Log(tlVerbose, FENTERA);
4 nﬂ TcCOM_Samplell_PlcToPlc
b @ svsTEMm HRESULT hr = 5_0K;
k= MOTION
b pLC RemoveModuleFromCaller();
(| SAFETY // TODO: Add any additional deinitialization
4 [l e+ m_spCalculation = NULL;
E CppCaller
4 [%] CppCaller Project m_Trace.Log(tlverbose, FLEAVEA "hr=@x¥esx", hr);
P F'g External Dependencies return hr;
4 L] Header Files }

[% CppCallerClassFactory.h
[M CppCallerInterfaces.h
CppCallerModule.h

£

#HRESULT CCppCallertiodule::SetObjstatesP()[| ... 1 |

[@ CppCallerServices.h i
[A Resource.h CJHRESULT CCppCallerModule: :CycleUpdate(ITcTask* ipTask, ITcUnknown* ipCaller, ULONG_PTR context)
@ TcPch.h {
P =B References HRESULT hr = 5_0K;
4 .. Source Files
[CppCaller.rc = if ((m_spCalculation == NULL) &2 m_Inputs.cidProvider != @)
: {

++ CppCallerClassFactory.cpp

m_spCalculation.5et0ID(m_Inputs.cidProvider);
++ CppCallerModule.cpp

m_spSrv->TcQuerySmartObjectInterface(m_spCalculation);

++ TcPch.cpp ¥
4 . TMCFiles
[CppCallertme = if (m_spCalculation != NULL)
b 5 TwinCAT RT Files {
b 57 TwinCAT UM Files m_spCalculation->Addition(m_a, m_a+l, m_resAdd);
b @ CppCaller Objl (CCppCallerModule) m_spCalculation->Subtraction({m_a+l, m_a, m_resSub);
> Evo ria-H,'
return hr;
¥
1

In addition, as can be seen above, the interface pointer is cleared when the program shuts down.
This happens in the SetObjStateOS method.

4. Now build the C++ project.
5. Create an instance of the module.

TC3 C++ Version: 1.7 267

C++-samples BEGKHOFF

6. Connect the input of the C++ module to the output of the PLC.

Solution Explorer W'l CppCallerServices.h TcCOM_Samplell_PlcToPlc ® X CppCallerModule.h
@) | CRg=) | " Variable | Flags |Online
Search Solution Explorer (Ctrl+;) P~
Mame: oidProvider
fa] Solution ‘TcCOM_Sampledl_PIcToPlc' (1 project)
4 gl TcCOM_Sample0l_PlcToPlc Type: 0TCID
b [l SYSTEM Group: Inputs Size: 4.0
MOTION
b PLC Address: 0 (0=0) User ID: 0
E EAFETY MAIN fbCalc.objlD . PlcTask Outputs . Provider Instance . Provider
Fi ++
4 CppCaller Comment:

b [%] CppCaller Project
F] @ CppCaller_Objl (CCppCallerModule)
4 Inputs

5! oidProvider
=

ADS Info: Port: 350, 1Grp: &x1010010, IOffs: (x80000000, Len: 4

Full Name: TIHC " CppCaller"CppCaller_Obj1 (CCppCallerModule)™Inputs “oid Provider

= The project can be started. When the PLC is running, the OID is made known through the mapping to the
C++ instance. Once this has occurred, the method can be called.

15.14 Sample19: Synchronous File Access

This article describes how to implement a TC3 C++ module which accesses files on the hard disk within the
startup of a module, thus within the real-time environment.

Download

Get the source code for this sample

1. Unpack the downloaded ZIP file.
2. Open the zip file that it contains in TwinCAT 3 by clicking on "Open Project...".

3. Select your target system.
4. Build the sample on your local machine (e.g. Build->Build Solution).

5. Activate the configuration by clicking on
= The sample is ready for operation.

The whole source code, which is not automatically generated by the wizard, is identified with the comment
start flag "//sample code" and the comment end flag "//sample code end".
In this way you can search for these strings in the files, in order to get an idea of the details.

Description

This sample describes file access via the TwinCAT interface "ITCFileAccess". The access is synchronous
and can be used for reading a configuration during startup of a module, for example.

The sample contains a C++ module "TcFileTestDrv" with an instance of this module "TcFileTestDrv_Obj1".
In this sample the file access takes place during the transition "PREOP to SAFEOP", i.e. in the
"SetObjStatePS()" method.

Helper methods encapsulate file handling.

First, general file information and a directory list is printed to the log window of TwinCAT 3. Then, a file
"%TC_TARGETPATH%DefaultConfig.xml" (normally "C:\TwinCAT\3.x\Target\DefaultConfig.xml") is copied
to "%TC_TARGETPATH%DefaultConfig.xml.bak".

268 Version: 1.7 TC3 C++

http://download.beckhoff.com/download/Software/TwinCAT/TwinCAT3/Samples/TC1300-C/Samples31/Sample19-FileIO-Sync/S19-FileIOSync.zip

BECKHUFF C++-samples

For access to the log entries, see tab "Error List" of the TwinCAT 3 output window.
The amount of information can be set by changing the variable TraceLevelMax in the instance
"TcFileTestDrv_obj1" in tab "Parameter (Init)".

15.15 Sample20: FilelO-Write

This article describes the implementation of TC3 C++ modules, which write (process) values to a file.

The writing of the file is triggered by a deterministic cycle - the execution of File 10 is decoupled
(asynchronous), i.e.: the deterministic cycle continues to run and is not hindered by writing to the file.

Download

Here you can access the source code for this sample
1. Unpack the downloaded ZIP file.
2. Open the zip file that it contains in TwinCAT 3 by clicking on "Open Project...".
3. Select your target system.

4. Build the sample on your local machine (e.g. Build->Build Solution).

5. Activate the configuration by clicking on
= The sample is ready for operation.
Description

The sample includes an instance of "TcAsyncWritingModule", which writes data to the file "AsyncTest.txt" in
directory BOOTPRJPATH (usually C:\TwinCAT\3.x\Boot).

TcAsyncBufferWritingModule has two buffers (m_Buffer1, m_Buffer2), which are alternately filled with current
data. The member variable m_pBufferFill points to the buffer that is currently to be filled. Once a buffer is
filled, the member variable m_pBufferWrite is set such that it points to the full buffer.

These data are written to a file with the aid of TcFsmFileWriter.

Note that the file has no human-readable content, such as ASCII characters; in this sample, but binary data
are written to the file.

15.16 Sample20a: FilelO-Cyclic Read / Write

This article is a more comprehensive sample than S20 and S19. It demonstrates cyclic read and/or write
access to files from a TC3-C++ module.

Download

Here you can access the source code for this sample
. Unpack the downloaded ZIP file.

1

2. Open the zip file that it contains in TwinCAT 3 by clicking on "Open Project...".
3. Select your target system.

4. Build the sample on your local machine (e.g. Build->Build Solution).

5. Activate the configuration by clicking on
= The sample is ready for operation.
Description

This sample shows how to access files reading and/or writing from the CycleUpdate method, thus in a cyclic
way.

TC3 C++ Version: 1.7 269

http://download.beckhoff.com/download/Software/TwinCAT/TwinCAT3/Samples/TC1300-C/Samples31/Sample20-FileIO-Write/S20-FileIOWrite.zip
http://download.beckhoff.com/download/Software/TwinCAT/TwinCAT3/Samples/TC1300-C/Samples31/Sample20-FileIO-Write/S20a-FileIO-CyclicReadWrite.zip

C++-samples BEGKHOFF

This sample contains the following projects and module instances.

« A static library (TcAsyncFilelo) providing the file access.
Code for file access could be shared, thus this code is located in a static library used by the driver
projects.

* One driver (TcAsyncBufferReadingDrv) providing two instances
o ReadingModule: Uses the static library to read the file AsyncTest.ixt
o WriteDetectModule: Detecting write operations and initializing reads
* One driver (TcAsyncBufferWritingDrv) providing one instance
o WriteModule: Uses the static library to write the file AsyncTest.txt
When starting the sample, the writing module starts writing data to the file, which will be located in the

Bootproject-Path (usually C:\TwinCAT\3.x\Boot\AsyncTest.ixt). The input variable “bDisableWriting” could be
used in inhibit writing.

The objects are connected to each other: After writing is done the WritingModule triggers the DetectModule
of the TcAsyncBufferReadingDrv. This initiates a read operation by the ReadingModule.

Please monitor the “nBytesWritten” / “nBytesRead” output variables of the WritingModule / ReadingModule.
Additionally, log messages are generated on level “verbose”. As usual, these could be configured using the
TraceLevelMax Parameter of the modules.

* One driver (TcAsyncFileFindDrv) providing one instance
o FileFindModule: Uses the static library to list files of a directory

Use the input variable “bExecute” to trigger the action. The Parameter “FilePath” holds the directory to list
(default: “c:\TwinCAT\3.1\Boot*”).

Please monitor the trace (Loglevel “Verbose”) for list of found files.
Understanding the sample

The project TcAsyncFilelO contains various classes in a static library. This library is used by driver projects
for reading and writing.

Each class is intended for a file access operation such as Open / Read / Write / List / Close / Since
execution takes place in a cyclic real-time context, each operation has a status, and the class encapsulates
this state machine.

To read up on file access, please start with the TcFsmFileReader and TcFsmFileWriter classes.

If too many history tracking messages occur, which hamper understanding of the sample, you can disable
modules!

See also

Sample S19 [»_268]

Sample S20 [»_269]

Sample S25 [»_274]

Interface ITcFileAccess [» 143] / Interface ITcFileAccessAsync [P 151]

15.17 Sample22: Automation Device Driver (ADD): Access
DPRAM

This article describes how to implement a TC3 C++ driver which acts as a TwinCAT Automation Device
Driver (ADD) accessing the DPRAM.

270 Version: 1.7 TC3 C++

BECKHOFF

C++-samples

Download

Here you can access the source code for this sample.

. Select your target system.

o O A WN

7. Activate the configuration by clicking on
= The sample is ready for operation.

Description

Read the configuration details below before activation
Unpack the downloaded ZIP file.
. Open the zip file that it contains in TwinCAT 3 by clicking on "Open Project...".

. Build the sample on your local machine (e.g. Build->Build Solution).
. Note the actions listed on this page under Configuration.

This sample is prepared to switch the network adapter's "Link Detect Bit" (i.e. of a CX5010) on and off,

cyclically.

The C++ module is connected to the NOV/DP-RAM Device via the Interface Pointer "PciDeviceAdi" of the C

++ module.

Configuration

To make the sample work, the hardware addresses must be configured to match your own hardware.

Check the PCI configuration:

Selution Explorer

:; Solution "TwinCAT Project with DPRAM' (1 pj
a a TwinCAT Project with DPRAM
> |l SYSTEM
MOTION
PLC
SAFETY
4 @ C++
4 TcPciIoDr\.r
> @] TcPciloDrv Project
s @ TcPeiloDre_Objl (CModuleDP
y 0
2 " Devices
> Devicel (NOV/DP-RAM)
& Mappings

A rvincar prsectvitn oorav <

@ FCI
Vendor D (hex):
Device 1D (hex):
BaseAddr (0-5):
Bus/Slat {Addr):

) RAM [e.g. 15A4)

Address

Size:

Export/Import Data

General | Generic NOV/DP-RAM Device | DPRAM {Online}|

-

S |
@ Unused
Al
Help

To check whether the communication with NOV/DPRAM is set up correctly, use the DPRAM (Online) view:

TC3 C++

Version: 1.7

271

http://download.beckhoff.com/download/Software/TwinCAT/TwinCAT3/Samples/TC1300-C/Samples31/Sample22-Access-DPRAM/S22-ADD.zip

C++-samples

BECKHOFF

Solution Expore Feven e s B

o o | Genersl | Generic NOV/DP-RAM Devics | DPRAM (Oniine) |
_; Selution TwinCAT Project with DPRAM' (1 p
4 2] TwinCAT Project with DPRAM Offset: Hex: [C] Show Characters
s [@ sYSTEM 0000 o1 00 01 00 10 06 04 OR R4 88 00 00 43 43 41 54 -
M License nolo 00 00 00 00 00 00 00 00 00 00 00 00 00 40 00 o0 |_|
. @ Real-Time nozo 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
B Tasks 0030 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
ng40 09 00 00 00 00 48 80 80 00 00 07 00 00 00 01 00
gfz Routes 0050 0D 00 00 00 18 00 00 00 00 03 00 00 20 40 00 00
] TcCOM Objects 0060 10 00 00 00 00 00 00 00 00 04 00 00 80 00 00 00
MOTION 0070 03 00 00 00 00 10 00 10 00 60 02 00 00 20 00 00
PLC nggo 11 00 00 00 00 00 00 00 80 02 00 00 10 00 00 00
SAFETY nggo 00 00 00 00 00 00 00 00 00 00 40 00 00 40 00 00
. [l o+ 0OA0 OF 00 00 00 00 00 00 00 00 08 00 00 00 08 00 00
. o noBO 12 00 00 00 00 00 00 00 00 02 00 00 20 00 00 00
4 T Devices noco 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
: i 0oDo 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
a E.E""CE“NOV"DP'P”""MJ NOEQ 00 00 00 00 00 00 00 00 00 00 00 00 00 40 00 00
+ Image 00F0 00 00 00 00 00 00 00 00 00 00 00 00 00 40 00 00
Inputs 0100 00 00 00 00 00 00 00 00 00 00 00 00 00 40 00 00
M Outputs 0110 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
& Mappings 0120 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 -

15.18 Sample23: Structured Exception Handling (SEH)

This article describes the use of "Structured Exception Handling" (SEH) on the basis of five variants.

Download

Here you can access the source code for this sample.
1. Unpack the downloaded ZIP file.
2. Open the zip file that it contains in TwinCAT 3 by clicking on "Open Project...".
3. Select your target system.
4. Build the sample on your local machine (e.g. Build->Build Solution).

5. Activate the configuration by clicking on
= The sample is ready for operation.

Description
The sample contains five variants that demonstrate the use of SEH in TwinCAT C++:

Exception in the case of a NULL-pointer access

Exception in the case of a NULL-pointer access with a filter
Exception with Finally

A customer-specific structured exception

Exception with Continue block

arobd =

272 Version: 1.7

TC3 C++

http://download.beckhoff.com/download/Software/TwinCAT/TwinCAT3/Samples/TC1300-C/Samples31/Sample23-SEH/S23-SEH.zip

BEGKHOFF C++-samples

All of these variants can be selected via a drop-down box at the instance of the C++:

Solution Explorer

Object | Cortext | Parameter (Init) Interface Poirter
G Solution "TwinCAT SEHProject’ (1 project) --
+ Wi;vC:TTEsfHP"’jm [pTCID [Name [value cs [unit Type
’ MOTION 0:00000001 SampleType SampleType_NullPtr{ l_ ESampleType
pLC SamEIeTiﬁe_NuHPtr
SAFETY SampleType_Finally
4 gl e SampleType_CustomException
4 SEHSample SampleType_ContinueException
4 @ SEHSample Project SampleType_None

i fgd External Dependencies
b [0 Header Files
4 |7 Source Files
&4 SEHModule.cpp
(54 SEHSamplerc
¢+ SEHSampleClassFactory.cpp
Qﬂ TePch.cpp
b [TMC Files
1> [TwinCAT RT Files
& [TwinCAT UM Files
[&] sEHSample

After selecting a variant you can also write the value at runtime by right-clicking on the first column:

Object | Context | Parameter {int) | interfaces | Interface Pointer |

PTCID | Name | Value |cs | unit

Online Read Ype SampleType_ContinueException LI I_

Online Write

All variants write trace messages to illustrate the behavior, so that messages appear in TwinCAT
Engineering:

Error List

&) 13 Errors | ‘:ﬁ 0 Warnings | (i) 456 Messages | Clear

Description

L) 34 20112015 110404 620 ms | " hwinCAT System’ (LUOOO): Starting CUM Server | cUpcUaberver !
(i34 2011.201511:02:24 532 ms | 'TCOM Server' (10): SEHSample: Simple Exception handling in cycle 35
(1) 35 2011.201511:02:25 482 ms | 'TCOM Server' (10): SEHSample: Simple Exception handling in cycle 190
()36 2011.201511:02:26 432 ms | 'TCOM Server' (10): SEHSample: Simple Bxception handling in cycle 285
()37 2011.201511:02:27 382 ms | 'TCOM Server' (10): SEHSample: Simple Exception handling in cycle 380
(i) 3% 20.11.201511:02:28 332 ms | 'TCOM Server' (10): SEHSample: Simple Exception handling in cycle 475
()39 2011.201511:02:29 2582 ms | 'TCOM Server' (107: SEHSample: Simple Exception handling in cycle 570

Understanding the sample

The selection in the drop-down box is an enumeration that is used in the CycleUpdate() of the module for
selecting a case (switch case). As a result the variants can be considered independently of one another
here:

1. Exception in the case of a NULL-pointer access
Here, a PBYTE is created as NULL and used afterwards, which leads to an exception.
This is intercepted by the TcTry{} block and an output generated

2. Exception in the case of a NULL-pointer access with a filter
This variant also accesses a NULL pointer, but in TcExcept{} it uses a method, FilterException(), that
is also defined in the module. Reactions take place to different exceptions within the method; in this
case a message is merely output.

3. Exception with Finally
Once again a NULL pointer access, but this time a TcFinally {} block is executed in every case.

TC3 C++ Version: 1.7 273

C++-samples BEGKHOFF

4. A customer-specific structured exception
By means of TcRaiseException() an exception is generated that is intercepted and processed by the
FilterException() method. Since this is an exception defined in the module, the FilterException()
method additionally outputs a further (specific) message.

5. Exception with Continue block
Once again a NULL pointer access with TcExcept{}; however, this time the exception is forwarded af-
ter handling in the FilterException() method so that the further TcExcept{} also handles the exception.

15.19 Sample25: Static Library

This article describes how to implement a TC3 C++ static library module and you to make use of that
module.

Download

Here you can access the source code for this sample.

1. Unpack the downloaded ZIP file.
2. Open the zip file that it contains in TwinCAT 3 by clicking on "Open Project...".

3. Select your target system.
4. Build the sample on your local machine (e.g. Build->Build Solution).

5. Activate the configuration by clicking on
= The sample is ready for operation.
Description

The sample contains two projects: The project "DriverUsingStaticLib" uses the static content of the project
"StaticLib".

StaticLib: On the one hand "StaticLib" offers a function "ComputeSomething" in StaticFunction.h/.cpp.
On the other hand an interface "ISamplelnterface" is defined (see TMCEditor) and implemented in the
MultiplicationClass.

DriverUsingStaticLib: In the CycleUpdate method of the "ModuleUsingStaticLib", both the class and the
function of "StaticLib" is used.

Understanding the sample

Follow the steps below to create and use a static library.

® Manual recompilation

Note that Visual Studio does not automatically recompile the static library during driver develop-
ment. Do that manually.

v' During development of a C++ project use the "TwinCAT Static Library Project" template for creating a
static library.

v' For the following steps use the "Edit" dialog of VisualStudio, so that afterwards %(AddtitionallncludeDi-
rectories) or %(AdditionalDependencies) is used.

274 Version: 1.7 TC3 C++

http://download.beckhoff.com/download/Software/TwinCAT/TwinCAT3/Samples/TC1300-C/Samples31/Sample25-Static-Library/S25-StaticLibrary.zip

BECKHUFF C++-samples

1. In the driver add the directory of the static library to the compiler under Additional Include Directories.

DriverUsingStaticLib Property Pages

[7[=]
Configuration: | Active(Debug) = | Platform: | Active(TwinCAT RT (x8)) ~| | configuration Manager... |
» Commen Properties - Additional Include Directories $(ProjectDir).\StaticLib; % (AdditionallncludeDirectories)
4 Cenfiguration Properties I Resolve #using References
General Debug Information Format Program Database for Edit And Continue (/Z1)
Debugging Common Language RunTime Support
WC++ Directories Suppress Startup Banner Yes (/nologo)
4 C/C+s Warning Level Level3 (W3)
Gen_era_l . Treat Warnings As Errors Mo (/WX-)
Optimization Multi-processor Compilation Yes (/MP)
Preprocessor

i Use Unicode For Assembler Listing
Code Generation | _

Language
Precompiled Heade
Output Files
Browse Informaticon
Advanced
Command Line

2. Add this as an additional dependency for the linker in the driver, which uses the static library. Open the
project properties of the driver and add the static library:

Untitledl Property Pages |I”E|
Configuration: ’Active(Release) v] Platform: lActi\re(TwinCAT RT (x04)) "] [Configuration Manager...]
» Common Properties - Additional Dependencies StaticProject.lib;%(AdditionalDependencies)
4 Configuration Properties I Ignore All Default Libraries Yes (fMODEFAULTLIB)
General Ignore Specific Default Libraries
Debugging Module Definition File
VC++ Directories Add Module to Assembly
o C/Ces Embed Managed Resource File
a Linker Force Symbol References
General Delay Loaded Dlls
Inpu-t) Assembly Link Resource
Manifest File
Debugging
System
Optimization E
Embedded IDL

15.20 Sample26: Execution order at one task

This article describes the determination of the task execution order if more than one module is assigned to a
task.

Download

Here you can access the source code for this sample.
1. Unpack the downloaded ZIP file.
2. Open the zip file that it contains in TwinCAT 3 by clicking on "Open Project...".
3. Select your target system.

4. Build the sample on your local machine (e.g. Build->Build Solution).

5. Activate the configuration by clicking on
= The sample is ready for operation.

TC3 C++ Version: 1.7 275

http://download.beckhoff.com/download/Software/TwinCAT/TwinCAT3/Samples/TC1300-C/Samples31/Sample26-SortOrder/S26-SortOrder.zip

C++-samples BEGKHGFF

Description

The sample contains one Module “SortOrderModule” which is instantiated two times. The “Sort Order”
determines the execution order, which could be configured via the TwinCAT Module Instance Configurator

[»_124].

For demonstration purpose the “CycleUpdate” method traces Object-Name and -ID together with the sort
order of that module. Within the console window one could see the execution order:

(i) 32 05.09.2014 13:01:14 343 ms | 'TCOM Server' (10): CSortOrderModulenCyclelpdate() Tam "SortOrderl’ (0:01010010) w/ SortOrder 150
(i) 33 05.09.2014 13:01:14 343 ms | "TCOM Server' (10): CSortOrderModule:CyclelUpdate() I am "SortCrder2’ (0010100200 w SortOrder 170
(i) 34 05.09.2014 13:01:15 343 ms | "TCOM Server' (10): CSortOrderModulenCyclelpdate() I am "SortCrderl’ (0010100100 w SortOrder 150
(i) 35 05.09.2014 13:01:15 343 ms | 'TCOM Server' (10): CSortOrderModulenCyclelpdate) Tam "SortOrder?’ (0:01010020) w/ SortQrder 170
(i) 36 05.09.2014 13:01:16 343 ms | "TCOM Server' (10): CSortOrderModule:CyclelUpdate() I am "SortCrderl’ (0010100100 wy SortOrder 150
(i) 37 05.09.2014 13:01:16 343 ms | "TCOM Server' (10): CSortOrderModulenCyclelpdate() I am "SortCrder2’ (0010100200 w SortOrder 170

Within the sample one instance is configured with Sort Order 150 and one with 170 while they are both
assigned to one task

Understanding the sample
v" A TcCOM C++ module with cyclic 10.

1. The module requires a context-based parameter "Sort order of task", which will automatically select
"PID_Ctx_TaskSortOrder" as name.
Note that the parameter must be an alias (specification) of data type UDINT:

4 E,_': ™C .
2o Data Types = Edit the properties of the parameter.

4 fgg Modules
4[] CSortOrderModule

:C‘,_] Implemented Interfaces General properties

a 55 Parameters
= TracelevelMax Name TaskSortOrderContext1Parameter I
= TaskSortOrderContext1Parameter Specification [Alias v]
4 Data Areas
4 Inputs Choose data type
I Symbols
| [y Outputs
I Data Pointers Seloct JIIBIN) E]
I Interface Pointers Type Information
Deplayment Mamespace
Guid {18071995-0000-0000-0000-000000000008}
Caonfigure the parameter ID

Select the property which should be taken from the given contexd
Select the context

1D Value #x030020E0

Constant Name

2. Start the TMC Code Generator in order to obtain the standard implementation.
3. Since the code is modified in the next step, disable the code generation for this parameter now.

4 2_‘: ™C
2o Data Types Optional parameter settings
4 By Modules
4 @ CSortOrderModule Size [Bits] w64 specific
—
—8 Implemented Interfaces B4 specific
4 S5 Parameters
= TracelevelMax Comment
| &= TaskSortOrderContext1Parameter
a Data Areas Context ID
4 Inputs [Cpecte combol
I Symbols Disable code generation
| [l Outputs
I Data Pointers - ;
I =% Interface Pointers O Hld‘_a sub items
Deployment [Online parameter

[T] Read-onky

4. Make sure you accept the changes before restarting the TMC Code Generator:
Take a look at the CPP module (SortOrderModule.cpp in the sample). The instance of the smart pointer
of the cyclic caller includes information data, including a field for the sorting order. The parameter value
is stored in this field.

276 Version: 1.7 TC3 C++

BEGKH“FF C++-samples

Y,
// Set parameters of CSortOrderModule
BEGIN SETOBJPARA MAP (CSortOrderModule)
SETOBJPARA DATAAREA MAP ()
///<AutoGeneratedContent id="SetObjectParameterMap">
SETOBJPARA VALUE (PID TcTraceLevel, m TraceLevelMax)
SETOBJPARA ITFPTR(PID Ctx TaskOid, m spCyclicCaller)
///</ButoGeneratedContent>
SETOBJPARA TYPE CODE (PID Ctx TaskSortOrder, ULONG, m spCyclicCaller.GetInfo()-
>sortOrder=*p) //ADDED
//generated code: SETOBJPARA VALUE (PID Ctx_ TaskSortOrder, m TaskSortOrderContextlParameter)
END_SETOBJPARA MAP ()

L1117 7 7770777777777 777777777 77

// Get parameters of CSortOrderModule

BEGIN_ GETOBJPARA MAP (CSortOrderModule)

GETOBJPARA DATAAREA MAP ()

///<AutoGeneratedContent id="GetObjectParameterMap">
GETOBJPARA VALUE (PID TcTracelLevel, m TraceLevelMax)
GETOBJPARA_ITFPTR(PID_Ctx_TaSkOid, m_sprCliCCaller)

///</BRutoGeneratedContent>
GETOBJPARA TYPE CODE (PID Ctx TaskSortOrder, ULONG, *p=m_spCyclicCaller.GetInfo()-

>sortOrder) //ADDED
//generated code: GETOBJPARA VALUE (PID Ctx TaskSortOrder, m TaskSortOrderContextlParameter)

END GETOBJPARA MAP ()

5. In this sample the object name, ID and sort order are tracked cyclically:

// TODO: Add your cyclic code here

m_counter+=m_Inputs.Value;

m_Outputs.Value=m counter;

m Trace.Log(tlAlways, FNAMEA "I am '%s' (0x%08x) w/ SortOrder %d ", this->TcGetObjectName (),
this->TcGetObjectId() , m spCyclicCaller.GetInfo()->sortOrder); //ADDED

6. The sorting order can also be transferred as the fourth parameter of the method
ITcCyclicCaller::AddModule(), which is used in CModuleA::AddModuleToCaller().

7. Allocate a task with a long cycle interval (e.g. 1000 ms) to the instances of this module, in order to limit
the tracking messages sent to the TwinCAT Engineering system.

8. Assign a different "sorting order" to each instance via the TwinCAT Module Instance Configurator [P 124]:

| ObJectI Context IPammaer {Imit} I Data Area I Interfaces I Interface Polnter|

Context: [-

Depend On: [Manua\ Config 'l

[7] Need Call From Sync Mapping

Data Areas: Interfaces:

[¥]0 Inputs”

[¥]1 Cutputs”

Data Pointer: Interface Pointer:

Result:

jo} Task MName Pricrity Cycle Time (ps) | Task Port Symbol Port 'Lim |
1 02010010 [~] Task1 1 1000000 350 350 | 150 ;||
e

15.21 Sample30: Timing Measurement

This article describes how to implement a TC3 C++ module which contains time measurement
functionalities.

Download

Here you can access the source code for this sample.
1. Unpack the downloaded ZIP file.
2. Open the zip file that it contains in TwinCAT 3 by clicking on "Open Project...".
3. Select your target system.
4. Build the sample on your local machine (e.g. Build->Build Solution).

TC3 C++ Version: 1.7 277

http://download.beckhoff.com/download/Software/TwinCAT/TwinCAT3/Samples/TC1300-C/Samples31/Sample30-StopWatch/S30-Timing.zip

C++-samples BEGKHGFF

5. Activate the configuration by clicking on
= The sample is ready for operation.

Description

This sample exclusively deals with time measurement such as
* Querying the task cycle time in nanoseconds
* Querying the task priority

» Querying the time when the task cycle starts at intervals of 100 nanoseconds from 1 January 1601
(UTC).

* Querying the distributed clock time when the task cycle starts in nanoseconds since 1 January 2000.

* Querying the time when the method is called at intervals of 100 nanoseconds since 1 January 1601
(UTC).

See also

ITcTask interface [» 165]

15.22 Sample31: Functionblock TON in TwinCAT3 C++

This article describes the implementation of a behavior in C++, which is comparable with a TON function
block of PLC / IEC-61131-3.

Source

Here you can access the source code for this sample.

1. Unpack the downloaded ZIP file.

2. Open the zip file that it contains in TwinCAT 3 by clicking on "Open Project...".
3. Select your target system.
4

. Build the sample on your local machine (e.g. Build->Build Solution).

5. Activate the configuration by clicking on
= The sample is ready for operation.

Description

The behavior of the module is comparable with a module created by the “Cyclic 10” wizard. m_input.Value is
added to the m_Output.Value. In contrast to the “Cyclic 10” one, this one only adds m_input.Value to
m_Output.Value, if a defined timespan (1000ms) is elapsed.

This is achieved by a class CTON, which is comparable to the TON functionblock of PLC / 61131.

Understanding the Sample

The C++ class CTON (TON.h/.cpp) provides the behavior of a TON functionblock of the PLC / 61131. The
method Update() is comparable to the body of the functionblock, which needs to be triggered regularly.

w9

The Method Update() gets two “in” parameters:
» IN1: starts timer with rising edge, resets timer with falling edge
» PT: time to pass, before Q is set

And two “out” parameters:

* Q:is TRUE, PT seconds after IN had a rising edge
* ET: elapsed time

278 Version: 1.7 TC3 C++

http://download.beckhoff.com/download/Software/TwinCAT/TwinCAT3/Samples/TC1300-C/Samples31/Sample31-CTON/S31-CTON.zip

BEGKHOFF C++-samples

Additionally, the ITcTask needs to be provided for retrieving the time base.

See also

Sample30: Timing Measurement [» 277]

ITcTask interface [» 165]

15.23 Sample35: Access Ethernet

This article describes the implementation of TC3 C++ modules that communicate directly via an Ethernet
card. The sample code queries a hardware address (MAC) from a communication partner by means of the
cyclic transmission and reception of ARP packets.

The sample illustrates the direct access to the Ethernet card. The TF6311 TCP/UDP RT function provides
access to Ethernet cards on the basis of TCP and UDP, so that an implementation of a network stack is not
necessary on the basis of this sample.

Download

Here you can access the source code for this sample.

. Unpack the downloaded ZIP file.

. Open the zip file that it contains in TwinCAT 3 by clicking on "Open Project...".
. Select your target system.

. Build the sample on your local machine (e.g. Build->Build Solution).

a b ON -

. Note the actions listed on this page under Configuration.

6. Activate the configuration by clicking on
= The sample is ready for operation.

Description

The sample contains one instance of "TcEthernetSample" module, which sends out and retrieves ARP
packages for determining a remote hardware (MAC) address.

The CycleUpdate method implements a rudimentary state machine for sending ARP packages and waiting
for an answer with a timeout.

The sample uses two Ethernet related components of TwinCAT:

1. An ITcEthernetAdapter (instance name in sample m_spEthernetAdapter) represents an RT Ethernet
Adapter. It provides access to adapter parameters like hardware MAC address, link speed, link errors.
It can be used to send Ethernet frames and it allows a module instance to register as an ITcloEthPro-
tocol via the registerProtocol method.

2. The ITclOoEthProtocol is extended by the sample module, which provides to be notified on Ethernet
events by the ITcEthernetAdapter.

Configuration

The downloaded TwinCAT project must be configured for the execution in the network environment. Please
carry out the following steps:

v' This sample demands the use of the TwinCAT driver by the Ethernet card.

TC3 C++ Version: 1.7 279

http://download.beckhoff.com/download/Software/TwinCAT/TwinCAT3/Samples/TC1300-C/Samples31/Sample35-AccessEthernet/S35-AccessEthernet.zip

C++-samples BEBKHOFF

1. Start TcRtelnstall.exe either from the XAE via the menu TwinCAT->Show Realtime Ethernet
compatible devices... or from the hard disk on the XAR systems.

Installation of TwinCAT RT-Ethernet Adapters [£2

i~ Ethernet &dapters - | |lpdate List

= l‘:_l' Inztalled and ready to use devices
. ¥ Local Area Connection 2 - TwinCAT-Intel PCI Ethernet Adapter [Gigabit) ‘
=¥ Compatible deviess o |

: o l-_?ll" Local Area Connection 4 - TwinCAT -Intel PCI Ethernet Adapter [Gigabit] #2
~EF Incompatible devices
L-F Dizabled devices

Enable

Dizable

[Show Bindings

2. You may have to install and activate the driver with the help of the buttons.

3. TwinCAT must know which Ethernet card is to be used. Open the project in XAE and select 1/0 /
Devices / Device 1 (RT-Ethernet Adapter).

4. Click on the Adapter tab and select the adapter with Search.

5. TcEthernetSample_Obj1 must be configured. Open the instance window and set the following values:
Parameter (Init): SenderlpAddress (IP of the network adapter configured in step 2)
Parameter (Init): TargetlpAddress (IP of target host)
Interface pointer: EthernetAdapter must point to 1/0 / Devices / Device 1 (RT-Ethernet Adapter).

15.24 Sampled7: Archive data

The sample TcCOM object archive describes restoration and saving of an object state during initialization
and deinitialization.

® TwinCAT supports retain data

TwinCAT also supports retain data, in order to utilize the NOVRAM of a device to make data persis-
tent.

Download

Get the source code for this sample.
. Unpack the downloaded ZIP file.

1

2. Open the zip file that it contains in TwinCAT 3 by clicking on "Open Project...".
3. Select your target system.

4. Build the sample on your local machine (e.g. Build->Build Solution).

5. Activate the configuration by clicking on
= The sample is ready for operation.

Description

The TcCOM Object Archive sample shows how to restore and store the state of an object during initialization
and deinitialization. The state of the sample class CModuleArchive is the value of the counter
CModuleArchive::m_counter.

In the transition from PREOP to SAFEOP, i.e. method CModuleArchive::SetObjStatePS(), the object archive
server (ITComObjArchiveServer) is used to create an object archive for read, which is accessed through
interface ITComArchiveOp. This interface provides overloads of operator>>() in order to read from the
archive.

280 Version: 1.7 TC3 C++

http://download.beckhoff.com/download/Software/TwinCAT/TwinCAT3/Samples/TC1300-C/Samples31/Sample37-Archive/S37-ArchiveData.zip

BEGKHOFF C++-samples

In the transition from SAFEOP to PREOP, i.e. method CModuleArchive::SetObjStateSP(), the TCOM object
archive server is used create an object archive for write, which is accessed through interface
ITComArchiveOp. This interface provides overloads of operator<<() in order to write to the archive.

15.25 TcCOM samples

Modules can communicate between PLC and C++. The description therefore covers handling of C++
modules on the PLC side and handling of the PLC on the C++ side.
The TcCOM samples for communication with the PLC are shown here.

The TcCOM Sample01 sample [P 281] shows how TcCOM communication can take place between two
PLCs. In the process functionalities from one PLC are directly called up from the other PLC.

The TcCOM Sample02 sample [P 291] shows how a PLC application can use functionalities of an existing
instance of a TwWinCAT C++ class. In this way separate algorithms written C++ (or Matlab) can be used easily
in the PLC.

Although in the event of the use of an existing TwinCAT C++ driver the TwinCAT C++ license is required on
the destination system, a C++ development environment is not necessary on the destination system or on
the development computer.

The TcCOM Sample03 sample [P 295] shows how a PLC application uses functionalities of a TwinCAT C++
class by generating an instance of C++ class at the same time. In comparison to the previous sample this
can offer increased flexibility.

15.25.1 TcCOM_Sample01_PicToPIc

This sample describes a TcCOM communication between two PLCs.

Functionalities provided by a function block in the first PLC (also called "provider" in the sample), are called
from the second PLC (also called "caller" in the sample). To this end it is not necessary for the function block
or its program code to be copied. Instead the program works directly with the object instance in the first PLC.

The two PLCs have to be in one TwinCAT runtime. In this connection a function block offers its methods
system-wide via a globally defined interface and represents itself a TcCOM object. As is the case with every
TcCOM object, such a function block is also listed at runtime in the "TcCOM Objects" node.

wil PlcTeCOM_Sarmplell
a (1 SYSTEM
A License
@ Real-Tirne
4 B Tasks
[Z1 PlcTask
=t= Routes
TeCOM Objects
MOTION
4 PLC
4 Provider

a4 Caller
» L—;J Caller Project
s @ Caller Instance

EC++
H I_,-fD

The procedure is explained in the following sub-chapters:

1. Creating an FB which provides its functionality globally in the first PLC [P 282]

TC3 C++ Version: 1.7 281

C++-samples

BECKHOFF

2. Creating an FB which likewise offers this functionality there as a simple proxy in the second PLC [» 287]

3. Execution of the sample project [» 289]

Downloading the sample: https://infosys.beckhoff.com/content/1033/TC3_C/Resources/zip/2343046667.zip

NOTE

Race Conditions in the case of Multi-Tasking (Multi-Threading) use

The function block that provides its functionality globally is instantiated in the first PLC. It can be used there
like any function block. In addition, if it is used from a different PLC (or, for example, from a C++ module),
make sure that the methods offered are thread-safe, as the various calls could take place simultaneously
from different task contexts or mutually interrupt one another, depending on the system configuration. In
this case the methods must not access member variables of the function block or global variables of the
first PLC. If this should be absolutely necessary, prevent simultaneous access. Observe the function Tes-
tAndSet() from the Tc2_System library.

System requirements

‘ TwinCAT version ‘

Hardware ‘ Libraries to be integrated ‘

TwinCAT 3.1, Build 4020 x86, x64, ARM

Tc3_Module

15.25.1.1 Creating an FB which provides its functionality globally in the first PLC

1. Create a PLC and prepare a new function block (FB) (here: FB_Calculation). Derive the function block
from the TcBaseModuleRegistered class, so that an instance of this function block is not only available in
the same PLC, but can also be reached from a second.

Note: as an alternative you can also modify an FB in an existing PLC.

Add POU

(o |

@ Create a new POU (Program Qrganization Linit)

Mame:

FE_Calculation
Type:
) Program

@ Function Block

[] tmplements:

Access spedfier:

Extends: TcBaseModuleRegistered

(]

[

Structured Text (ST)

2. The function block must offer its functionality by means of methods. These are defined in a global
interface, whose type is system-wide and known regardless of programming language. To create a
global interface, open the Context menu in the “Interface” tab of System Properties and choose the

option “New”.

= The TMC Editor opens, which provides you with support in creating a global interface.

282

Version: 1.7 TC3 C++

https://infosys.beckhoff.com/content/1033/TC3_C/Resources/zip/2343046667.zip

BECKHGFF C++-samples

Solution Explorer 3l 7icTccom_samplenl _PicToPlc = < || G

T,
&l o-- @ 5= General | Settings | Data Typeq) Interaces |ffunctions|

Search Solution Explorer (Ctrl+0) pe i
M P
57 Solution 'PlcTcCOM_Samplg@®PlcToPlc' (L pro ame _
4l PIcTCCOM_SamplefPlcToPlc I ,
Edit
4 (] SYSTEM J :|
¥ License 1'
EB Real-Time Tl Auto Delete (if unused) |
4 B Tasks cearch Ref
garc Erences..,
[PlcTask Tl
== Routes ITComObjectServer
[28] TcCOM Objects McTask
MOTION [TeCycelic
4 PLC TT ~Mmrdin el

3. Specify the name (here: |_Calculation) and append the desired methods. The interface is automatically
derived from ITcUnknown, in order to fulfill the TwinCAT TcCOM module concept.

(/]

4 :ﬂ TMC
4 '* Data Types —O Edit the properties of the Data Type.
FR - |_Calculatic
4 5% Methods G , i

W Addition ELEEL LR

W Subtraction =
MName |_Calculation
MNamespace
Guid 1912d7e08-d2fc-42dc-9d5b-Teffbd cBI6]
Specification [lnta‘fane v] [Edtheﬂwd&._]
Chooss interface base type
Selec| MeUnknown | =

4. Specify the name of the methods analogously (here: Addition() and Subtraction()) and select HRESULT
as return data type. This return type is mandatory if this type of TcCOM communication should be
implemented.

5. Specify the method parameters last and then close the TMC Editor.

TC3 C++ Version: 1.7 283

C++-samples

BECKHOFF

4 3_': TMC
4 3* Data Types
4 — |_Calculation
4 3% Methods
7 Additic
W Subtraction

o Edit the properties of the method.

General properties

|

RPC
[] Enable

Include Return Value

Choose return data type

Select HRESULT

Descrpior

Type Information

MNamespace

Guid 118071955-0000-0000-0000-000000000019}

Define the parameters of the method

=] 3 1 |G
Mame Type Description Defaul
et | T =
2| T =
oRes | TINT =
6. Now implement the |_Calculation interface in the FB_Calculation function block and append the c+
+_compatible attribute.
5 FUNCTION BLOCK FBE_Calculation EXNTENDS TcBaseModuleRegistered IMPLEMENTS I_Calculation
7 VAR
5 END VAR
7. Choose the “Implement interfaces...” option in the Context menu of the function block in order to obtain
the methods belonging to this interface.
284

Version: 1.7

TC3 C++

BEGKHOFF C++-samples

P Provider
4 ;—; Provider Project
b [External Types

[P [+ References
3 DUTs
[3 GVLs

4 [POUs

lej MAIMN Add]
3 vIsUs % Import PLCopenXML...
b Gh PIcTask (Pl [h Eport PLCopenXML.
E_f; Provider.t
b [E] Provider Insta 3 Cut Ctrl+ X
&5 SAFETY o Copy Ctrl+C
[-+ X Delete Del
b= vo € Rename F2
¢ Open
Open With...
- P
Implement interfaces...
~ -1
& Properties

8. Delete the two methods TcAddRef() and TcRelease() because the existing implementation of the base
class should be used.
P Provider
4 :—; Provider Project
b [d External Types
P <3 References
Cd DUTs
[GVLs
4 [= POUs
4 =] FB_Calculation (FB)
4 Addition
4 FB_reinit

Cut

Copy
Delete

F* TcRelease
] MAIN (PRG)
3 vIsUs
b G5 PlcTask (PlcTask)
!_f; Provider.tmc
4 Provider Instance

9. Create the FB_reinit() method for the FB_Calculation function block and call the basic implementation.
This ensures that the FB_reinit() method of the base class will run during the online change. This is
imperative.

Rename

Open

Properties

TC3 C++ Version: 1.7 285

C++-samples BEGKHGFF

FB_|

10.

FE_

Calculation.FB_reinit = ><_
1 METHOD FB_reinit : BOOL
z[VAR INPUT
z| END VAR
1 SUPER~.FB_reinit{):

%]

Implement the TcQuerylnterface() method of the Interface ITcUnknown [P_169]. Via this method it is
possible for other TwWinCAT components to obtain an interface pointer to an instance of this function
block and thus actuate method calls. The call for TcQuerylnterface is successful if the function block or
its base class provides the interface queried by means of iid (Interface ID). For this case the handed over
interface pointer is allocated the address to the function block type-changed and the reference counter is
incremented by means of TcAddRef().

o odx L kDb

(23]

METHOD TcfueryInterface : HRESULT
VAR INFUT
iid : REFEEENCE TO IID;
pipItf : POINTER TO PFVOID;
END VAR

o W m

VAR

o
o G Rl

ipCalc : I_Calculation:
END VAR

F
(23]

a5
IF GuidsEqual (ADR{iid), ADR(TC_GLOBAL IID LIST.IID I Calculation)) THEN

ipCale := THIS~; // cast to interface pointer

pipItf~ := ITCUNENOWN _TQ PVOID({ipCalc);

TchddRef () ;

TocQueryIinterface :
ELSE

ToeQueryInterface := SUPER".TocQueryInterface{iid, pipItf):
END IF

oW L Ry

3 OK;

(=}

o m

11. Fill the two methods Addition() and Subtraction() with the corresponding code to produce the
functionality: nRes := nInl + nIn2and nRes := nInl - nIn2
12. Add one or more instances of this function block in the MAIN program module or in a global variable list.
= The implementation in the first PLC is complete.
286 Version: 1.7 TC3 C++

BEGKHOFF C++-samples
man = > [

FROGRAM MATH
WAR

Wi k)

m : UDINT:

fbCalc : FB Calculation('MLIN.LfbCalc");
END VAR

=1 iy s

= After compiling the PLC, the object ID of the TcCOM object which represents the instance of
FB_Calculation is available as an outlet in the in the process image.

4 Provider
B [External Types
[[+3] References
Cd DUTs
[GVLs
4 |7 POUs
b & FB_Calculation (FB)
] MAIN (PRG)
3 VIsUs
[+ H':"";J PlcTask (PlcTask)
Eﬂ Provider.tmec
4 @ Provider Instance
4 [PlcTask Outputs
4 [l MAIM,
4 [y fbCalc,

-q B~ objlD

15.25.1.2 Creating an FB which likewise offers this functionality there as a simple
proxy in the second PLC,

1. Create a PLC and append a new function block there.

= This proxy function block should provide the functionality which was programmed in the first PLC. It
does this via an interface pointer of the type of the global interface |_Calculation.

] PLC
P Caller
b [External Types
[<3 References
Cd DUTs
Cd GVLs
4 |7 POU=
&) MAIN (PRG)
A VIsUs
Ef; Caller.tmc
[+ H’li—' PlcTask (PlcTask)
P @CallerInstance
P @ Provider

2. In the declaration part of the function block declare as an output an interface pointer to the global
interface which later provides the functionality outward.

TC3 C++ Version: 1.7 287

C++-samples BEGKHOFF

Fe_Caleulationprony 5 -+ |

1 IFUNCI'IDH_BLCIE FB CalculationProxy
= 2 VAR OUTFUT
3 ip : I Calculation;
4 END VAR
. —
- & VAR
2] n0bjId AT$I* : OICID: /4 Instance configured to be retrieved
5 iid : ITD := TC GLOBAL IID LIST.IID T Calculation:
10 END VAR
11 -
o
1

3. In addition create the object ID and the interface ID as local member variables.
While the interface ID is already available via a global list, the object ID is assigned via a link in the
process image.

4 PLC 2
4 Caller =1

4 g=| Caller Project # " Attach Variable MAIN.foCalc.nObjld {Input)

4 Provider

4 @ Caller Instance

b [Bxernal Types
[+ [-3] References
CaE DUTs
3 GVLs B4
4 [POUs .
b & FB_CalculationProxy (FE)
5] MAIN (PRG)
[VIsUs
Eﬂ: Callertmc
[E';j PlcTask (PlcTask)

Provider Instance
o e HaIN fECalc.obiiD > OB 513752.0, OTCID [4.0]

P PlcTask Inputs
4 MAIM,
4 fbCalc.

4. Implement the PLC proxy function block. First add the GetinterfacePointer() method to the function block.
The interface pointer is fetched to the specified interface of the specified TcCOM object with the help of
the FW_ObjMgr_GetObjectinstance() function. This will only be executed if the object ID is valid and the
interface pointer has not already been allocated. The object itself increments a reference counter.

FB CalculationProxy.Getinterfacepeinter = -+ |

1

METHOD GetInterfacePointer : HRESULT

z VAR

3 END VAR

. —
L &
= 1 IF nOkjID <> 0 THEN
- s IF {(ip = 0) THEN // only get interface pointer 1f 1t 15 not already existing

3 FetInterfacePointer := FW ObjMgr GetObjectInatance (old:=n0bjID, iid:=iid, pipUnk:=ADR{ip)):
- 4 ELSE

5 FetInterfacePointer := E HRESULTRAsErr.EXISTS:

g END IF
= 7 ELSE

g GetInterfacePointer := E HRESULTAdsErr.INVALIDOBJID;

g END IF

10

288

Version: 1.7 TC3 C++

BECKHOFF

C++-samples

5. Itis imperative to release the used reference again. To this end call the FW_SafeRelease() function in

the FB_exit destructor of the function block.

S 1T Eady | ey T o S D S SR FE CalculationProxy.GetlnterfacePointer &

1o
2 METHOD FBE exit : BOOL
= 3 VAR TINFUT
4 bInCopyCode : BOOL; // 1f TRUE, the exit method 15 ¢
5 END VAR
- 1 IF NOT bInCopyCode THEN // 1f not online change
2 FW_SafeRelease (ADR({ip)):
3 END IF

= This completes the implementation of the Proxy function block.

6. Instantiate the Proxy function block FB_CalculationProxy in the application and call its method

GetlnterfacePointer() to get a valid interface pointer.

An instance of the proxy block is declared in the application to call the methods provided via the
interface. The calls themselves take all place over the interface pointer defined as output of the function
block. As is typical for pointers a prior null check must be made. Then the methods can be called directly,

also via Intellisense.

van- = [

1 PROGEAM MRIN
- z VAR
3 fbCalc : FB_CalculationProxy;
4 hrCalc : HRESULT;
5 a : INT := 10;
& B : INT := 7;
7 nSum : INT; 7/ & + b
= nDiff : INT; 7/ a - b
9 END VAR
10 -
- 1 IF fklalc.ip = 0 THEH
2 hrCalec := fbCalc.GetInterfacePointer():
3 END IF
- Z IF fklalc.ip <> 0 THEW
5 hrfale := fblfalc.ip.hddition{a,b,nSum);
& hrfale := fblalc.ip.Subtraction{a,b,nbiff);
7 END IF
- —

= The sample is ready for testing.

® Orderirrelevant

1 The sequence in which the two PLCs start later is irrelevant in this implementation.

15.25.1.3 Execution of the sample project

1. Select the destination system and compile the project.

2. Enable the TwinCAT configuration and execute a log-in and start both PLCs.

= In the online view of the PLC application “Provider” the generated object ID of the C++ object can be
seen in the PLC function block FB_Calculation. The project node “TcCOM Obijects” keeps the

generated object with its object ID and the selected name in its list.

TC3 C++ Version: 1.7

289

C++-samples BEGKHOFF

Tecom_samplent.icTori- < |

Online Objects | Praject Objects I Class Factoriesl

|; Solution "TcCOM_Sarmple01_PlcToPlc' (1 prg
4 il TcCOM Sample01 PIcToPlc oTCD | Name |cTe | State | RefCnt
a [SYSTEM
Y Livanse 03000000 0 03000000-0000-0000-F00... | OP 2
@ Real-Time £ 08500000 08500000-0000-0000-F00... | OP 9
b B Tasks 18500010 PlcfuxTask 02000002-0000-0000-FO0... | OP 7
£z Routes 01010010 Caller Instance 08500001-0000-0000-FO0... | OP 1
(] TecoM Objects B 01010020 Provider Instance 08500001-0000-0000-FO0, . | OF 1
01010021 | Provider PleTask 08500004-0000-0000-F00... | OF 4
71010000 | MAIM.fhCalc | 00000000-0000-0000-000... OP 4
4 [T Provider = 0z000000 [RTime [02000000-0000-0000-F00... | OF 47
4 @ Provider Project 02010020 PlcTask 01020001-0000-0000-F00... QP 5
[[External Types
5 01000000 Router 01000000-0000-0000-FO0... | OP 16
[(s3] References
3 DUTs 01000010 TComServerTask 01000010-0000-0000-F00... | OP 3
£ Gl 11000070 TeEvertLogger 01000070-0000-0000-FO0... | OP 2
a |7 POUs
=1 FB_Calculation (FB
> i) FB.Calculation (5 ARSI
] MalN (PRG)
3 WISUs TwinCAT_Device.Provider.MAIN

b g8 PlcTask (PlcTask)

& Expression Type Walue Prepared walue Add
25 Providertre
' gm LDINT 23735
[3 @ Provider Instance e -
SAFETY] alc FE_Calculation I
m Cas @ m_objMame STRING "MaIN. FhCalc
. Lo + é m_classId GUID 400000000-0000-0000-0000...
% Dewices @ objlD OTCID 71010000
4 B Mappings & hrComobjlnit HRESLLT 00000000
j:-? Provider Instance - Caller Insta @ hrComObjExit HRESLLT 00000000
& hrComObjReinit HRESULT 00000000

= In the online view of the PLC application “Caller” the Proxy function block has been allocated the
same object ID via the process image. The interface pointer has a valid value and the methods are
executed.

Kpression Type Walue Prepared walue
4 H_IPIcTcCOM_SampleDl_PIcToPIc
b @l sysTEM = @ fbCalc FB_Calculationwrapper
MOTION "$ i 1_Calewlation 164 FFFFFASO0AFI9END
& nobjld OTCID 71010000
Caller + o id i 4D 0C2030-5004-45F3-597 ..
a4 gz| Caller Project @ hrCalc HRESLILT 00000000
1 T
[» [External Types —
[» [l References 3
£ DUTs = 4 IF tbCalc. i TEHFFFRFASIGARSSE] - 0 THEW
EH Gvls 5 hrCalcl 0 | := fbCalc.QueryInterface();
4 | POUs 3 END IF
b] FB_Calculatighrapper (f = 7 IF thCed®ip[TEHFFFFFASIDAFSIEDD | <>_ o T]-IEH
la MAIM (PRG) 2 hrCalc[0 | := fbCalc.ip.Addition{a 10 |,b[_ 7 |nSumw[17 |i;
D:’ISUS] hrCale[0 | := fhCalc.ip.3ubtraction(al 10 |,b[7 | nDiff[3
10 EHD IT[R
0 Callertrnc RS
bl PlcTask (PlcTask)

4 Caller Instance

[PleTask Inputs

4 [Ef Provider TwinCAT_Device.Provider.MAIN

MAIN [Online]

Expression Type Walue Prepared walue

[[External Types
[» [+ References @ m UDINT 38186

£ DUTs = @ fbcal FE_Calculation

£ GvLs @ m_ohjlame STRING "MATM. FhCalc
4 | POU: + @ m_classld GUID {00000000-0000-0000- ..

b [F] FB_CaleulatiogffFe) # ohilD OTCID 71010000

&l MAIM (PRG) @ hrComObilnit HRESLILT 00000000

[WISUs & hrComObiExit HRESLLT 00000000
[E;J PlcTask {PlcTask) & hrComCbjReinit HRESULT 00000000

E._':: Prowvider.trmc O =

a Provider Instance ——

- Bl PlcTask Outputs 1 w 3sies | :=w[3siss |+ 1:[EETUEN

290 Version: 1.7 TC3 C++

BEGKHOFF C++-samples

15.25.2 TcCOM_Sample02_PlcToCpp

This example describes a TcCOM communication between PLC and C++. In this connection a PLC
application uses functionalities of an existing instance of a TwinCAT C++ class. In this way own algorithms
written in C++ can be used easily in the PLC.

Although in the event of the use of an existing TwWinCAT C++ driver the TwinCAT C++ license is required on
the destination system, a C++ development environment is not necessary on the destination system or on
the development computer.

An already built C++ driver provides one or more classes whose interfaces are deposited in the TMC
description file and thus are known in the PLC.

The procedure is explained in the following sub-chapters:

1. Instantiating a TwinCAT++ class as a TwinCAT TcCOM Object [P 291]

2. Creating an FB in the PLC, which as a simple wrapper offers the functionality of the C++ object [P 292]

3. Execution of the sample project [» 294]

Downloading the sample: https://infosys.beckhoff.com/content/1033/TC3_C/Resources/zip/2343048971.zip

System requirements

‘ TwinCAT version ‘ Hardware ‘ Libraries to be Integrated
TwinCAT 3.1, Build 4020 x86, x64 Tc3_Module

15.25.2.1 Instantiating a TwinCAT++ class as a TwinCAT TcCOM Object

The TwinCAT C++ driver must be available on the destination system. TwinCAT offers a deployment for this
purpose, so that the components only have to be stored properly on the development computer.

The existing TwinCAT C++ driver as well as its TMC description file(s) is available as a driver archive. This
archive (IncrementerCpp.zip) is unpacked in the following folder:
C:\TwinCAT\3.1\CustomConfig\Modules\IncrementerCpp\

The TwinCAT deployment copies the file(s) later in the following folder upon the activation of a configuration
on the destination system:
C:ATwinCAT\3.1\Driver\Autolnstall\

1. Open a TwinCAT project or create a new project.
2. Add an instance of Class ClncrementModule in the solution under the node “TcCOM Objects”.
wll TeCOM_Sarnple02_PleTaCpp

4 [SYSTEM
® License
@ Real-Time
> B Tasks Insert TcCorn Object
sta Routes
] TeCOM Objects Search: Marne; Object! [Clncrementtodule) oK

MOTION = -
. ALE Type: [#-jigz Beckhoff Automation GmbH Canecel
L 2-JE8] C++ Module Vend
4 PLC_CallingCppOhij %‘_@}j;;ﬂs o
> Gl PLC_CallingCppObj Project 1] Circrementhd odle [Module] Multple: 1 -

[&] PLC_CallingCppobj Instance

(43 SAFETY
E T+ Ingert Instance...
S
L Nevires Fieload

® Creation of the C++ driver

1 In the documentation for TwinCAT C++ [P 9] there is a detailed explanation on how C++ drivers for
TwinCAT are created.
To create the aforementioned driver archive, when creating the driver select “Publish TwinCAT
Modules” from the C++ project context as the last step.

TC3 C++ Version: 1.7 291

©

https://infosys.beckhoff.com/content/1033/TC3_C/Resources/zip/2343048971.zip

C++-samples

BECKHOFF

15.25.2.2 Creating an FB in the PLC which offers as a simple proxy the
functionality of the C++ object

1. Create a PLC and append a new function block there.
4 PLC
p PLC_CallingCppObj
I [External Types
I [+ References
CJ DUTs
CJ GVLs
4 [POUs
i&] MAIN (PRG)
C3 VISUs
2[5 PLC_CallingCppObj.tmc
b 5 PlcTask (PlcTask)
[&5] PLC_CallingCppObj Instance

= This proxy block should provide the functionality that was programmed in C++. It is able to do this via
an interface pointer that was defined from the C++ class and is known in the PLC due to the TMC

description file.

2. In the declaration part of the function block declare as an outlet an interface pointer to the interface which

later provides the functionality outward.
3. Create the object ID and the interface ID as local member variables.

While the interface ID is already available via a global list, the object ID is allocated via the TwinCAT
symbol initialization. The TclnitSymbol attribute ensures that the variable appears in a list for external

symbol initialization. The object ID of the created C++ object should be allocated.

e ncrementprory & - > |

1 FUNCTION BLOCK FE_IncrementProxy
= 2 VAR OUTFUT
3 ip : ITncrement;
4 END VAR
-] VAR
=}
9 ndbjId : OTCID: A/ Instance configured to be retriewved
10 iid : TID := TC GLOBAL IID LIST.IID TIncrement:
11 hrInit : HRESULT;
12 END VAR
13
1

= The object ID is displayed upon selection of the object under the TcCOM Objects node.

292 Version: 1.7

TC3 C++

BECKHOFF

C++-samples

Solution Explorer

Co®|e-o@| -

pctecom sompiaz ictocpp + > I

Object | Context | Parameter (in) | Data Area | Interfaces | Interface Pointer |

Search Selution Explorer (Ctrl+) L~
rObject Id: 001010020 Copy TMIto Targst
fa] Solution 'PlcTcCOM_Sampled2_PleToCpp' (1 project) - -—
4 E‘ PIcTcCDM_SampIaUE_PIcTonp DbJECt Name: Dbjed‘l (CInc:‘ernentModul Share TMC DESCI'iDﬁOrl
4 [SYSTEM Type Name: ClncrementModule
B License GUID: 687CD582-9BFD-4838-B946-E6EC25F06060
@ Real-Time
4 B Tasks Class Id: £87C05B2-9BFD-4238-B946-EGEC2EFCR060
&1 PlcTask (Class Factory: IncrementerCpp
== Routes
Parert Id: 00000000
4 TcCOM Objects
b [E] Objectl (ClncrementModule) Init Sequence: 50 -
k=] MOTION
4 [PLC
4 PLC_CallingCppObj
I EI PLC_CallingCppChj Project
[&] PLC_CallingCppObj Instance

= Provided the TclnitSymbol attribute was used, the list of symbol initializations is located in the node

of the PLC instance in the “Symbol Initialization” tab. Assign an existing object ID to the symbol name
of the variables here by means of DropDown. This value is assigned when the PLC is downloaded so
it can be defined prior to the PLC run-time. New symbol initializations or changes are accordingly
entered with a new download of the PLC

PTCCOM Sl PiTocpp » [

| Context | Parameter {Init) | Data Area | Symbl Inttialization |

Solution Explorer
cof| e-sa| &=
Search Solution Explorer (Ctrl+d) P~

fad Solution 'PlcTcCOM_Sampled2_PlcToCpp' (1 pro
a EI PleTcCOM_Sampled2_PlcToCpp

| Name | Value Unit | Type
MAIN.fbInc.nOhjld 00000000 v QTCID

4 | svSTEM 00000000
|# License 02010020 'PlcTask' ‘
@ Real-Time 01010020 'Objectl (ClncrementModule)’
b B Tasks
stz Routes

4[] TcCOM Objects
3 Objectl (CIncrementModule)
MOTION

PLC_CallingCppObj
a4 ﬂ PLC_CallingCppOhj Project
P [External Types
P[5 References

[Cd DUTs

3 GVLs
B[4 POUs

3 VISUs

28 PLC_CallingCppObj.tme l

[Eg] PlcTask (PlcTask)
PLC_CallingCppObj Instance
SAFETY
ﬂ C++

Note: As an alternative, the passing of the object ID could also be implemented by means of process image
linking as implemented in the first sample (TcCOM Sample01 PlcToPlc [»_281]).

4. Implement the PLC proxy block.
First the FB_init constructor method is added to the function block. For the case that it is no longer an
OnlineChange but rather the initialization of the function block, the interface pointer to the specified
interface of the specified TcCOM object is obtained with the help of the function
FW_ObjMgr_GetObjectinstance(). In this connection the object itself increments a reference counter.

TC3 C++ Version: 1.7 293

C++-samples

BECKHOFF

F_Incrementeroxy.FB_init = = > |

1

2 METHOD FB init : BOOL
= 3 VAR _INPUT

H bInitRetains : BOOL; //

5 bInCopyCode : BOOL;

& END VAR
- 1 IF HOT bInCopyCode THEN // if not online change
- 2 IF nObjID <> 0 THEN

3 hrInit := FW_ObjMgr GetObjectInstance (oid:=n0bjID, iid:=iid, pipUnk:=ADR(ip)):
= 4 ELSE

5 hrInit := E_HRESULTAdsErr.INVALIDOBJID;

& END IF

7 END IF

5. Itis imperative to release the used reference again. To this end call the FW_SafeRelease() function in

the FB_exit destructor of the function block.

=BG T A T S T SR SRl FE IncrementProxy.FB_init @

1|
i METHOD FE exit : BOOL
= 3 VAR INFUT
] bInCopyCode : BOOL; // 1f TRUE, the exit method 1s
5 END VAR
= al IF HOT bInCopyCode THEM // 1f not online change
2 FW_SafeRelease (ADR({ip));
3 END IF

= This completes the implementation of the Proxy function block.

6. Declare an instance of the Proxy function block to call the methods provided via the interface in the

application.

The calls themselves take all place over the interface pointer defined as outlet of the function block. As is
typical for pointers a prior null check must be made. Then the methods can be called directly, also via

Intellisense.
mane - [
1 PROGEAM MRIN
- z VAR
3 fbkInc : FB IncrementProxy;
4 nValue : TUDINT:
5 END VAR
k=]
- 1 IF fbInc.ip <> 0 THEN
2 fkInc.ip.dolncrement {4, ADE{nValue)):
3 END IF
. _

= The sample is ready for testing.

15.25.2.3 Execution of the sample project

1. Select the destination system and compile the project.

2. Enable the TwinCAT configuration and execute a log-in as well as starting the PLC.

= In the online view of the PLC application the assigned object ID of the C++ object in the PLC Proxy
function block can be seen. The interface pointer has a valid value and the method will be executed.

294 Version: 1.7

TC3 C++

BECKHOFF C++-samples

Solution Explorer * 1 X PleTeCOM_SarmpledZ_PlcToCpp X
rs
- . Obijzct | Context I Parameter [Init) I Data Area | Interfaces I Interface Pointer
I‘; Solution 'PIcTeCOM_Samplel2_PlcTaCpp' (1 projdl
F] ni PleTcCOM_Sarnpled2_PlcToCpp Ohject 1d: | Ox01010020 [T Copw THI ta Target
rl SYWSTEM .
o License Obiject Mame: Objgct! (Clncrementid odul [Share TMC Description
@ Real-Tirne Type Name: Clnerementiadule
> [Tasks GUID: £87C05B2-9BFD-4538-B946-HBE C25F CE0ED
sf= Routes sl
4 li‘ TeCOM Objects azs d: EBYCD5B2-9BFD-4835-B946-ERE C25FCEOE0
> [&@] Objectl (Clncrementhodule) Clazs Factony: IncrementerCpp
MOTION

4 PLC _MAIN [Online] 3
Bl PLC_CallingCppObj
4 B --ang-pp o) TwinCAT_Device PLC_CallingCppObj.MAIN

. [External Types fB Expression Type Walue Prepared value
» [«=] References i @i INT 247
[DUTs / = ¢ fblnc FE_Increment'Wrappe
3 Gyls / R ip IIncrement 1 6 FFFFFABO0ASSCOFS
4 [F] FB_Increment/rafiper (FE) £ @ id D {25ACEI07-0596-4805- ...
[FB-lEXl't / @ hrlnit HRESLLT 00000000
[FBLinit 4 # rvalue UDINT 986
IE] MAIN (PRG)
[WIsUs
2B PLE_CallingCppObjtme < o
551 PleTask (PlcTask
. E] ca.s (cas_) 1 i[a7 g8 d o -
@ PLC_CallingCppQbj Instance 2
i = ¢ Tyfomnc. 1o TAFEEFFAMOCIRT] <> O THEN
r 4 fbInc.ip.dolncremnent (4, ADR(nValue 388
& o 5 EHD TFRellRN]
*E Devices -

3:1 Mappings

15.25.3 TcCOM_Sample03_PlcCreatesCpp

Just like Sample02, this sample describes a TcCOM communication between PLC and C++. To this end a
PLC application uses functionalities of a TwinCAT C++ class. The required instances of this C++ class will
be created by the PLC itself in this sample. In this way own algorithms written in C++ can be used easily in
the PLC.

Although in the event of the use of an existing TwinCAT C++ driver the TwinCAT C++ license is required on
the destination system, a C++ development environment is not necessary on the destination system or on
the development computer.

An already built C++ driver provides one or more classes whose interfaces are deposited in the TMC
description file and thus are known in the PLC.

The procedure is explained in the following sub-chapters:

1. Provision of a TwinCAT C++ driver and its classes [P 296]

2. Creating an FB in the PLC that creates the C++ object and offers its functionality [P 296]

3. Execution of the sample project [» 298]

Downloading the sample: https://infosys.beckhoff.com/content/1033/TC3_C/Resources/zip/2343051531.zip

System requirements

TwinCAT version Hardware Libraries to be integrated
TwinCAT 3.1, Build 4020 x86, x64 Tc3_Module

TC3 C++ Version: 1.7 295

https://infosys.beckhoff.com/content/1033/TC3_C/Resources/zip/2343051531.zip

C++-samples BEGKHOFF

15.25.3.1 Provision of a TwinCAT C++ driver and its classes

The TwinCAT C++ driver must be available on the destination system. TwinCAT offers a deployment for this
purpose, so that the components only have to be stored properly on the development computer.

The existing TwinCAT C++ driver as well as its TMC description file(s) is available as a driver archive. This
archive (IncrementerCpp.zip) is unpacked in the following folder:
C:\TwinCAT\3.1\CustomConfig\Modules\IncrementerCpp\

The TwinCAT deployment copies the file(s) later in the following folder upon the activation of a configuration
in the destination system:
C:ATwinCAT\3.1\Driver\Autolnstall\

1. Open a TwinCAT project or create a new project.

2. Select the required C++ driver in the solution under the TcCOM Objects node in the “Class Factories”
tab.

= This ensures that the driver is loaded on the destination system when TwinCAT starts up. In addition this
selection provides for the described deployment.

Solution Explorer Sl picTecom_sampled3 PicCreatesCpp = < ([NG
) | e - & | o - Online Objects | Project Object | Class Factories |
Search Selution Explorer (Ctrl+) pe
- y Class Factory | Load
fa] Solution 'PIcTcCOM_Sample3_PlcCreatesGhp
4 gl] PIcTcCOM_Samplel3_PicCreatesCpp Teo 4
4 (} SYsTEM TCRTIME ¥
A License TCRTSOBIECTS [
@ Real-Time TcPIca0 F
b B Tasks
=% Routes IncrementerCpp CIF) |
@ TcCOM Objects TcEventLoggerRt I_
MOTION TeNeObjects I_
b [pLC Untitledl -
SAFETY
E C++

Creation of the C++ driver

In the documentation for TwinCAT C++ [P 9] there is a detailed explanation on how C++ drivers for
TwinCAT are created.

For Sample03 it is important to note that TwinCAT C++ drivers whose classes are supposed to be
dynamically instantiated must be defined as “TwinCAT Module Class for RT Context”. The C++
Wizard offers a special template for this purpose.

In addition this sample uses a TwinCAT C++ class which manages without TcCOMinitialization data
and without TcCOM parameters.

jmio

15.25.3.2 Creating an FB in the PLC that creates the C++ object and offers its
functionality
1. Create a PLC and append a new function block there.

= This proxy block should provide the functionality that was programmed in C++. It manages this via an
interface pointer that was defined by C++ and is known in the PLC due to the TMC description file.

296 Version: 1.7 TC3 C++

BECKHUFF C++-samples

4 PLC
4 PLC_CreatingCppObj
B[External Types
[[+3] References
CF DUTs
L GVLs
4 [POUs
P EEJ FB_IncrementProxyDynlnstance (FB)
i) MAIN (PRG)
Cd VIsUs
Eg_g PLC_CreatingCppQhbj.tmc
b Gggh PlcTask (PlcTask)
@ PLC_CreatingCppQObj Instance

2. In the declaration part of the function block declare as an outlet an interface pointer to the (lincrement)
interface which later provides the functionality outward.

FUNCTION BLOCK FBE_IncrementProxyDynlInatance

- e VAR OUTFUT
2 ip : ITncrement;
4 END VAR
- & WAR
7 classId : CLSID := STIRING _TO GUID('&E87cd5SbZ-Sbfd-48358-bS46-ebec25ficalald’);
g iid : IID := TC_GLOBAL IID LIST.IID IIncrement;
3 hrInit : HRESULT:
10 END VAR
11 -
-
1

3. Create class ID and the interface ID as member variables.
While the interface ID is already available via a global list, the class IDs, provided they are not yet
supposed to be known, are determined by other means. When you open the TMC description file of the
associated C++ driver you will find the corresponding GUID there.

13 = <Modules>

1 =] <Module GUID="{687cd5b2-9bfd-4838-b%46-eb6ec25fchlbl}" Group="C++">

15 <Na_rr.e:ICIncrementHodulei,’NaIr.e::-

16 <CL5ID Cla33FactDr3-="Ilﬁ]rementer@'}{68']":1:15]32—9bfd—4838—b946—363325f36060}(I/CLSID>
17 = <Licenses>

18 = <License>

4. Add the FB_init constructor method to the PLC Proxy function block.
For the case, that it is not an online change but rather the initialization of the function block, a new
TcCOM object (Class instance of the specified class) is created and the interface pointer to the specified
interface is obtained. In the process the used FW_ObjMgr_CreateAndInitinstance() function is also given
the name and the destination state of the TcCOM object. These two parameters are declared here as
input parameters of the FB_init method, whereby they are to be specified in the instantiation of the Proxy
function block. The TwinCAT C++ class to be instantiated manages without TcCOM initialization data
and without TcCOM parameters.
In the case of this function call the object itself increments a reference counter.

TC3 C++ Version: 1.7 297

C++-samples

BECKHOFF

Fe IncrementProyDyninstance 78_init = > |

1 METHOD FB init : BOOL

= z VAR _INPUT
3 bInitRetains : BOOL; // 1 n variables are initialized (warm start / col
4 bInCopyCode : BOOL; 1 instance aftervards gets moved inte the copy c©
& 30bjName : STRING: // object name to be set for this instance (optional)
7 e0bjState : TCOM STATE: // rget object state (usually TCOM STATE.TCOM STATE OP)
8 END VAR
-
= 1 IF NOT bInCopyCode THENM // if not online change
z cbkjName := 30bjName;
- 3 hrInit := FW _ObjMgr CreateAndInitInstance(clsId := classId,
4 iid := iid,
5 pipUnk := ADR{ip),
8 objId := QICID CreateNewld,
7 parentId := TwinCAT SystemInfoVarlist. AppInfo.0bjIld, /.
8 name := 30bjName,
3 state := e0bjState,
10 pInitData =0);
11 END _IF

12

5. Itis imperative to release the used reference again and to delete the object, provided it is no longer being
used. To this end call the FW_ObjMgr_Deletelnstance() function in the FB_exit destructor of the function

block.

RGN E N E AL R e ST Sl FB_IncrernentProxyDynlnstance.FB_init

s METHOD FB exit : BOOL
- 3 VAR THPUT
bInCopyCode : BOOL; // 1f TRUE, the exit method 15 called for

e

5 END VAR
4
-
- al IF HOT bInCopywCode THEN // 1f not online change
2 FW_ObjMgr DeletelInstance (ADR({ip)):
3 END IF

= This completes the implementation of the Proxy function block.

6. Declare an instance of the Proxy function block to call the methods provided via the interface in the
application. The calls themselves take all place over the interface pointer defined as outlet of the function
block. As is typical for pointers a prior null check must be made. Then the methods can be called directly,

also via Intellisense.

vanv- - |

1 FROGEAM MATN
VAR

1
[

e

nvalus : TDIHNT;
g END VAR

th

= 1 IF fkInc.ip <> 0 THEN
fhInc.ip.dolncrement (100, ADRE (nValue)):
END IF

[%]

3
4
= The sample is ready for testing.

15.25.3.3 Execution of the sample project

1. Select the destination system and compile the project.

fblnc : FB_IncrementFroxyDynlnstance (a0bjName:="CIlncrementModule:fbinc’,
elbjState:=TCOM_STATE.TCOM STATE OF);

298 Version: 1.7

TC3 C++

BECKHOFF

C++-samples

2. Enable the TwinCAT configuration and execute a log-in as well as starting the PLC.

= In the online view of the PLC application the desired TcCOM object name in the PLC Proxy function
block can be seen. The project node TcCOM-Objects keeps the generated object with the generated ID
and the desired name in his list. The interface pointer has a valid value and the method will be executed.

Solution Explorer

Online Obiects | Project Objects | Class Factories |

|-,; Solution 'PIcTcCOM_Samplel3_PleCreatesCpy
4 ;I PlcTcCOM_Sampled3_PlcCreatesCpp oTcID | Marme | CTCID | State | RefCnt
a [SYSTEM
% License n3n00000 10 03000000-0000-0000,,, | OF 2
@ Real-Time = 0as00000 18500000-0000-0004.,, OF a
b B Tasks 08500010 PleAuxTask 02000002-0000-0004.,, OF 3
gle Routes _ 01010010 FLZ_CreatingCppObj Instance 08500001-0000-0000.,, OF g
%OLCSSM Objects 1 02000000 RTime 02000000-0000-0000...| OP a
=
. pLC 02010020 PlcTask 01020001-0000-0000... | OP 4
+ [l PLC CreatingCppObi £ 01000000 Router 01000000-0000-0000... | OP 15
4 =l PLC_CreatingCppObj Project n1000010 TComServerTask 01000010-0000-0000.., OP 3
b O Bxternal Types 11000070 TcEventLogger 01000070-0000-0000... | OP :
[|ag References T 1 T 1
3 DUTs Ti010000 Clncrementhdodulefhblnc G87CD5SB2-9BFD-48.. OF 3
3 GYls
& POU
oL ok MAIN [Cnline] X
4 E FE_IncrernentWrapperEx
E\?‘I FB_exit TwinCAT_Device.PLC_CreatingCppObj.MAIN
E\?‘I FE_init Expression Type Walue Prepared value
E MAIN (PRE) @ i INT 85593
£ WISUs
!__: L, el Sl e @ I'I:IJInc FB_Incrementit'rapp.
b I PlcTask (PleTask) % ip Tncrement 164FFFFFASO0AFI9418
@II‘:'LC CreatingCppObj Instance @ objMame STRIMNG | ‘CIncrementModule:FbInc' I
SAFETY - + @ classId CLSID {657 CD5E2-9EFD-4835-B946-E ..
E C++ + g iid IIC {25ACB7L7-0596-4A05-ADA2-3 ..
P o @ hrlnit HRESLLT 00000000
L Devices @ nvalue UDINT 853800
&" Mappings
U [Em] - il mm] L
z
3
= 4 fhInc. ip[16HFFFFFAS00&FaSE | <> 0 THEH
5 fhInc.ip.doIncrenent (100, ADR(nValue[ssason |1)
& EHD T
7
TC3 C++ Version: 1.7 299

Appendix

BECKHOFF

16

Appendix

* The ADS return codes [P_300] are important across TwinCAT 3, particularly if ADS communication

[»_173] itself is implemented.
* The Retain data [»_304] (in NOVRAM memory) can be used in a similar way from the PLC and also C+

+.

* In addition to the TcCOM Module [»_30] concept, the TwinCAT 3 type system is an important basis for
understanding

» The following pages originate from the documentation for the Automation Interface.
When using the Automation Interface please refer to the dedicated documentation.

o Creating and handling C++ projects and modules [» 307]
o Creating and handling TcCOM modules [P 311]

16.1

ADS Return Codes

Error codes: 0x000 [»_300]..., 0x500 [» 301]..., 0x700 [»_302]..., 0x1000 [» 304]...

Global Error Codes

Hex Dec Description
0x0 0 no error
0x1 1 Internal error
0x2 2 No Rtime
0x3 3 Allocation locked memory error
0x4 4 Insert mailbox error
0x5 5 Wrong receive HMSG
0x6 6 target port not found
0x7 7 target machine not found
0x8 8 Unknown command ID
0x9 9 Bad task ID
OxA 10 No IO
0xB 11 Unknown ADS command
0xC 12 Win 32 error
0xD 13 Port not connected
OxE 14 Invalid ADS length
OxF 15 Invalid AMS Net ID
0x10 16 Low Installation level
0x11 17 No debug available
0x12 18 Port disabled
0x13 19 Port already connected
0x14 20 ADS Sync Win32 error
0x15 21 ADS Sync Timeout
0x16 22 ADS Sync AMS error
0x17 23 ADS Sync no index map
0x18 24 Invalid ADS port
0x19 25 No memory
0x1A 26 TCP send error
0x1B 27 Host unreachable
0x1C 28 Invalid AMS fragment
300 Version: 1.7 TC3 C++

https://infosys.beckhoff.de/content/1033/typesystem/27021601303262475.html?id=7105325433476631001

BECKHOFF

Appendix

Router Error Codes

Hex Dec Name Description
0x500 1280 ROUTERERR_NOLOCKEDMEMORY No locked memory can be allocated
0x501 1281 ROUTERERR_RESIZEMEMORY The size of the router memory could not be changed
0x502 1282 ROUTERERR_MAILBOXFULL The mailbox has reached the maximum number of possible
messages. The current sent message was rejected
0x503 1283 ROUTERERR_DEBUGBOXFULL The mailbox has reached the maximum number of possible
messages.
The sent message will not be displayed in the debug monitor
0x504 1284 ROUTERERR_UNKNOWNPORTTYPE Unknown port type
0x505 1285 ROUTERERR_NOTINITIALIZED Router is not initialized
0x506 1286 ROUTERERR_PORTALREADYINUSE The desired port number is already assigned
0x507 1287 ROUTERERR_NOTREGISTERED Port not registered
0x508 1288 ROUTERERR_NOMOREQUEUES The maximum number of Ports reached
0x509 1289 ROUTERERR_INVALIDPORT Invalid port
0x50A 1290 ROUTERERR_NOTACTIVATED TwinCAT Router not active
TC3 C++ Version: 1.7 301

Appendix BEGKHOFF

General ADS Error Codes

302 Version: 1.7 TC3 C++

BECKHUFF Appendix
Hex Dec Name Description

0x700 1792 ADSERR_DEVICE_ERROR error class <device error>

0x701 1793 ADSERR_DEVICE_SRVNOTSUPP Service is not supported by server

0x702 1794 ADSERR_DEVICE_INVALIDGRP invalid index group

0x703 1795 ADSERR_DEVICE_INVALIDOFFSET invalid index offset

0x704 1796 ADSERR_DEVICE_INVALIDACCESS reading/writing not permitted

0x705 1797 ADSERR_DEVICE_INVALIDSIZE parameter size not correct

0x706 1798 ADSERR_DEVICE_INVALIDDATA invalid parameter value(s)

0x707 1799 ADSERR_DEVICE_NOTREADY device is not in a ready state

0x708 1800 ADSERR_DEVICE_BUSY device is busy

0x709 1801 ADSERR_DEVICE_INVALIDCONTEXT invalid context (must be in Windows)

0x70A 1802 ADSERR_DEVICE_NOMEMORY out of memory

0x70B 1803 ADSERR_DEVICE_INVALIDPARM invalid parameter value(s)

0x70C 1804 ADSERR_DEVICE_NOTFOUND not found (files, ...)

0x70D 1805 ADSERR_DEVICE_SYNTAX syntax error in command or file

0x70E 1806 ADSERR_DEVICE_INCOMPATIBLE objects do not match

0x70F 1807 ADSERR_DEVICE_EXISTS object already exists

0x710 1808 ADSERR_DEVICE_SYMBOLNOTFOUND symbol not found

0x711 1809 ADSERR_DEVICE_SYMBOLVERSIONINVAL [symbol version invalid

0x712 1810 ADSERR_DEVICE_INVALIDSTATE server is in invalid state

0x713 1811 ADSERR_DEVICE_TRANSMODENOTSUPP |AdsTransMode not supported

0x714 1812 ADSERR_DEVICE_NOTIFYHNDINVALID Notification handle is invalid

0x715 1813 ADSERR_DEVICE_CLIENTUNKNOWN Notification client not registered

0x716 1814 ADSERR_DEVICE_NOMOREHDLS no more notification handles

0x717 1815 ADSERR_DEVICE_INVALIDWATCHSIZE size for watch too big

0x718 1816 ADSERR_DEVICE_NOTINIT device not initialized

0x719 1817 ADSERR_DEVICE_TIMEOUT device has a timeout

0x71A 1818 ADSERR_DEVICE_NOINTERFACE query interface failed

0x71B 1819 ADSERR_DEVICE_INVALIDINTERFACE wrong interface required

0x71C 1820 ADSERR_DEVICE_INVALIDCLSID class ID is invalid

0x71D 1821 ADSERR_DEVICE_INVALIDOBJID object ID is invalid

0x71E 1822 ADSERR_DEVICE_PENDING request is pending

0x71F 1823 ADSERR_DEVICE_ABORTED request is aborted

0x720 1824 ADSERR_DEVICE_WARNING signal warning

0x721 1825 ADSERR_DEVICE_INVALIDARRAYIDX invalid array index

0x722 1826 ADSERR_DEVICE_SYMBOLNOTACTIVE symbol not active

0x723 1827 ADSERR_DEVICE_ACCESSDENIED access denied

0x724 1828 ADSERR_DEVICE_LICENSENOTFOUND missing license

0x725 1829 ADSERR_DEVICE_LICENSEEXPIRED license expired

0x726 1830 ADSERR_DEVICE_LICENSEEXCEEDED license exceeded

0x727 1831 ADSERR_DEVICE_LICENSEINVALID license invalid

0x728 1832 ADSERR_DEVICE_LICENSESYSTEMID license invalid system id

0x729 1833 ADSERR_DEVICE_LICENSENOTIMELIMIT license not time limited

0x72A 1834 ADSERR_DEVICE_LICENSEFUTUREISSUE |license issue time in the future

0x72B 1835 ADSERR_DEVICE_LICENSETIMETOLONG license time period to long

0x72c 1836 ADSERR_DEVICE_EXCEPTION exception occured during system start

0x72D 1837 ADSERR_DEVICE_LICENSEDUPLICATED License file read twice

0x72E 1838 ADSERR_DEVICE_SIGNATUREINVALID invalid signature

0x72F 1839 ADSERR_DEVICE_CERTIFICATEINVALID public key certificate

0x740 1856 ADSERR_CLIENT_ERROR Error class <client error>

0x741 1857 ADSERR_CLIENT_INVALIDPARM invalid parameter at service

0x742 1858 ADSERR_CLIENT_LISTEMPTY polling list is empty

0x743 1859 ADSERR_CLIENT_VARUSED var connection already in use

0x744 1860 ADSERR_CLIENT_DUPLINVOKEID invoke ID in use

0x745 1861 ADSERR_CLIENT_SYNCTIMEOUT timeout elapsed

0x746 1862 ADSERR_CLIENT_W32ERROR error in win32 subsystem

0x747 1863 ADSERR_CLIENT_TIMEOUTINVALID Invalid client timeout value

TC3 C++ Version: 1.7 303

Appendix

BECKHOFF

Hex Dec Name

Description

0x748 1864 ADSERR_CLIENT_PORTNOTOPEN

ads-port not opened

0x750 1872 ADSERR_CLIENT_NOAMSADDR

internal error in ads sync

0x751 1873 ADSERR_CLIENT_SYNCINTERNAL

hash table overflow

0x752 1874 ADSERR_CLIENT_ADDHASH

key not found in hash

0x753 1875 ADSERR_CLIENT_REMOVEHASH

no more symbols in cache

0x754 1876 ADSERR_CLIENT_NOMORESYM

invalid response received

0x755 1877

ADSERR_CLIENT_SYNCRESINVALID

sync port is locked

RTime Error Codes

Hex Dec Name

Description

0x1000 4096 RTERR_INTERNAL

Internal fatal error in the TwinCAT real-time system

0x1001 4097 RTERR_BADTIMERPERIODS

Timer value not vaild

0x1002 4098 RTERR_INVALIDTASKPTR

Task pointer has the invalid value ZERO

0x1003 4099 RTERR_INVALIDSTACKPTR

Task stack pointer has the invalid value ZERO

0x1004 4100 RTERR_PRIOEXISTS

The demand task priority is already assigned

0x1005 4101 RTERR_NOMORETCB

No more free TCB (Task Control Block) available. Maximum
number of TCBs is 64

0x1006 4102 RTERR_NOMORESEMAS

No more free semaphores available. Maximum number of
semaphores is 64

0x1007 4103 RTERR_NOMOREQUEUES

No more free queue available. Maximum number of queue is
64

0x100D 4109 RTERR_EXTIRQALREADYDEF

An external synchronization interrupt is already applied

0x100E 4110 RTERR_EXTIRQNOTDEF

No external synchronization interrupt applied

0x100F 4111 RTERR_EXTIRQINSTALLFAILED

The apply of the external synchronization interrupt failed

0x1010 4112 RTERR_IRQLNOTLESSOREQUAL

Call of a service function in the wrong context

0x1017 4119 RTERR_VMXNOTSUPPORTED

Intel VT-x extension is not supported

0x1018 4120 RTERR_VMXDISABLED

Intel VT-x extension is not enabled in system BIOS

0x1019 4121 RTERR_VMXCONTROLSMISSING

Missing function in Intel VT-x extension

0x101A 4122 RTERR_VMXENABLEFAILS

Enabling Intel VT-x fails

TCP Winsock Error Codes

Hex Dec Description

0x274d 10061

A connection attempt failed because the connected party did not properly respond after a period of time,
or established connection failed because connected host has failed to respond.

0x2751 10065

No connection could be made because the target machine actively refused it. This error normally occurs when
you try to connect to a service which is inactive on a different host - a service without a server application.

0x274c 10060 No route to a host.

A socket operation was attempted to an unreachable host

Further Winsock error codes: Win32 Error Codes

16.2 Retain data

This section describes the option to make data available even after an ordered or spontaneous system
restart. The NOV-RAM of a device is used for this purpose.

The following section describes the retain handler, which stores data and makes them available again, and
the application of the different TwinCAT 3 programming languages.

Configuring a retain device

The retain data are stored and made available by a retain handler, which is part of the NOV-DP-RAM device

in the 10 section of the TwinCAT solution.

304 Version: 1.7 TC3 C++

BEGKH“FF Appendix

A NOV-RAM DP device is created in the 1O section of the solution for this purpose.

4 L"G
4 " Devices
4 T Devicel (NOV-DP-RAM)
*B Image
Inputs
B Cutputs

One or several retain handlers can be created under this device

4 F V0
P *f'g Devices

4 F Devicel (NOV-DP-RAM)

*B Image

Inputs

B Cutputs

b 2% Box1 (Retain Handler)
b 2% Box2 (Retain Handler)

Storage location: NOVRAM

The NOV-DP-RAM device must be configured. The range to be used can be defined in the "Generic NOV-
DP-RAM device" tab via "Search...".

]Ml Generic NOV-DP-RAM Device | DERAM {Online}l
i@ PCI
Vendor [0 (hex): 15EC —
Device D (hex); —EOOO __
BaseAddr (0-5): Device Found At
Bus/Slot (Addr):

0=F 0100000
Slat O [0xFOO00000)

: Cancel
©) RAM (e.g. 154

Address @ Unused
Al

jum}
_~

Size:

Export/Import Data
7] futo Init linked Help

[mpot.. |

An additional retain directory for the symbols is created in the TwinCAT boot directory.

Using the retain handler with a PLC project

In a PLC project the variables are either created in a VAR RETAIN section or identified with the attribute
TcRetain.

TC3 C++ Version: 1.7 305

Appendix BEGKHOFF

PROGEAM MATH
WAR BETATIN

1: UINT;

k AT z0Q* : UINT:
END VAR

Corresponding symbols are created after a "Build".
The assignment to the retain handler of the NOV-DP-RAM device is done in column "Retain HdI".

Solution Explorer * 0 x| MAIN TwinCAT ProjectRetain + > [JUISENELTi#R T g1 (e] Modulel.cpp
co@|o-a|s - | Obiect | Cantext | Parameter (init) | Data Area |
Search Solution Explorer (Ctrl+;) P
4 [pic N |Area Mo | Mame |Type Size | cs | Elements Retain Hdl | o}
4 [T Unbenanntl + 1) PlcTask Outputs | OutputSrc 589824 |7 1 Symbols
4 E Unbenanntl Project + 3(0) PlcTask Internal Internal 589824 |7 13 Symbols
4 li‘ Unbenanntl Instance + 4 (0) PlcTask Retains RetainSrc 589824 |7 3 Symbels 03020001 'Box1 (Retain H... ;I

b [PlcTask Qutputs
4 [PlcTask Retains
W MAIN
W MAIN.k
M MAIN.m

e e

If self-generated data types (DUTSs) are used as retains, the data types must exist in the TwinCAT type
system. You can either use the option "Convert to Global Type" or you can create structures directly as
STRUCT RETAIN, which will handle all occurrences of the structure via the retain handler.

Using the retain handler with a C++ module

In a C++ module a data area of type Retain Source is created, which contains the corresponding symbols.

o &G

4 315 TMC Module Classes

5" Data Types - Edit the properties of the Data Area.
4 [Modules
4 fiz] CModule
__% Implemented Intefaces :
I Bs Parameters SeoEnl izl
4 [Data Areas
I [Inputs MNumber 3

I M Outputs Type Retain-Source

4 [RetainSample

4 . Symbols Name RetainSample
M x
oy Opticnal data area settings
M =z
B Datz Pointers Size [Bytes] ¥64 specific
— .
I = Interface Pointers Comment
E Deployment
ContextD [1 =]
Datatype name
Create symbols

Dizable code generation

At the instances of the C++ module, a retain handler of the NOV-DP-RAM device to be used for this data
area is defined in column "Retain HdI".

306 Version: 1.7 TC3 C++

BEGKHOFF Appendix

Solution Explorer ARl [MAIN TwinCAT ProjectRetain +® X Unbenannt2.tmc [TMC Editor] Modulel.cpp Modulel.h
coR|o-a|s - [Object | Cortext | Parameter (inf) | Data Area [lrtorace Pomer]
Search Solution Explorer (Ctrl+;) P

fal Solution TwinCAT ProjectRetain' (1 project)
i El TwinCAT ProjectRetain
4 (] sYSTEM
License - 3@ RetainSample RetainSrc 6
4 @ Real-Time x INT 2.0 (Offs: 0.0)

Area No MName Type Size Elements Retain Hdl C

o) Inputs InputDst 12
1) Qutputs OQutputsre 12

3 Symbols

+

3 Symbols
3 Symbols 03020001 'Box1 (Retain H... ¥

+

< e

[Z1 /O Idle Task
INT 2.0 (Offs: 2.0)
INT 2.0 (Offs: 4.0)

yiiceiicy|

4 % Tasks ¥
[E1 PlcTask z
[&1 Task1
== Routes
[EH] TcCOM Objects
MOTION
3 PLC
SAFETY
a ﬂ C+t
4 Unbenannt2
b [% Unbenannt2 Project
4 [E] Unbenannt2_Objl {CModulel)
b L Inputs
b [Outputs
4 [l RetainSample
o ox
My
oz

Conclusions

When a retain handler is selected as target in the respective project, the symbols under retain handler and a
mapping are created automatically after a "Build".

B

4 [Fvo
4 "L Devices
4 "R Devicel (NOV-DP-RAM)
jg Image
Inputs
B Outputs
4 2% Box1 (Retain Handler)
4 [Retains
o [0]
My [0]
MW =z [0]
M MAIN.I_[851]
B MAIN.k_[851]
M MAIM.m_[851]

16.3 Creating and handling C++ projects and modules

This chapter explains in-depth how to create, access and handle TwinCAT C++ projects. The following list
shows all chapters in this article:

» General information about C++ projects

» Creating new C++ projects

» Creating new module within a C++ project
» Opening existing C++ projects

» Creating module instances

« Calling TMC Code Generator

 Calling Publish Modules command

+ Setting C++ Project Properties

* Building project

TC3 C++ Version: 1.7 307

Appendix BEGKHGFF

General information about C++ projects

C++ projects are specified by their so-called project template, which are used by the “TwinCAT C++ Project
Wizard”. Inside a project multiple modules could be defined by module templates, which are used by the
“TwinCAT Class Wizard”.

TwinCAT-defined templates are documented in the Section C++ / Wizards [P _76].

The customer could define own templates, which is documented at the corresponding sub-section if C++
Section / Wizards [P 128].

Creating C++ projects

To create a new C++ project via Automation Interface, you need to navigate to the C++ node and then
execute the CreateChild() method with the corresponding template file as a parameter.

Code snippet (C#):

ITcSmTreeltem cpp = systemManager.LookupTreeItem ("TIXC") ;

ITcSmTreeltem cppProject = cpp.CreateChild ("NewCppProject", 0, "", pathToTemplateFile);
Code snippet (Powershell):

Scpp = $systemManager.LookupTreeIltem ("TIXC")

SnewProject = $cpp.CreateChild ("NewCppProject", 0, "", S$pathToTemplateFile)

For instantiating a driver project please use "TcDriverWizard" as pathToTemplateFile.

Creating new module within a C++ project

Within a C++ project usually a TwinCAT Module Wizard is used to let the wizard create a module by a
template.

Code snippet (C#):

ITcSmTreeltem cppModule = cppProject.CreateChild("NewModule", 1, "", pathToTemplateFile);

Code snippet (Powershell):

ScppModule = S$cppProject.CreateChild ("NewModule", 0, "", $pathToTemplateFile);

As example for instantiating a Cyclic IO module project please use "TcModuleCyclicCallerWizard " as
pathToTemplateFile.

Opening existing C++ projects

To open an existing C++-Project via Automation Interface, you need to navigate to the C++ node and then
execute the CreateChild() method with the path to the corresponding C++ project file as a parameter.

You can use three different values as SubType:
* 0: Copy project to solution directory
* 1: Move project to solution directory

» 2: Use original project location (specify “” as NameOfProject parameter)

308 Version: 1.7 TC3 C++

BECKHOFF Appendix

Basically, these values represent the functionalities (Yes, No, Cancel) from the following MessageBox in
TwinCAT XAE:

© '

Microsoft Visual Studio X

j 1 Project path not under current solution.

Copy project to solution directory (YES)
Maowe project to selution directory (MO)
Use criginal project location (CAMNCEL)

ves || No || Cancel |

L A

In place of the template file you need to use the path to the C++ project (to its vcxproj file) that needs to be
added. As an alternative, you can also use a C++ project archive (tczip file).
Code snippet (C#):

ITcSmTreeltem cpp = systemManager.LookupTreeItem ("TIXC") ;
ITcSmTreeltem newProject = cpp.CreateChild ("NameOfProject", 1, "", pathToProjectOrTczipFile);

Code snippet (Powershell):

Scpp = $systemManager.LookupTreeltem ("TIXC")
SnewProject = S$cpp.CreateChild ("NameOfProject", 1, "", S$pathToProjectOrTczipFile)

Please note that C++ projects can’t be renamed, thus the original project name needs to be specified. (cmp.
Renaming TwinCAT C++ projects [» 199])

Creating module instances

TcCOM Modules could be created at the System -> TcCOM Modules node. Please see documentation there
[»_311].

The same procedure could also be applied to the C++ project node to add TcCOM instances at that place
($newProject at the code on top of this page.).

Calling TMC Code Generator
TMC Code generator could be called to generate C++ code after changes at the TMC file of the C++ project.

Code snippet (C#):

string startTmcCodeGenerator = @"<?xml version=""1.0"" encoding=""UTF-16""7?>
<Treeltem>

<CppProjectDef>

<Methods>

<StartTmcCodeGenerator>
<Active>true</Active>
</StartTmcCodeGenerator>

</Methods>

</CppProjectDef>

</Treeltem>";

cppProject.ConsumeXml (startTmcCodeGenerator) ;

Code snippet (Powershell):

$startTmcCodeGenerator = @"<?xml version=""1.0"" encoding=""UTF-16""?2>
<Treeltem>

<CppProjectDef>

<Methods>

<StartTmcCodeGenerator>

<Active>true</Active>

</StartTmcCodeGenerator>

</Methods>

TC3 C++ Version: 1.7 309

Appendix BEGKHOFF

</CppProjectDef>
</Treeltem>"
ScppProject.ConsumeXml ($startTmcCodeGenerator)

Calling Publish Modules command

Publishing includes building the project for all platforms. The compiled module will be provided for Export like
described in the Module-Handling section of C++ [P 44].

Code snippet (C#):

string publishModules = @"<?xml version=""1.0"" encoding=""UTF-16""?2>
<TreeItem>

<CppProjectDef>

<Methods>

<PublishModules>
<Active>true</Active>
</PublishModules>

</Methods>

</CppProjectDef>

</Treeltem>";

cppProject.ConsumeXml (publishModules) ;

Code snippet (Powershell):

SpublishModules = @"<?xml version=""1.0"" encoding=""UTF-16""?2>
<Treeltem>

<CppProjectDef>

<Methods>

<PublishModules>

<Active>true</Active>
</PublishModules>

</Methods>

</CppProjectDef>

</Treeltem>"

ScppProject.ConsumeXml ($publishModules)

Setting C++ Project Properties

C++ projects provide different options for the build and deployment process.
These are settable by the Automation Interface.

Code snippet (C#):

string projProps = @"<?xml version=""1.0"" encoding=""UTF-16""7?2>
<Treeltem>

<CppProjectDef>
<BootProjectEncryption>Target</BootProjectEncryption>
<TargetArchiveSettings>
<SaveProjectSources>false</SaveProjectSources>
</TargetArchiveSettings>

<FileArchiveSettings>
<SaveProjectSources>false</SaveProjectSources>
</FileArchiveSettings>

</CppProjectDef>

</Treeltem>";

cppProject.ConsumeXml (projProps) ;

Code snippet (Powershell):

SprojProps = @"<?xml version=""1.0"" encoding=""UTF-16""72>
<Treeltem>

<CppProjectDef>
<BootProjectEncryption>Target</BootProjectEncryption>
<TargetArchiveSettings>
<SaveProjectSources>false</SaveProjectSources>
</TargetArchiveSettings>

<FileArchiveSettings>
<SaveProjectSources>false</SaveProjectSources>
</FileArchiveSettings>

</CppProjectDef>

</Treeltem>"

ScppProject.ConsumeXml ($projProps)

For the BootProjectEncryption the values “None” and “Target” are valid.
Both other settings are “false” and “true” values.

310 Version: 1.7 TC3 C++

BEGKHOFF Appendix

Building project

To build the project or solution you can use the corresponding classes and methods of the Visual Studio API,
which are documented here.

16.4 Creating and handling TcCOM modules

This chapter explains how to add existing TcCOM modules to a TwinCAT configuration and parameterize
them. The following topics will be briefly covered in this chapter:

» Acquiring a reference to “TcCOM Objects” node
» Adding existing TcCOM modules

* lterating through added TcCOM modules

» Setting CreateSymbol flag for parameters

+ Setting CreateSymbol flag for Data Areas

+ Setting Context (Tasks)

» Linking variables

Acquiring a reference to “TcCOM Objects” node

In a TwinCAT configuration, the “TcCOM Objects” node is located under “SYSTEMATcCOM Objects”.
Therefore you can acquire a reference to this node by using the method ITcSysManager::LookupTreeltem()
in the following way:

Code Snippet (C#):

ITcSmTreeltem tcComObjects = systemManager.LookupTreelItem ("TIRC"TcCOM Objects");

Code Snippet (Powershell):

StcComObjects = $systemManager.LookupTreeltem ("TIRC TcCOM Objects")

The code above assumes that there is already a systemManager objects present in your Al code.

Adding existing TcCOM modules
To add existing TcCOM modules to your TwinCAT configuration, these modules need to be detectable by
TwinCAT. This can be achieved by either of the following ways:

* Copying TcCOM modules to folder % TWINCAT3.XDIR"CustomConfig\Modules\

+ Editing % TWINCAT3.XDIR"\Config\lo\TcModuleFolders.xml to add a path to a folder of your choice
and place the modules within that folder

Both ways will be sufficient to make the TcCOM modules detectable by TwinCAT.

A TcCOM module is being identified by its GUID. This GUID can be used to add a TcCOM module to a
TwinCAT configuration via the ITcSmTreeltem::CreateChild() method. The GUID can be determined in
TwinCAT XAE via the properties page of a TcCOM module or programatically, which will be explained later
in this chapter.

TC3 C++ Version: 1.7 311

Appendix BEGKHOFF

Object |Currte:d | Parameter {Init) | Parameter {Online}l Data Area | Interfaces | Block Diagram
Object Id: 010710020 | Copy TMIto Target
Object Name: Object1 (TempContr)
Type Mame: TempContr
Class Id: BFEFDCFF-EE4B-4EER-20B1-25EBZ3BD1BAS
Class Factory: TempContr
Parent Id: 00000000
Init Sequence; P50 -

Alternatively you can also determine the GUID via the TMC file of the TcCOM module.

<TcModuleClass>
<Modules>
<Module GUID="{8f5fdcff-eed4b-4ee5-80bl-25eb23bdlb45}">
</Module>
</Modules>
</TcModuleClass>

Let’'s assume that we already own a TcCOM module that is registered in and detectable by TwinCAT. We
now would like to add this TcCOM module, which has the GUID {8F5FDCFF-
EE4B-4EE5-80B1-25EB23BD1B45} to our TwinCAT configuration. This can be done by the following way:

Code Snippet (C#):

Dictionary<string, Guid> tcomModuleTable = new Dictionary<string,Guid> () ;
tcomModuleTable.Add ("TempContr", Guid.Parse (" {8f5fdcff-eedb-4ee5-80b1-25eb23bd1lb45}")) ;
ITcSmTreeltem tempController = tcComObjects.CreateChild(“Test”, 0, "",

tcomModuleTable ["TempContr"]) ;

Code Snippet (Powershell):

StcomModuleTable = @""
StcomModuleTable.Add ("TempContr", "{8f5fdcff-eedb-4ee5-80b1-25eb23bdlb45}")
StempController = $tcComObjects.CreateChild ("Test", 0, "", S$tcomModuleTable["TempContr"])

Please note that the vinfo parameter of the method ltcSmTreeltem::CreateChild() contains the GUID of the
TcCOM module which is used to identify the module in the list of all registered TcCOM modules in that
system.

Iterating through added TcCOM modules

To iterate through all added TcCOM module instances, you may use the ITcModuleManager?2 interface. The
following code snippet demonstrates how to use this interface.

Code Snippet (C#):

ITcModuleManager2 moduleManager = (ITcModuleManager2)systemManager.GetModuleManager () ;
foreach (ITcModuleManager2 modulelInstance in moduleManager)
{
string moduleType = modulelInstance.ModuleTypeName;
string instanceName = modulelInstance.ModuleInstanceName;
Guid classId = moduleInstance.ClassID;
uint objId = modulelnstance.oid;
uint parentObjId = moduleInstance.ParentOID;
}

Code Snippet (Powershell):

SmoduleManager = $systemManager.GetModuleManager ()

ForEach($modulelInstance in $moduleManager)

{
SmoduleType = $modulelInstance.ModuleTypeName
$instanceName = $modulelnstance.ModulelInstanceName
$SclassId = $modulelInstance.ClassID

312 Version: 1.7 TC3 C++

BEGKHOFF Appendix

$SobjId = Smodulelnstance.oid
SparentObjId = S$modulelnstance.ParentOID
}

Please note that every module object can also be interpreted as an ITcSmTreeltem, therefore the following
type cast would be valid:

Code Snippet (C#):

ITcSmTreeltem treeltem = moduleInstance As ITcSmTreeltem;

Please note: Powershell uses dynamic data types by default.

Setting CreateSymbol flag for parameters

The CreateSymbol (CS) flag for parameters of a TcCOM module can be set via its XML description. The
following code snippet demonstrates how to activate the CS flag for the Parameter “CallBy”.

Code Snippet (C#):

bool activateCS = true;
// First step: Read all Parameters of TcCOM module instance
string tempControllerXml = tempController.ProduceXml ();

XmlDocument tempControllerDoc = new XmlDocument () ;

tempControllerDoc.LoadXml (tempControllerXml) ;

XmlNode sourceParameters = tempControllerDoc.SelectSingleNode ("Treeltem/TcModuleInstance/Module/
Parameters") ;

// Second step: Build target XML (for later ConsumeXml ())
XmlDocument targetDoc = new XmlDocument () ;

XmlElement treeltemElement = targetDoc.CreateElement ("Treeltem");

XmlElement moduleInstanceElement = targetDoc.CreateElement ("TcModuleInstance");
XmlElement moduleElement = targetDoc.CreateElement ("Module") ;

XmlElement parametersElement = (XmlElement) targetDoc.ImportNode (sourceParameters, true);

moduleElement.AppendChild (parametersElement) ;
moduleInstanceElement.AppendChild (moduleElement) ;
treeltemElement.AppendChild (moduleInstanceElement) ;
targetDoc.AppendChild (treeltemElement) ;

// Third step: Look for specific parameter (in this case “CallBy”) and read its CreateSymbol
attribute

XmlNode destModule = targetDoc.SelectSingleNode ("Treeltem/TcModuleInstance/Module ") ;

XmlNode callByParameter = destParameters.SelectSingleNode ("Parameters/Parameter [Name='CallBy']");
XmlAttribute createSymbol = callByParameter.Attributes["CreateSymbol"];

createSymbol.Value = "true";

// Fifth step: Write prepared XML to configuration via ConsumeXml ()
string targetXml = targetDoc.OuterXml;
tempController.ConsumeXml (targetXml) ;

Code Snippet (Powershell):

StempControllerXml = [Xml]$tempController.ProduceXml ()
$sourceParameters = $tempControllerXml.Treeltem.TcModuleInstance.Module.Parameters

[System.XML.XmlDocument] $targetDoc = New-Object System.XML.XmlDocument
[System.XML.XmlElement] S$treeltemElement = $targetDoc.CreateElement ("Treeltem")
[System.XML.XmlElement] $moduleInstanceElement = S$targetDoc.CreateElement ("TcModuleInstance™)
[System.XML.XmlElement] S$moduleElement = $targetDoc.CreateElement ("Module")
[System.XML.XmlElement] S$parametersElement = $targetDoc.ImportNode ($sourceParameters, S$true)
SmoduleElement.AppendChild (S$SparametersElement)

SmoduleInstanceElement.AppendChild ($moduleElement)

StreeltemElement.AppendChild ($moduleInstanceElement)

StargetDoc.AppendChild ($treeltemElement)

$destModule = $targetDoc.Treeltem.TcModuleInstance.Module
$callByParameter = $destmodule.SelectSingleNode ("Parameters/Parameter [Name='CallBy']")

ScallByParameter.CreateSymbol = "true"

StargetXml = S$targetDoc.OuterXml
StempController.ConsumeXml (StargetXml)

TC3 C++ Version: 1.7 313

Appendix BEGKHOFF

Setting CreateSymbol flag for Data Areas

The CreateSymbol (CS) flag for Data Areas of a TcCOM module can be set via its XML description. The
following code snippet demonstrates how to activate the CS flag for the Data Area “Input”. Please note that
the procedure is pretty much the same as for parameters.

Code Snippet (C#):

bool activateCS = true;

// First step: Read all Data Areas of a TcCOM module instance

string tempControllerXml = tempController.ProduceXml () ;

XmlDocument tempControllerDoc = new XmlDocument () ;

tempControllerDoc.LoadXml (tempControllerXml) ;

XmlNode sourceDataAreas = tempControllerDoc.SelectSingleNode ("Treeltem/TcModuleInstance/Module/
DataAreas") ;

// Second step: Build target XML (for later ConsumeXml ())
XmlDocument targetDoc = new XmlDocument () ;
XmlElement treeltem targetDoc.CreateElement ("Treeltem") ;

XmlElement moduleInstance = targetDoc.CreateElement ("TcModuleInstance") ;
XmlElement module = targetDoc.CreateElement ("Module") ;
XmlElement dataAreas = (XmlElement)

targetDoc.ImportNode (sourceDataAreas, true);
module.AppendChild (dataAreas) ;
modulelInstance.AppendChild (module) ;
treeltem.AppendChild (moduleInstance) ;
targetDoc.AppendChild (treeltem) ;

// Third step: Look for specific Data Area (in this case "Input") and read its CreateSymbol
attribute

XmlElement dataArea = (XmlElement)targetDoc.SelectSingleNode ("Treeltem/TcModuleInstance/Module/
DataAreas/DataArea[ContextId='0’ and Name='Input’]");

XmlNode dataAreaNo = dataArea.SelectSingleNode ("AreaNo");

XmlAttribute createSymbol = dataAreaNoNode.Attributes|["CreateSymbols"];

// Fourth step: Set CreateSymbol attribute to true if it exists. If not, create attribute and set
its value

if (createSymbol != null)
string oldValue = createSymbol.Value;
else

{

createSymbol = targetDoc.CreateAttribute ("CreateSymbols") ;
dataAreaNo.Attributes.Append (createSymbol) ;

}

createSymbol.Value = XmlConvert.ToString (activateCs);

// Fifth step: Write prepared XML to configuration via ConsumeXml ()
string targetXml = targetDoc.OuterXml;
tempController.ConsumeXml (targetXml) ;

Code Snippet (Powershell):

StempControllerXml = [Xml]$tempController.ProduceXml ()
$sourceDataAreas = StempControllerXml.Treeltem.TcModuleInstance.Module.DataAreas

[System.XML.XmlDocument] $targetDoc = New-Object System.XML.XmlDocument
[System.XML.XmlElement] S$treeltem = S$targetDoc.CreateElement ("Treeltem")
[System.XML.XmlElement] $moduleInstance = $targetDoc.CreateElement ("TcModuleInstance")
[System.XML.XmlElement] $module = $targetDoc.CreateElement ("Module")
[System.XML.XmlElement] $dataAreas = S$targetDoc.ImportNode ($sourceDataAreas, S$true)
Smodule.AppendChild ($dataAreas)

SmoduleInstance.AppendChild ($module)

Streeltem.AppendChild ($moduleInstance)

StargetDoc.AppendChild ($treeltem)

SdestModule = S$targetDoc.Treeltem.TcModuleInstance.Module

[System.XML.XmlElement] $dataArea = S$destModule.SelectSingleNode ("DataAreas/DataArea[ContextId="'0"
and Name='Input']")

SdataAreaNo = $dataArea.SelectSingleNode ("AreaNo")

SdataAreaNo.CreateSymbols = "true"

// Fifth step: Write prepared XML to configuration via ConsumeXml ()
StargetXml = S$targetDoc.OuterXml
StempController.ConsumeXml (StargetXml)

314 Version: 1.7 TC3 C++

BEGKHOFF Appendix

Setting Context (Tasks)

Every TcCOM module instance needs to be run in a specific context (task). This can be done via the
ITcModulelnstance2::SetModuleContext() method. This method awaits two parameters: Contextld and
TaskObjectld. Both are equivalent to the corresponding parameters in TwinCAT XAE:

| Objectl Context | Parameter {Init) | Parameter (Onling) | Diata Area I Intefaces I Block Diagmml

Context:

Depend On: Manual Config -
[Need Call From Sync Mapping

Data Areas: Interfaces:
[¥]0 “Input’ a
[¥]1 Cutput’

[¥]21 "BlockI0"

[¥122 ContState’ -
Data Pointer: Interface Pointer:

Name | Priority | Cycle Tim... | Task Port Symbol Port| Sort Order |
dditionalTaskl 1 10000 350 350 0 ;I

Please note that the TaskObjectld is shown in hex in TwinCAT XAE.
Code Snippet (C#):

ITcModuleInstance2 tempControllerMi = (ITcModuleInstance2) tempController;
tempControllerMi.SetModuleContext (0, 33619984);

You can determine the TaskObjectld via the XML description of the corresponding task, for example:

Code Snippet (C#):

ITcSmTreeltem someTask = systemManager.LookupTreelItem (“TIRT"SomeTask”);
string someTaskXml = someTask.ProduceXml () ;

XmlDocument someTaskDoc = new XmlDocument () ;

someTaskDoc.LoadXml (someTaskXml) ;

XmlNode taskObjectIdNode = someTaskDoc.SelectSingleNode (“"TreeItem/ObjectId”) ;
string taskObjectIdStr = taskObjectId.InnerText;

uint taskObjectId = uint.Parse(taskObjectIdStr, NumberStyles.HexNumber) ;

Linking variables

Linking variables of a TcCOM module instance to PLC/IO or other TcCOM modules can be done by using
regular Automation Interface mechanisms, e.g. ITcSysManager::LinkVariables().

TC3 C++ Version: 1.7 315

	 Table of contents
	1 Foreword
	1.1 Notes on the documentation
	1.2 Safety instructions

	2 Overview
	3 Introduction
	3.1 From conventional user mode programming to real-time programming in TwinCAT

	4 Requirements
	5 Preparation - just once!
	5.1 Installation "Microsoft Windows Driver Kit 7 (WDK)"
	5.2 Visual Studio - TwinCAT XAE Base toolbar
	5.3 Prepare Visual Studio - Configuration and Platform toolbar
	5.4 x64: driver signing
	5.4.1 Signing drivers
	5.4.2 Test signing
	5.4.3 Delete test certificate
	5.4.4 Customer Certificates

	5.5 SecureBoot: Driver signing

	6 Modules
	6.1 The TwinCAT Component Object Model (TcCOM) concept
	6.1.1 TwinCAT module properties
	6.1.2 TwinCAT module state machine

	6.2 Module-to-module communication

	7 Modules - Handling
	7.1 Export modules
	7.2 Import modules

	8 TwinCAT C++ development
	9 Quick start
	9.1 Create TwinCAT 3 project
	9.2 Create TwinCAT 3 C++ project
	9.3 Implement TwinCAT 3 C++ project
	9.4 Compiling/building a TwinCAT 3 C++ project
	9.5 Create TwinCAT 3 C++ Module instance
	9.6 Create a TwinCAT task and apply it to the module instance
	9.7 TwinCAT 3 enable C++ debugger
	9.8 Activating a TwinCAT 3 project
	9.9 Debug TwinCAT 3 C++ project

	10 Debugging
	10.1 Details of Conditional Breakpoints
	10.2 Visual Studio tools

	11 Wizards
	11.1 TwinCAT C++ Project Wizard
	11.2 TwinCAT Module Class Wizard
	11.3 TwinCAT Module Class Editor (TMC)
	11.3.1 Overview
	11.3.2 Basic Information
	11.3.3 Data Types
	11.3.3.1 Overview
	11.3.3.2 Add / modify / delete data types
	11.3.3.3 Add / modify / delete Interfaces
	11.3.3.4 Data type properties
	11.3.3.5 Specification
	11.3.3.5.1 Array
	11.3.3.5.2 Enum
	11.3.3.5.3 Struct
	11.3.3.5.4 Interfaces

	11.3.4 Modules
	11.3.4.1 Implemented Interfaces
	11.3.4.2 Parameters
	11.3.4.2.1 Add / modify / delete parameters
	11.3.4.2.2 Parameter properties
	11.3.4.2.3 TraceLevelMax

	11.3.4.3 Data Areas
	11.3.4.3.1 Add / modify / delete data areas and variables
	11.3.4.3.2 Data Areas Properties
	11.3.4.3.3 Symbol Properties
	11.3.4.3.3.1 TwinCAT Module Class Editor - Data Areas Symbols Properties

	11.3.4.4 Data Pointers
	11.3.4.4.1 Data Pointer Properties

	11.3.4.5 Interface Pointers
	11.3.4.5.1 Interface Pointer Properties

	11.3.4.6 Deployment

	11.4 TwinCAT Module Instance Configurator
	11.4.1 Object
	11.4.2 Context
	11.4.3 Parameter (Init)
	11.4.4 Data Area
	11.4.5 Interfaces
	11.4.6 Interface Pointer
	11.4.7 Data Pointer

	11.5 Customer-specific project templates
	11.5.1 Overview
	11.5.2 Files involved
	11.5.3 Transformations
	11.5.4 Notes on handling

	12 Programming Reference
	12.1 File Description
	12.1.1 Compilation procedure

	12.2 Limitations
	12.3 Memory Allocation
	12.4 Interfaces
	12.4.1 Interface ITcCyclic
	12.4.1.1 Method ITcCyclic:CyclicUpdate

	12.4.2 Interface ITcCyclicCaller
	12.4.2.1 Method ITcCyclicCaller:AddModule
	12.4.2.2 Method ITcCyclicCaller:RemoveModule

	12.4.3 Interface ITcFileAccess
	12.4.3.1 Method ITcFileAccess:FileOpen
	12.4.3.2 Method ITcFileAccess:FileClose
	12.4.3.3 Method ITcFileAccess:FileRead
	12.4.3.4 Method ITcFileAccess:FileWrite
	12.4.3.5 Method ITcFileAccess:FileSeek
	12.4.3.6 Method ITcFileAccess:FileTell
	12.4.3.7 Method ITcFileAccess:FileRename
	12.4.3.8 Method ITcFileAccess:FileDelete
	12.4.3.9 Method ITcFileAccess:FileGetStatus
	12.4.3.10 Method ITcFileAccess:FileFindFirst
	12.4.3.11 Method ITcFileAccess:FileFindNext
	12.4.3.12 Method ITcFileAccess:FileFindClose
	12.4.3.13 Method ITcFileAccess:MkDir
	12.4.3.14 Method ITcFileAccess:RmDir

	12.4.4 Interface ITcFileAccessAsync
	12.4.4.1 Method ITcFileAccessAsync::Check()

	12.4.5 Interface ITcIoCyclic
	12.4.5.1 Method ITcIoCyclic:InputUpdate
	12.4.5.2 Method ITcIoCyclic:OutputUpdate

	12.4.6 Interface ITcIoCyclicCaller
	12.4.6.1 Method ITcIoCyclicCaller:AddIoDriver
	12.4.6.2 Method ITcIoCyclicCaller:RemoveIoDriver

	12.4.7 Interface ITComObject
	12.4.7.1 Method ITcComObject:TcGetObjectId(OTCID& objId)
	12.4.7.2 Method ITcComObject:TcSetObjectId
	12.4.7.3 Method ITcComObject:TcGetObjectName
	12.4.7.4 Method ITcComObject:TcSetObjectName
	12.4.7.5 Method ITcComObject:TcSetObjState
	12.4.7.6 Method ITcComObject:TcGetObjState
	12.4.7.7 Method ITcComObject:TcGetObjPara
	12.4.7.8 Method ITcComObject:TcSetObjPara
	12.4.7.9 Method ITcComObject:TcGetParentObjId
	12.4.7.10 Method ITcComObject:TcSetParentObjId

	12.4.8 ITComObject interface (C++ convenience)
	12.4.8.1 TcGetObjectId method
	12.4.8.2 TcTryToReleaseOpState method

	12.4.9 Interface ITcPostCyclic
	12.4.9.1 Method ITcPostCyclic:PostCyclicUpdate

	12.4.10 Interface ITcPostCyclicCaller
	12.4.10.1 Method ITcPostCyclicCaller:AddPostModule
	12.4.10.2 Method ITcPostCyclicCaller:RemovePostModule

	12.4.11 Interface ITcRTimeTask
	12.4.11.1 Method ITcRTimeTask::GetCpuAccount()

	12.4.12 Interface ITcTask
	12.4.12.1 Method ITcTask:GetPriority
	12.4.12.2 Method ITcTask:GetCurrentSysTime
	12.4.12.3 Method ITcTask:GetCurrentDcTime
	12.4.12.4 Method ITcTask:GetCurPentiumTime
	12.4.12.5 Method ITcTask:GetCycleCounter
	12.4.12.6 Method ITcTask:GetCycleTime

	12.4.13 Interface ITcTaskNotification
	12.4.13.1 Method ITcTaskNotification::NotifyCycleTimeExceeded()

	12.4.14 Interface ITcUnknown
	12.4.14.1 Method ITcUnknown:TcAddRef
	12.4.14.2 Method ITcUnknown:TcQueryInterface
	12.4.14.3 Method ITcUnknown:TcRelease

	12.5 Runtime Library (RtlR0.h)
	12.6 ADS Communication
	12.6.1 AdsReadDeviceInfo
	12.6.1.1 AdsReadDeviceInfoReq
	12.6.1.2 AdsReadDeviceInfoInd
	12.6.1.3 AdsReadDeviceInfoRes
	12.6.1.4 AdsReadDeviceInfoCon

	12.6.2 AdsRead
	12.6.2.1 AdsReadReq
	12.6.2.2 AdsReadInd
	12.6.2.3 AdsReadRes
	12.6.2.4 AdsReadCon

	12.6.3 AdsWrite
	12.6.3.1 AdsWriteReq
	12.6.3.2 AdsWriteInd
	12.6.3.3 AdsWriteRes
	12.6.3.4 AdsWriteCon

	12.6.4 AdsReadWrite
	12.6.4.1 AdsReadWriteReq
	12.6.4.2 AdsReadWriteInd
	12.6.4.3 AdsReadWriteRes
	12.6.4.4 AdsReadWriteCon

	12.6.5 AdsReadState
	12.6.5.1 AdsReadStateReq
	12.6.5.2 AdsReadStateInd
	12.6.5.3 AdsReadStateRes
	12.6.5.4 AdsReadStateCon

	12.6.6 AdsWriteControl
	12.6.6.1 AdsWriteControlReq
	12.6.6.2 AdsWriteControlInd
	12.6.6.3 AdsWriteControlRes
	12.6.6.4 AdsWriteControlCon

	12.6.7 AdsAddDeviceNotification
	12.6.7.1 AdsAddDeviceNotificationReq
	12.6.7.2 AdsAddDeviceNotificationInd
	12.6.7.3 AdsAddDeviceNotificationRes
	12.6.7.4 AdsAddDeviceNotificationCon

	12.6.8 AdsDelDeviceNotification
	12.6.8.1 AdsDelDeviceNotificationReq
	12.6.8.2 AdsDelDeviceNotificationInd
	12.6.8.3 AdsDelDeviceNotificationRes
	12.6.8.4 AdsDelDeviceNotificationCon

	12.6.9 AdsDeviceNotification
	12.6.9.1 AdsDeviceNotificationReq
	12.6.9.2 AdsDeviceNotificationInd
	12.6.9.3 AdsDeviceNotificationCon

	12.7 Mathematical Functions
	12.8 Time Functions
	12.9 STL / Containers
	12.10 Error Messages - Comprehension
	12.11 Module messages for the Engineering (logging / tracing)

	13 How to...?
	13.1 Using the Automation Interface
	13.2 Windows 10 as target system up to TwinCAT 3.1 Build 4022.2
	13.3 Publishing of modules
	13.4 Publishing modules on the command line
	13.5 Clone
	13.6 Renaming TwinCAT C++ projects
	13.7 Access Variables via ADS
	13.8 TcCallAfterOutputUpdate for C++ modules
	13.9 Ordering Execution in one Task
	13.10 Use Stack Size > 4kB
	13.11 Setting version/vendor information
	13.12 Delete Module
	13.13 Initialization of TMC-member variables
	13.14 Using PLC Strings as Method-Parameter
	13.15 Third Party Libraries
	13.16 Linking via TMC editor (TcLinkTo)

	14 Troubleshooting
	14.1 Build - "Cannot open include file ntddk.h"
	14.2 Build - "The target ... does not exist in the project"
	14.3 Debug - "Unable to attach"
	14.4 Activation – “invalid object id” (1821/0x71d)
	14.5 Error Message – VS2010 and LNK1123/COFF
	14.6 Using C++ classes in TwinCAT C++ module
	14.7 Using afxres.h

	15 C++-samples
	15.1 Overview
	15.2 Sample01: Cyclic module with IO
	15.3 Sample02: Cyclic C++ logic using IO from IO-task
	15.4 Sample03: C++ as ADS server
	15.4.1 Sample03: TC3 ADS Server written in C++
	15.4.2 Sample03: ADS client UI in C#

	15.5 Sample05: C++ CoE access via ADS
	15.6 Sample06: UI-C#-ADS client uploading the symbolic from module
	15.7 Sample07: Receiving ADS Notifications
	15.8 Sample08: provision of ADS-RPC
	15.9 Sample10: module communication: Using data pointer
	15.10 Sample11: module communication: PLC module invokes method of C-module
	15.10.1 TwinCAT 3 C++ module providing methods
	15.10.2 Calling methods offered by another module via PLC

	15.11 Sample11a: Module communication: C module calls a method of another C module
	15.12 Sample12: module communication: Using IO mapping
	15.13 Sample13: Module communication: C-module calls PLC methods
	15.14 Sample19: Synchronous File Access
	15.15 Sample20: FileIO-Write
	15.16 Sample20a: FileIO-Cyclic Read / Write
	15.17 Sample22: Automation Device Driver (ADD): Access DPRAM
	15.18 Sample23: Structured Exception Handling (SEH)
	15.19 Sample25: Static Library
	15.20 Sample26: Execution order at one task
	15.21 Sample30: Timing Measurement
	15.22 Sample31: Functionblock TON in TwinCAT3 C++
	15.23 Sample35: Access Ethernet
	15.24 Sample37: Archive data
	15.25 TcCOM samples
	15.25.1 TcCOM_Sample01_PlcToPlc
	15.25.1.1 Creating an FB which provides its functionality globally in the first PLC
	15.25.1.2 Creating an FB which likewise offers this functionality there as a simple proxy in the second PLC,
	15.25.1.3 Execution of the sample project

	15.25.2 TcCOM_Sample02_PlcToCpp
	15.25.2.1 Instantiating a TwinCAT++ class as a TwinCAT TcCOM Object
	15.25.2.2 Creating an FB in the PLC which offers as a simple proxy the functionality of the C++ object
	15.25.2.3 Execution of the sample project

	15.25.3 TcCOM_Sample03_PlcCreatesCpp
	15.25.3.1 Provision of a TwinCAT C++ driver and its classes
	15.25.3.2 Creating an FB in the PLC that creates the C++ object and offers its functionality
	15.25.3.3 Execution of the sample project

	16 Appendix
	16.1 ADS Return Codes
	16.2 Retain data
	16.3 Creating and handling C++ projects and modules
	16.4 Creating and handling TcCOM modules

