Manual

TC3 PLC Static Analysis

TwinCAT 3
Version: 1.9
Date: 2019-05-14

Order No.: TE1200

BEGCKHOFF

BECKHUFF Table of contents

Table of contents

T oY =11 oY PR 5
1.1 Notes on the doCUMENTAtIONo e e e e 5
1.2 SAftY INSITUCHIONS ..eeeiiiiie et e et e e e e e e e e e e e et a e e eeeaaeeeeeesannnsbenaeees 6

7 =Y T 7

B 453 = 1] = oY P 9

L S 0o T 1T = Y 1 e o PSPPI 10
g S 1= 1 o - T PRSP 10
N (U1 = U RT T SSP 11

421 Rules - overview and deSCrHPLiONccoiii i a e e 13
R I N\ =001 g To leTo] 0 1Y7=T 01 (o] o - PSPPSR 57
4.3.1 Naming conventions — overview and description.............ooooiiiiiiiiiiiii e 59
4.3.2 Placeholder {datatype}........coooiiiiiiiiii e 66
4.4 Naming CONVENTIONS (2).....uueieeiiitiiiei ittt e et e e e e aab e e e e e st et e e e e aabbe e e e e annes 67
T |V = {4 T2 S PR T PP 69
451 Metrics - overview and desCriptionocueiiiiiiiiii e 71
4.6 FOrbidden SYMDOIS ..ot e e e e et e e e e e e e e e e e nnn e aeeeas 75

L (=Y o 111 o o Y 76
5.1 RUN StAtIC ANGIYSIS....ciiiiieiiiiie ittt e e et e nnnreeeeeannes 76
5.2 Run static analysis [check all ObJECES]uuviiiiiiiiiiie e 77
5.3 View Standard MetriCSueieiiiiiieie ettt e e e e e e e e e et e e e e e e e e e e e e e eeeeas 77

6 Pragmas and attribUutes..........ccc e e e nnnnnn e 81

A = €= 111 [85
A S 1 - Y i [o3R= T 0 =) £ USSP 85
A =Yg T =T o 0 0 =Y TSSO 86

TC3 PLC Static Analysis Version: 1.9 3

Table of contents BEGKHOFF

4 Version: 1.9 TC3 PLC Static Analysis

BECKHUFF Foreword

1 Foreword

1.1 Notes on the documentation

This description is only intended for the use of trained specialists in control and automation engineering who
are familiar with the applicable national standards.

It is essential that the documentation and the following notes and explanations are followed when installing
and commissioning the components.

It is the duty of the technical personnel to use the documentation published at the respective time of each
installation and commissioning.

The responsible staff must ensure that the application or use of the products described satisfy all the
requirements for safety, including all the relevant laws, regulations, guidelines and standards.

Disclaimer

The documentation has been prepared with care. The products described are, however, constantly under
development.

We reserve the right to revise and change the documentation at any time and without prior announcement.
No claims for the modification of products that have already been supplied may be made on the basis of the
data, diagrams and descriptions in this documentation.

Trademarks

Beckhoff®, TwinCAT®, EtherCAT®, Safety over EtherCAT®, TWinSAFE®, XFC® and XTS® are registered
trademarks of and licensed by Beckhoff Automation GmbH.

Other designations used in this publication may be trademarks whose use by third parties for their own
purposes could violate the rights of the owners.

Patent Pending

The EtherCAT Technology is covered, including but not limited to the following patent applications and
patents:

EP1590927, EP1789857, DE102004044764, DE102007017835

with corresponding applications or registrations in various other countries.

The TwinCAT Technology is covered, including but not limited to the following patent applications and
patents:
EP0851348, US6167425 with corresponding applications or registrations in various other countries.

—
EtherCAT.

EtherCAT® is registered trademark and patented technology, licensed by Beckhoff Automation GmbH,
Germany

Copyright

© Beckhoff Automation GmbH & Co. KG, Germany.

The reproduction, distribution and utilization of this document as well as the communication of its contents to
others without express authorization are prohibited.

Offenders will be held liable for the payment of damages. All rights reserved in the event of the grant of a
patent, utility model or design.

TC3 PLC Static Analysis Version: 1.9 5

Foreword BEGKHOFF

1.2 Safety instructions

Safety regulations

Please note the following safety instructions and explanations!
Product-specific safety instructions can be found on following pages or in the areas mounting, wiring,
commissioning etc.

Exclusion of liability

All the components are supplied in particular hardware and software configurations appropriate for the
application. Modifications to hardware or software configurations other than those described in the
documentation are not permitted, and nullify the liability of Beckhoff Automation GmbH & Co. KG.

Personnel qualification

This description is only intended for trained specialists in control, automation and drive engineering who are
familiar with the applicable national standards.

Description of symbols

In this documentation the following symbols are used with an accompanying safety instruction or note. The
safety instructions must be read carefully and followed without fail!

A DANGER

Serious risk of injury!

Failure to follow the safety instructions associated with this symbol directly endangers the life and health of
persons.

Risk of injury!
Failure to follow the safety instructions associated with this symbol endangers the life and health of per-
sons.

A CAUTION

Personal injuries!
Failure to follow the safety instructions associated with this symbol can lead to injuries to persons.

NOTE

Damage to the environment or devices

Failure to follow the instructions associated with this symbol can lead to damage to the environment or
equipment.

® Tip or pointer
1 This symbol indicates information that contributes to better understanding.

(e}

Version: 1.9 TC3 PLC Static Analysis

BEGKHOFF Overview

2 Overview

"Static code analysis" is a programming tool that is integrated in TwinCAT 3 PLC. It checks the source code
of a project for deviations from certain coding rules and naming conventions, before the project can be
loaded onto the target system without compilation errors. To this end a set of rules and naming conventions,
as well as a list of forbidden symbols, can be configured in the project properties, which are taken into
account during the evaluation. The concept follows the basic idea of the "Lint" analysis tool. The static
analysis can be triggered manually or performed automatically during the code generation. TwinCAT issues
the result of the analysis, i.e. messages relating to rule violations, in the message window. When you
configure the rules, you can define whether a violation appears as an error or a warning.

You can also configure various metrics to apply to your source code. Key parameters are calculated that
characterize the various program parts or express the properties of the software. They therefore provide an
indication of the software quality. For example, the tabular output contains metrics for the number of
statements or the proportion of comments.

Advantages

Static Analysis should be regarded as a supplement to the compiler. Failure to observe a coding rule
generally indicates an implementation weakness; correcting it enables early troubleshooting or error
avoidance. The automatic control of the user-specific naming conventions also ensures that the control
programs can be developed in a standardized manner with regard to type and variable names. This gives
different applications implemented on the basis of the same naming conventions a uniform look and feel,
which greatly improves the readability of the programs. In addition, the metrics provide an indication of the
software quality.

Static Analysis thus helps avoid errors during programming and facilitates generating code that is easier to
read.

Functionalities

An overview of the functionalities of "TC3 PLC Static Analysis" is provided below:
+ Static analysis:

o Function: The static analysis checks the source code of a project for deviations from certain coding
rules, naming conventions and forbidden symbols. The result is output in the message window.
o Configuration: The required coding rules, naming conventions and forbidden symbols can be

configured in the Rules [»_11], Naming conventions [»_57] and Forbidden symbols [»_75] tabs of
the PLC project properties.

e Standard metrics:

o Function: Certain metrics are applied to your source code, which express the software properties in
the form of indicators (e.g. the number of code lines). They provide an indication of the software
quality. The results are output in the Standard Metrics view.

o Configuration: The required metrics can be configured in the Metrics [»_69] tab of the PLC project
properties.

Further information on installation, configuration and execution of the "Static Analysis" can be found on the
following pages:

« Installation [» 9]

» Configuration of the settings, rules, naming conventions, metrics and forbidden symbols [»_10]
* Run static analysis [P 76]

 Run static analysis [check all objects] [P 771

» View Standard Metrics [» 77]

* Pragmas and attributes [P 81]

* Examples [P 85]

TC3 PLC Static Analysis Version: 1.9 7

Overview BEGKHGFF

Libraries

o
1 TwinCAT only analyzes the application code of the current project; the referenced libraries are ig-
nored!

If you have opened the library project, however, you can check the elements it contains with the
help of the command Run static analysis [check all objects] [»_77].

Punctual disablement of checks
Pragmas and attributes can be used to disable checks for certain parts of the code.

i o

8 Version: 1.9 TC3 PLC Static Analysis

BECKHUFF Installation

3 Installation

The function "TE1200 | TC3 PLC Static Analysis" is installed together with the TwinCAT development
environment (XAE setup) and has been included as release version since TwinCAT version 3.1 build 4022.0.
All that is therefore required is licensing of the additional TE1200 engineering component. For further
information please refer to the documentation on Licensing.

Please note that there is no 7-day trial license available for this product. Without an engineering license for
TE1200 you can use the license-free version of Static Analysis (Static Analysis Light), which includes a few
coding rules.

TC3 PLC Static Analysis Version: 1.9 9

Configuration BEGKHGFF

A Configuration

After the installation [P 9] and licensing of "TE1200 | TC3 PLC Static Analysis", the category Static Analysis
in the properties of the PLC project is extended by the additional rules and configuration options.

In the project properties you will then find tabs for the basic configuration and for configuring the rules,
conventions, metrics and forbidden symbols, which have to be taken into account in the code analysis.

The properties of a PLC project can be opened via the context menu of PLC project object or via the Project
menu, if the focus is on a PLC project in the project tree.

The current settings or modifications are saved when you save the PLC project properties. The Save button,
which can be found in the Settings tab, can be used to save the current Static Analysis configuration
additionally in an external file. Such a configuration file can be loaded into the development environment via
the Load button.

PleSampleProject + X

Cormrnon

[P MEA

Cornpile
Licenses Solution options
Statistic Settings | Rules | Naming C ions | Metiics | Forbidden symbol
SFC

[] Perform static analysis automatically
Wisualization
Wisualization Profile [Load...] [Save_..]

Static Analysis

Deployrment
Cornpiler Warnings
urAL

Advanced

The following pages contain further information on the individual tabs of the Static Analysis project
properties category.

 Settings [P 10]

* Rules [r 11]

* Naming conventions [» 57]
e Metrics [» 69]

» Forbidden symbols [P 75]

Scope of the "Static Analysis" configuration

o

1 The parameters you set in the category Static Analysis of the PLC project properties are referred
to as Solution options and therefore affect not only the PLC project whose properties you currently
edit. The configured settings, rules, naming conventions, metrics and forbidden symbols are applied
to all PLC projects in the development environment.

4.1 Settings

The Settings tab can be used to configure whether the static code analysis is automatically performed when
the code is generated. The current configuration of the Static Analysis can be saved in an external file, or a
configuration can be loaded from an external file.

10 Version: 1.9 TC3 PLC Static Analysis

BECKHOFF Configuration

PleSampleProject + X

Corron

ML, A
Cornpile
Licenses Solution options
Statistic Settings | Rules | Naming C ions | Meics | Forbi ymbol

SFC
) o] Perform static analysis automatically
Wisualization

Wisualization Profile [Load...] [Save...]

Static Analysis

Deployrment
Cornpiler Warnings
urAL

Advanced

» Perform static analysis automatically:
If this option is enabled, TwinCAT performs the static analysis whenever code is generated (e.g. when

the command Build Project is executed). The analysis can be started manually via the command Run
static analysis [P_76], irrespective of the configuration of the automatic option.

+ Save:
This button is used to save the current project properties for the static analysis in an xml file. The
standard dialog for saving a file appears, and the file type is preset to "Static analysis files" (*.csa).
Such a file can later be applied to the project via the Load button (see below).

* Load:
This button opens the standard dialog for a locating of a file. Select the required configuration file *.csa
for the static analysis, which may previously have been created via Save (see above). Since the Static
Analysis properties are "solution options", the project properties for the static analysis, as described in
the csa file, are applied to all PLC projects in the development environment.

4.2 Rules

In the Rules tab you can configure the rules that are taken into account when the static analysis is performed

[»_76]. The rules are displayed as a tree structure in the project properties. Some rules are arranged below
organizational nodes.

TC3 PLC Static Analysis Version: 1.9 11

Configuration BEGKHGFF

PleSampleProject + X

Corron

[P MEA
Cornpile
Licenses Solution options
Statistic Settings| Rules | Naming C ians | Metiics | Forbi ymbals|
SFC Rules B

e =" Rules
Wisualization

m

Unieachable code (1]

Wisualization Profile

Empty objects [2]

Static Analysis Empty statements [3]

Deployment tultiple write access on output (4]

Concurent access (6]
Compiler Warnings Address operator on constants (7]

LIRAL Check subrange types (5]

Advanced Unuszed return values [3)

Ayrays with only one component [10]

Useless declarations [11]

“fariables which could be declared as constants [12)
Declarations with the same wariable name [13)
Azsignment of instances [14]

Access to global data via FB_Init [15)

Gapsz in structures [18)

Mon-regular assignments (17)

IREOREEREOREEERORER

Unuzual bit access (18]

v = report as ermmor + = report as warning

Default settings:

All rules are enabled by default, with the exception of SA0016, SA0024, SA0073, SA0101, SA0105, SA0106,
SA0107, SA0133, SA0134, SA0150, SA0162 to SA0167 and the "strict IEC rules".

Configuring the rules:

Individual rules can be enabled or disabled via the checkbox for the respective row. Ticking the checkbox for
a subnode affects all entries below this node. Ticking the checkbox for the top node affects all list entries.

The entries below a node can be collapsed or expanded by clicking on the minus or plus sign to the left of
the node name.

The following three settings are available, which can be accessed by repeated clicking on the checkbox:
. D : The rule is disabled.
. : A rule violation results in an error being reported in the message window.

. : A rule violation results in a warning being reported in the message window.
Syntax of rule violations in the message window:

Each rule has a unique number (shown in parentheses after the rule in the rule configuration view). If a rule
violation is detected during the static analysis, the number together with an error or warning description is
issued in the message window, based on the following syntax. The abbreviation "SA" stands for "Static
Analysis".

Syntax: "SA<rule number>: <rule description>"
Example for rule number 33 (unused variables): "SA0033: Not used: variable 'bSample™
Temporary deactivation of rules:

Rules that are enabled in this dialog can be temporarily disabled in the project via a pragma. For further
information please refer to Pragmas and attributes [P 81].

Overview and description of the rules:

12 Version: 1.9 TC3 PLC Static Analysis

BEGKHOFF Configuration

An overview and a detailed description of the rules can be found under Rules - overview and description

[»13].

421 Rules - overview and description

Check strict IEC rules

2.

o

1 The checks under the node "Check strict IEC rules" determine functionalities and data types that
are allowed in TwinCAT, in extension of IEC61131-3.

Checking concurrent/competing access
The following rules exist on this topic:

SA0006: Concurrent access [» 18]
Determines variables with write access from more than one task.

SA0103: Concurrent access on not atomic data [» 43]
Determines non-atomic variables (for example with data types STRING, WSTRING, ARRAY,
STRUCT, FB instances, 64-bit data types) that are used in more than one task.

jmi o

Please note that only direct access can be recognized. Indirect access operations, for example via
pointer/reference, are not listed.

Please also refer to the documentation on the subject "Multi-task data access synchronization in the
PLC", which contains several notes on the necessity and options for data access synchronization.

Overview

- SA0001: Unreachable code [P 17]

- SA0002: Empty objects [» 171

- SA0003: Empty statements [P 17]

- SA0004: Multiple writes access on output [P 17]

- SA0006: Concurrent access [» 18]

- SAO007: Address operators on constants [P 18]

- SA0008: Check subrange types [» 18]

- SA0009: Unused return values [»_19]

- SA0010: Arrays with only one component [» 19]

- SA0011: Useless declarations [»_19]

- SA0012: Variables which could be declared as constants [P _20]

- SA0013: Declarations with the same variable name [P 20]

- SA0014: Assignments of instances [»_20]

- SA0015: Access to global data via FB init [» 201

- SA0016: Gaps in structures [P 21]

- SA0017: Non-regular assignments [21]

- SA0018: Unusual bit access [P 21]

TC3 PLC Static Analysis Version: 1.9 13

https://infosys.beckhoff.de/content/1031/tc3_plc_intro/9007203839198987.html
https://infosys.beckhoff.de/content/1031/tc3_plc_intro/9007203839198987.html

Configuration BEGKHOFF

- SA0020: Possibly assignment of truncated value to REAL variable [» 22]

- SA0021: Transporting the address of a temporary variable [P 22]

- SA0022: (Possibly) non-rejected return values [P 22]

- SA0023: Too big return values [P 23]

- SA0024: Untyped literals/constants [» 23]

- SA0025: Unqualified enumeration constants [23]

- SA0026: Possible truncated strings [» 24]

- SA0027: Multiple usage of name [P 24]

- SA0028: Overlapping memory areas [P 24]

- SA0029: Notation in implementation different to declaration [P 24]

- List unused objects

- SA0031: Unused signatures [P 25]

- SA0032: Unused enumeration constants [P 25]

- SA0033: Unused variables [»_25]

- SA0035: Unused input variables [P 25]

- SA0036: Unused output variables [P 25]

- SA0034: Enumeration variables with incorrect assignment [» 26]

- SA0037: Write access to input variable [P 26]

- SA0038: Read access to output variable [P 26]

- SA0040: Possible division by zero [P 27]

- SA0041: Possibly loop-invariant code [P 27]

- SA0042: Usage of different access paths [P 27]

- SA0043: Use of a global variable in only one POU [P 28]

- SA0044: Declarations with reference to interface [P 28]

- Conversions

- SA0019: Implicit pointer conversions [P 29]

- SA0130: Implicit expanding conversions [P 291

- SA0131: Implicit narrowing conversions [» 29]

- SA0132: Implicit signed/unsigned conversions [»_30]

- SA0133: Explicit narrowing conversions [P 30]

- SA0134: Explicit signed/unsigned conversions [»_30]

- Usage of direct addresses

- SA0005: Invalid addresses and data types [P 30]

- SA0047: Access to direct addresses [P 31]

14 Version: 1.9 TC3 PLC Static Analysis

BECKHUFF Configuration

- SA0048: AT declarations on direct addresses [» 31]

- Rules for operators

- SA0051: Comparison operators on BOOL variables [P 31]

- SA0052: Unusual shift operation [» 32]

- SA0053: Too big bitwise shift [P 32]

- SA0054: Comparisons of REAL/LREAL for equality/inequality [»_32]

- SA0055: Unnecessary comparison operations of unsigned operands [P 33]

- SA0056: Constant out of valid range [P 33]

- SAQ057: Possible loss of decimal points [» 33]

- SA0058: Operations of enumeration variables [P 34]

- SA0059: Comparison operations always returning TRUE or FALSE [» 34]

- SA0060: Zero used as invalid operand [P_35]

- SA0061: Unusual operation on pointer [»_35]

- SA0062: Using TRUE and FALSE in expressions [P 35]

- SA0063: Possibly not 16-bit-compatible operations [P 36]

- SA0064: Addition of pointer [P 36]

- SA0065: Incorrect pointer addition to base size [» 36]

- SA0066: Use of temporary results [P 37]

- Rules for statements

- FOR statements

- SA0072: Invalid uses of counter variable [P 37]

- SA0073: Use of non-temporary counter variable [» 38]

- SA0080: Loop index variable for array index exceeds array range [» 38]

- SA0081: Upper border is not a constant [» 38]

- CASE statements

- SAQ075: Missing ELSE [»_39]

- SA0076: Missing enumeration constant [» 39]

- SA0077: Type mismatches with CASE expression [P 39]

- SA0078: Missing CASE branches [» 40]

- SA0090: Return statement before end of function [P 40]

- SA0095: Assignments in conditions [P 40]

- SA0100: Variables greater than <n> bytes [P 41]

- SA0101: Names with invalid length [» 42]

- SA0102: Access to program/fb variables from the outside [42]

TC3 PLC Static Analysis Version: 1.9 15

Configuration BEGKHOFF

- SA0103: Concurrent access on not atomic data [» 43]

- SA0105: Multiple instance calls [» 44]

- SA0106: Virtual method calls in FB init [»_44]

- SA0107: Missing formal parameters [» 46]

- Check strict IEC rules

- SA0111: Pointer variables [46]

- SA0112: Reference variables [P 46]

- SA0113: Variables with data type WSTRING [P 46]

- SA0114: Variables with data type LTIME [» 46]

- SA0115: Declarations with data type UNION [» 471

- SA0117: Variables with data type BIT [P 471

- SA0119: Object-oriented features [P 47]

- SA0120: Program calls [P 48]

- SA0121: Missing VAR EXTERNAL declarations [P 48]

- SA0122: Array index defined as expression [» 48]

- SA0123: Usages of INI, ADR or BITADR [» 49]

- SA0147: Unusual shift operation - strict [» 49]

- SA0148: Unusual bit access - strict [P 49]

- Rules for initializations

- SA0118: Initializations not using constants [» 50]

- SA0124: Dereference access in initializations [» 50]

- SA0125: References in initializations [»_50]

- SA0140: Statements commented out [P 53]

- Possible use of uninitialized variables

- SA0039: Possible null pointer dereferences [»_51]

- SA0046: Possible use of not initialized interface [P 52]

- SA0145: Possible use of not initialized reference [P 53]

- SA0150: Violations of lower or upper limits of the metrics [P 53]

- SA0160: Recursive calls [P 54]

- SA0161: Unpacked structure in packed structure [» 55]

- SA0162: Missing comments [» 55]

- SA0163: Nested comments [P 55]

- SA0164: Multi-line comments [P 56]

- SA0166: Maximum number of input/output/VAR IN OUT variables [P 56]

16 Version: 1.9 TC3 PLC Static Analysis

BEGKHOFF Configuration

- SA0167: Report temporary FunctionBlock instances [P 571

Detailed description

SA0001: Unreachable code
Determines code that is not executed, for example due to a RETURN or CONTINUE statement.

Example 1 - RETURN:

PROGRAM MAIN

VAR
bReturnBeforeEnd : BOOL;
END_VAR
bReturnBeforeEnd := FALSE;
RETURN;
bReturnBeforeEnd := TRUE; // => SA0001

Example 2 - CONTINUE:

FUNCTION F_ContinuelInLoop : BOOL
VAR

nCounter : INT;
END VAR

F ContinueInLoop := FALSE;

FOR nCounter := INT#0 TO INT#5 BY INT#1 DO
CONTINUE;
F _ContinueInLoop := FALSE; // => SA0001
END_FOR

SA0002: Empty objects

Determines POUs, GVLs or data type declarations that do not contain code.

SA0003: Empty statements

Determines rows containing a semicolon (;) but no statement.

Examples:

; // => SA0003
(* comment *); // => SA0003
nvar; // => SA0003

SA0004: Multiple write access on output
Determines outputs that are written at more than one position.

Exception: No error is issued if an output variable is written in different branches of IF or CASE statements.

@ This rule cannot be switched off via pragma!
Further information on attributes can be found under Pragmas and attributes [» 81].

1 Please also note that this rule only checks allocated variables declared with a fixed address (e.g.
X0.0). Allocated variables with a dynamic address (*) are not checked.

Example:

Global variable list:

VAR GLOBAL
bvVar AT%QX0.0 : BOOL;
nSample AT%QWS : INT;
END VAR

Program MAIN:

TC3 PLC Static Analysis Version: 1.9 17

Configuration BEGKHGFF

PROGRAM MAIN

VAR
nCondition : INT;
END VAR
IF nCondition < INT#0 THEN
bvVar := TRUE; // => SA0004
nSample := INT#12; // => SA0004
END IF

CASE nCondition OF

INT#1:
bVar := FALSE; // => SA0004
INT#2:
nSample := INT#11; // => SA0004
ELSE
bvar := TRUE; // => SA0004
nSample := INT#9; // => SA0004
END CASE

SA0006: Concurrent access

Determines variables with write access from more than one task.

@® See also rule SA0103 [P 43].

1

Sample:

The two global variables nVar and bVar are written by two tasks.

Global variable list:

VAR GLOBAL
nvar : INT;
bvar : BOOL;
END_ VAR

Program MAIN_Fast, called from the task PlcTaskFast:

nVar := nVar + 1; // => SA0006
bVar := (nvar > 10); // => SA0006

Program MAIN_Slow, called from the task PlcTaskSlow:

nVar := nVar + 2; // => SA0006
bvar := (nVar < -50); // => SA0006

SA0007: Address operators on constants
Determines locations at which the ADR operator is used for a constant.

Please note: If the option Replace constants is enabled in the compiler options of the PLC project
properties, this is generally not allowed, and a compilation error is issued.

Example:

PROGRAM MAIN
VAR CONSTANT

cValue : INT := INT#15;
END VAR
VAR
pValue : POINTER TO INT;
END_VAR
pValue := ADR(cValue); // => SA0007

SA0008: Check subrange types

Determines range exceedances of subrange types. Assigned literals are checked at an early stage by the
compiler. If constants are assigned, the values must be within the defined range. If variables are assigned,
the data types must be identical.

18 Version: 1.9 TC3 PLC Static Analysis

BECKHOFF

Configuration

@® The checkis not performed for CFC objects, because the code structure does not allow this.

1

Sample:
PROGRAM MAIN
VAR
nSubl : INT (INT#1..INT#10);
nSub2 : INT (INT#1..INT#1000);
nVar : INT;
END VAR
nSubl := nSub2; // => SA0008
nSubl := nVar; // => SA0008

SA0009: Unused return values

Determines function, method and property calls for which the return value is not used.

Example:

Function F_ReturnBOOL.:

FUNCTION F_ReturnBOOL : BOOL
F ReturnBOOL := TRUE;

Program MAIN:

PROGRAM MAIN
VAR

bvar : BOOL;
END VAR

F ReturnBOOL() ; // => SA0009
bvar := F ReturnBOOL() ;

SA0010: Arrays with only one component

Determines arrays containing only a single component.

Examples:
PROGRAM MAIN
VAR
aEmptyl : ARRAY [0..0] OF INT; // => SA0010
aEmpty2 : ARRAY [15..15] OF REAL; // => SA0010
END VAR

SA0011: Useless declarations

Determines structures, unions or enumerations with only a single component.

Example 1 — Structure:

TYPE ST SingleStruct : // => SA0011
STRUCT
nPart : INT;
END_STRUCT
END TYPE

Example 2 — Union:

TYPE U SingleUnion : // => SA0011
UNION
fvar : LREAL;
END UNION
END TYPE

Example 3 — Enumeration:

TYPE E SingleEnum : // => SA0011
(
eOnlyOne := 1
)7
END_TYPE

TC3 PLC Static Analysis Version: 1.9

19

Configuration BEGKHGFF

SA0012: Variables which could be declared as constants

Determines variables that are not subject to write access and therefore could be declared as constants.

Example:
PROGRAM MAIN
VAR
nSample : INT := INT#17;
nVar : INT;
END VAR
nvar := nVar + nSample; // => SA0012

SA0013: Declarations with the same variable name

Determines variables with the same name as other variables (example: global and local variables with the
same name), or the same name as functions, actions, methods or properties within the same access range.

Examples:

Global variable list GVL_App:

VAR GLOBAL
nVar : INT;
END_VAR
MAIN program, containing a method with the name Sample:

PROGRAM MAIN

VAR
bvVar : BOOL;
nvVar : INT; // => SA0013
Sample : DWORD; // => SA0013
END_ VAR
.nvVar := 100; // Writing global variable "nVar"
nVar := 500; // Writing local variable "nVar"

METHOD Sample
VAR INPUT

SA0014: Assignments of instances

Determines assignments to function block instances. For instances with pointer or reference variables such
assignments may be risky.

Example:
PROGRAM MAIN
VAR
fbl : FB_Sample;
fb2 : FB_Sample;
END VAR
bl () ;
fb2 := fbl; // => SA0014

SA0015: Access to global data via FB_init

Determines access of a function block to global data via the FB_init method. The value of this variables
depends on the order of the initializations!

Sample:

Global variable list GVL_App:

VAR GLOBAL
nVar : INT;
END VAR

Function block FB_Sample:

FUNCTION BLOCK FB Sample
VAR

nLocal : INT;
END_ VAR

20 Version: 1.9 TC3 PLC Static Analysis

BECKHUFF Configuration

Method FB_Sample.FB _init:

METHOD FB_init : BOOL
VAR INPUT

bInitRetains : BOOL; // if TRUE, the retain variables are initialized (warm start / cold
start)

bInCopyCode : BOOL; // if TRUE, the instance afterwards gets moved into the copy code
(online change)
END VAR

nLocal := 2*nVar; // => SA0015

Program MAIN:

PROGRAM MAIN
VAR

fbSample : FB Sample;
END VAR

SA0016: Gaps in structures

Determines gaps in structures or function blocks, caused by the alignment requirements of the currently
selected target system. You can then fill the gaps.

Examples:
TYPE ST UnpaddedStructurel
STRUCT
bBOOL : BOOL;
nINT : INT; // => SA0016
nBYTE : BYTE;
nWORD : WORD;
END STRUCT
END TYPE
TYPE ST UnpaddedStructure?2
STRUCT
bBOOL : WORD;
nINT : INT;
nBYTE : BYTE;
nWORD : WORD; // => SA0016
END_ STRUCT
END_TYPE

SA0017: Non-regular assignments

Determines assignments to pointers, which are not an address (ADR operator, pointer variables) or constant
0.

Sample:
PROGRAM MAIN
VAR
nvar : INT;
pInt : POINTER TO INT;
nAddress : XWORD;
END_ VAR
nAddress := nAddress + 1;
pInt := ADR (nVar) ; // no error
pInt = 0; // no error
pInt := nAddress; // => SA0017

SA0018: Unusual bit access

Determines bit access to signed variables. However, the IEC 61131-3 standard only permits bit access to bit
fields. See also strict rule SA0148 [» 49].

Exception for flag enumerations: If an enumeration is declared as flag via the pragma attribute {attribute
'flags'}, the error SA0018 is not issued for bit access with OR, AND or NOT operations.

Samples:

PROGRAM MAIN

VAR
nINT : INT;
nDINT : DINT;

TC3 PLC Static Analysis Version: 1.9 21

Configuration BEcKHoFF
nULINT : ULINT;
nSINT : SINT;
nUSINT : USINT;
nBYTE : BYTE;
END VAR
nINT.3 := TRUE; // => SA0018
nDINT. 4 := TRUE; // => SA0018
nULINT.18 := FALSE; // no error because this is an unsigned data type
nSINT.2 := FALSE; // => SA0018
nUSINT.3 := TRUE; // no error because this is an unsigned data type
nBYTE. 5 := FALSE; // no error because BYTE is a bit field

SA0020: Possibly assignment of truncated value to REAL variable

Determines operations on integer variables, during which a truncated value may be assigned to a variable of

data type REAL.

Example:

PROGRAM MAIN

VAR
nVarl : DWORD;
nVar2 : DWORD;
fVar : REAL;

END_ VAR

nvarl := nVarl + DWORD#1;
nVar2 := nVar2 + DWORD#2;
fvar := nVarl * nVar2;

// => SA0020

SA0021: Transporting the address of a temporary variable

Determines assignments of addresses of temporary variables (variables on the stack) to non-temporary

variables.

Example:

Method FB_Sample.SampleMethod:

METHOD SampleMethod : XWORD

VAR
fvar : LREAL;
END VAR

SampleMethod := ADR(fVar);

Program MAIN:

PROGRAM MAIN

VAR
nReturn : XWORD;
fbSample : FB Sample;
END VAR
nReturn := fbSample.SampleMethod() ;

// => SA0021

SA0022: (Possibly) unassigned return value

Determines all functions and methods containing an execution string without assignment to the return value.

Example:

FUNCTION F_Sample : DWORD
VAR INPUT

nln : UINT;
END_VAR
VAR

nTemp : INT;
END VAR
nIn := nIn + UINT#1;

IF (nIn > UINT#10) THEN

nTemp = 1; // => SA0022
ELSE
F Sample := DWORD#100;
END IF
22 Version: 1.9 TC3 PLC Static Analysis

BECKHOFF

Configuration

SA0023: Too big return values

Determines structured return values that occupy more than 4 bytes of memory and are therefore regarded as

large. In addition, return values of type STRING are determined (irrespective of the memory space used).

Example:

Structure ST_Small:
TYPE ST Small

STRUCT
nl : INT;
n2 : BYTE;
END_STRUCT
END TYPE

Structure ST_Large:

TYPE ST Large
STRUCT
nl : LINT;
bl : BOOL;
END STRUCT
END_ TYPE
Function F_SmallReturnValue:

FUNCTION F_SmallReturnValue : ST Small

Function F_LargeReturnValue:

FUNCTION F_LargeReturnValue : ST Large

SA0024: Untyped literals/constants

Determines untyped literals/constants (e.g. nCount

Example:
PROGRAM MAIN
VAR

nVar : INT;

fvar : LREAL;
END VAR
nVar := 100; /] =>
nVar := INT#100; // no
fVar := 12.5; /] =>
fVar := LREAL#12.5; // no

SA0024
error

SA0024
error

SA0025: Unqualified enumeration constants

Determines enumeration constants that are not used with a qualified name, i.e. without preceding

enumeration name.
Example:

Enumeration E_Color:

TYPE E Color

(
eRed,
eGreen,
eBlue

) ;

END_TYPE

Program MAIN:

PROGRAM MAIN

// no error

// => SA0023

INT := 10;).

VAR
eColor : E_Color;
END_VAR
eColor := E Color.eGreen; // no error
eColor := eGreen; // => SA0025
TC3 PLC Static Analysis Version: 1.9 23

Configuration BEGKHOFF

SA0026: Possible truncated strings

Determines string assignments and initializations that do not use an adequate string length.

Examples:
PROGRAM MAIN
VAR
sVarl : STRING[10];
sVar2 : STRING[6];
sVar3 : STRING[6] := 'abcdefghi'; // => SA0026
END VAR
sVar2 := sVarl; // => SA0026

SA0027: Multiple use of a name

Determines multiple use of a variable name/identifier or object name (POU) within the scope of a project.
The following cases are covered:

« The name of an enumeration constant is the same as the name in another enumeration within the
application or a referenced library.

+ The name of a variable that is the same as the name of an object within the application or a referenced
library.

» The name of a variable is the same as the name of an enumeration constant within the application or a
referenced library.

» The name of an object is the same as the name of another object within the application or a referenced
library.
Example:

The following example generates error/warning SA0027, since the library Tc2_Standard is referenced in the
project, which provides the function block TON.

PROGRAM MAIN
VAR

ton : INT; // => SA0027
END VAR

SA0028: Overlapping memory areas
Determines the locations at which 2 or more variables occupy the same memory space.
Example:

In the following example both variables use byte 21, i.e. the memory areas of the variables overlap.

PROGRAM MAIN

VAR
nVarl AT$QB21 : INT; // => SA0028
nVar2 AT%QD5 : DWORD; // => SA0028

END VAR

SA0029: Notation in code different to declaration

Determines the code positions (in the implementation) at which the notation of an identifier differs from the
notation in its declaration.

Examples:

Function F_TEST:

FUNCTION F TEST : BOOL

Program MAIN:

PROGRAM MAIN

VAR
nVar : INT;
bReturn : BOOL;
END VAR

24 Version: 1.9 TC3 PLC Static Analysis

BECKHOFF

Configuration

nvar := nVar + 1; // => SA0029
bReturn := F _Test(); // => SA0029

SA0031: Unused signatures

Determines programs, function blocks, functions, data types, interfaces, methods, properties, actions etc.,

which are not called within the compiled program code.

SA0032: Unused enumeration constants

Determines enumeration constants that are not used in the compiled program code.

Example:

Enumeration E_Sample:

TYPE E_Sample :

(
eNull,
eOne, // => SA0032
eTwo

)i

END TYPE

Program MAIN:

PROGRAM MAIN

VAR

eSample : E Sample;
END VAR
eSample := E_Sample.eNull;
eSample := E Sample.eTwo;

SA0033: Unused variables

Determines variables that are declared but not used within the compiled program code.

SA0035: Unused input variables
Determines input variables that are not used by any function block instance.
Example:

Function block FB_Sample:

FUNCTION BLOCK FB_ Sample
VAR_INPUT

nln : INT;

bIn : BOOL; // => SA0035
END_ VAR
VAR OUTPUT

nOut : INT; // => SA0036
END VAR

Program MAIN:

PROGRAM MAIN

VAR

fbSample : FB Sample;
END VAR
fbSample (nIn := 99);

SA0036: Unused output variables

Determines output variables that are not used by any function block instance.

Example:

Function block FB_Sample:

FUNCTION BLOCK FB Sample

VAR INPUT
nln : INT;
bIn : BOOL; // => SA0035

TC3 PLC Static Analysis Version: 1.9

25

Configuration BEGKHGFF

END VAR
VAR _OUTPUT

nOut : INT; // => SA0036
END VAR

Program MAIN:

PROGRAM MAIN

VAR

fbSample : FB Sample;
END VAR
fbSample (nIn := 99);

SA0034: Enumerations with incorrect assignment

Determines values that are assigned to an enumeration variable. Only defined enumeration constants may
be assigned to an enumeration variable.

Example:

Enumeration E_Color:

TYPE E Color
(

eRed 1,
eBlue = 2,
eGreen := 3
)i
END TYPE

Program MAIN:

PROGRAM MAIN

VAR
eColor : E Color;
END VAR
eColor := E Color.eRed;
eColor := eBlue;
eColor := 1; // => SA0034

SA0037: Write access to input variable
Determines input variables (VAR _INPUT) that are subject to write access within the POU.
Example:

Function block FB_Sample:

FUNCTION BLOCK FB Sample
VAR INPUT
bIn : BOOL := TRUE;
nIn : INT := 100;
END VAR
VAR OUTPUT
bOut : BOOL;
END VAR

Method FB_Sample.SampleMethod:

IF bIn THEN

nIn := 500; // => SA0037
bOut := TRUE;
END IF

SA0038: Read access to output variable
Determines output variables (VAR_OUTPUT) that are subject to read access within the POU.
Sample:

Function block FB_Sample:

FUNCTION BLOCK FB_Sample

VAR OUTPUT
bout : BOOL;
nOut : INT;

26 Version: 1.9 TC3 PLC Static Analysis

BECKHUFF Configuration

END VAR
VAR
bLocal : BOOL;
nLocal : INT;
END VAR

Method FB_Sample.SampleMethod:

IF bOut THEN // => SA0038
bLocal := (nOut > 100); // => SA0038
nLocal := nOut; // => SA0038
nLocal := 2*nOut; // => SA0038

END IF

SA0040: Possible division by zero
Determines code positions at which division by zero may occur.

Example:

PROGRAM MAIN
VAR CONSTANT

cSample : INT := 100;
END VAR
VAR
nQuotientl : INT;
nDividendl : INT;
nDivisorl : INT;
nQuotient2 : INT;
nDividend?2 : INT;
nDivisor?2 : INT;
END VAR
nDivisorl := cSample;
nQuotientl := nDividendl/nDivisorl; // no error
nQuotient2 := nDividend2/nDivisor2; // => SA0040

SA0041: Possibly loop-invariant code

Determines code that may be loop-invariant, i.e. code within a FOR, WHILE or REPEAT loop that returns the
same result in each loop, in which case repeated execution would be unnecessary. Only calculations are
taken into account, no simple assignments.

Example:

In the following example SA0041 is output as error/warning, since the variables nTest1 and nTest2 are not
used in the loop.

PROGRAM MAIN

VAR

nTestl : INT := 5;

nTest2 : INT := nTestl;

nTest3 : INT;

nTest4 : INT;

nTest5 : INT;

nTest6 : INT;

nCounter : INT;
END_VAR
FOR nCounter := 1 TO 100 BY 1 DO

nTest3 := nTestl + nTest2; // => SA0041

nTest4 := nTest3 + nCounter; // no loop-invariant code, because nTest3 and nCounter are used
within loop

nTest6 := nTest5; // simple assignments are not regarded
END FOR

SA0042: Usage of different access paths
Determines the usage of different access paths for the same variable.

Examples:

TC3 PLC Static Analysis Version: 1.9 27

Configuration BEGKHGFF

In the following example SA0042 is output as error/warning, because the global variable nGlobal is accessed
directly and via the GVL namespace, and because the function CONCAT is accessed directly and via the
library namespace.

Global variables:

VAR GLOBAL
nGlobal : INT;
END VAR

Program MAIN:

PROGRAM MAIN

VAR

sVar : STRING;
END VAR
nGlobal = INT#2; // => SA0042
GVL.nGlobal := INT#3; // => SA0042
sVar := CONCAT('ab', 'cd'):; // => SA0042
sVar := Tc2 Standard.CONCAT('ab', 'cd'); // => SA0042

SA0043: Use of a global variable in only one POU
Determines global variables that are only used in a single POU.
Example:

The global variable nGlobal1 is only used in the MAIN program.

Global variables:

VAR GLOBAL
nGloball : INT; // => SA0043
nGlobal2 : INT;

END VAR

SubProgram:
nGlobal2z := 123;

Program MAIN:

SubProgram () ;

nGloball := nGlobal2;

SA0044: Declarations with reference to interface

Determines declarations with REFERENCE TO <interface> and declarations of VAR_IN_OUT variables with
the type of an interface (realized implicitly via REFERENCE TO).

Examples:
|_Sample is an interface defined in the project.

Function block FB_Sample:

FUNCTION_ BLOCK FB_Sample
VAR INPUT
iInput : I Sample;
END_VAR
VAR OUTPUT
iOutput : I Sample;
END VAR
VAR _IN_OUT
iInOutl : I _Sample; // => SA0044

{attribute 'analysis' := '-44"'}

iInoOut2 : I_Sample; // no error SA0044 because rule is deactivated via
attribute
END_VAR

Program MAIN:

28 Version: 1.9 TC3 PLC Static Analysis

BECKHOFF

Configuration

PROGRAM MAIN

VAR
fbSample : FB_Sample;
iSample : I Sample;

refItf : REFERENCE TO I Sample; // => SA0044

END VAR

SA0019: Implicit pointer conversions

Determines implicitly generated pointer data type conversions.

Examples:

PROGRAM MAIN

VAR
nint : INT;
nByte : BYTE;

pInt : POINTER TO INT;

pByte : POINTER TO BYTE;

END VAR
pInt := ADR(nInt);
pByte := ADR(nByte);

pInt := ADR (nByte) ;
pByte := ADR(nInt);

pInt := pByte;
pByte := plInt;

//
//

/7
//

=>
=>

=>
=>

SA0019
SA0019

SA0019
SA0019

SA0130: Implicit expanding conversions

Determines implicitly performed conversions from smaller to larger data types.

Exception: BOOL < BIT

Examples:

PROGRAM MAIN

VAR
nBYTE : BYTE;
nUSINT : USINT;
nUINT : UINT;
nINT : INT;
nUDINT : UDINT;
nDINT : DINT;
nULINT : ULINT;
nLINT : LINT;
nLWORD : LWORD;
fLREAL : LREAL;

END_VAR

nLINT := nINT;

nULINT := nBYTE;
nLWORD := nUDINT;
fLREAL := nBYTE;
nDINT := nUINT;

nBYTE.5 := FALSE;

/] =

//
//
//

/] =

//

no

SA0130
SA0130
SA0130
SA0130
SA0130

error (BIT-BOOL-conversion)

SA0131: Implicit narrowing conversions

Determines implicitly performed conversions from larger to smaller data types.

Exception: BOOL « BIT

Example:

PROGRAM MAIN
VAR
fREAL : REAL;
fLREAL : LREAL;
END VAR

fREAL := fLREAL;

nBYTE.5 := FALSE;

// => SA0131

// no error (BIT-BOOL-conversion)

TC3 PLC Static Analysis

Version: 1.9

29

BECKHOFF

Configuration

SA0132: Implicit signed/unsigned conversions

Determines implicitly performed conversions from signed to unsigned data types or vice versa.

Examples:
PROGRAM MAIN
VAR

nBYTE BYTE;

nUDINT UDINT;

nULINT ULINT;

nWORD : WORD;

nLWORD LWORD;

nSINT : SINT;

nINT INT;

nDINT : DINT;

nLINT LINT;
END VAR
nLINT := nULINT; // => SA0132
nUDINT := nDINT; // => SA0132
nSINT := nBYTE; // => SA0132
nWORD := nINT; // => SA0132
nLWORD := nSINT; // => SA0132
SA0133: Explicit narrowing conversions

Determines explicitly performed conversions from a larger to a smaller data type.

Examples:
PROGRAM MAIN
VAR

nSINT SINT;

nDINT DINT;

nLINT LINT;

nBYTE BYTE;

nUINT : UINT;

nDWORD : DWORD;

nLWORD : LWORD;

fREAL : REAL;

fLREAL : LREAL;
END_VAR
nSINT := LINT TO SINT (nLINT); // => SA0133
nBYTE := DINT TO_BYTE (nDINT) ; // => SA0133
nSINT := DWORD_TO_SINT (nDWORD); // => SA0133
nUINT := LREAL TO UINT (fLREAL); // => SA0133
fREAL := LWORD TO REAL (nLWORD); // => SA0133

SA0134: Implicit signed/unsigned conversions

Determines explicitly performed conversions from signed to unsigned data types or vice versa.

Examples:
PROGRAM MAIN
VAR

nBYTE BYTE;

nUDINT : UDINT;

nULINT : ULINT;

nWORD : WORD;

nLWORD : LWORD;

nSINT : SINT;

nINT INT;

nDINT DINT;

nLINT LINT;
END VAR
nLINT := ULINT TO LINT (nULINT) ; // => SA0134
nUDINT := DINT TO UDINT (nDINT); // => SA0134
nSINT = BYTE_TO_SINT(nBYTE); // => SA0134
nWORD := INT TO WORD (nINT) ; // => SA0134
nLWORD := SINT TO LWORD (nSINT) ; // => SA0134

SA0005: Invalid addresses and data types

Determines invalid address and data type specifications.

30

Version: 1.9

TC3 PLC Static Analysis

BECKHUFF Configuration

Valid size prefixes in addresses:
« X for BOOL
» B for 1-byte data types
» W for 2-byte data types
+ D for 4-byte data types

Please note: If the placeholders %l* or %Q* are used, TwinCAT automatically performs flexible and
optimized addressing.

Examples:

PROGRAM MAIN

VAR
nOK AT%QWO : INT;
bOK AT%QX5.0 : BOOL;

nNOK AT%QD10 : INT; // => SA0005
bNOK AT%QB15 : BOOL; // => SA0005
END VAR

SA0047: Access to direct addresses

Determines direct address access operations in the implementation code.

Examples:
PROGRAM MAIN
VAR

bBOOL : BOOL;

nBYTE : BYTE;

NWORD : WORD;

nDWORD : DWORD;
END VAR
bBOOL := $IX0.0; // => SA0047
%0X0.0 := bBOOL; // => SA0047
SQW2 := nWORD; // => SA0047
$QD4 := nDWORD; // => SA0047
$MX0.1 := bBOOL; // => SA0047
$MB1 := nBYTE; // => SA0047
$MD4 := nDWORD; // => SA0047

SA0048: AT declarations on direct addresses

Determines AT declarations on direct addresses.

Examples:
PROGRAMM MATN
VAR
bl AT$IX0.0 : BOOL; // => SA0048
b2 ATSI* : BOOL; // no error
END_VAR

SA0051: Comparison operations on BOOL variables

Determines comparison operations on variables of type BOOL.

Example:
PROGRAM MAIN
VAR
bl : BOOL;
b2 : BOOL;
bResult : BOOL;
END VAR
bResult := (bl > b2); // => SA0051
bResult := NOT bl AND b2;
bResult := bl XOR b2;

TC3 PLC Static Analysis Version: 1.9 31

BECKHOFF

Configuration

SA0052: Unusual shift operation

Determines shift operation (bit shift) on signed variables. However, the IEC 61131-3 standard only permits
shift operations to bit fields. See also strict rule SA0147 [» 49].

Therefore, the following exception arises for this rule: Shift operation on bit array data types (byte, DWORD,
LWORD, WORD) do not result in a SA0052 error.

Samples:
PROGRAM MAIN
VAR
nINT INT;
nDINT : DINT;
nULINT : ULINT;
nSINT : SINT;
nUSINT : USINT;
nLINT : LINT;
nDWORD : DWORD;
nBYTE : BYTE;
END VAR
nINT := SHL (nINT, BYTE#2); // => SA0052
nDINT := SHR(nDINT, BYTE#4); // => SA0052
nULINT := ROL (nULINT, BYTE#1); // no error because this is an unsigned data type
nSINT := ROL (nSINT, BYTE#2); // => SA0052
nUSINT := ROR(nUSINT, BYTE#3); // no error because this is an unsigned data type
nLINT := ROR(nLINT, BYTE#2); // => SA0052
nDWORD := SHL (nDWORD, BYTE#3); // no error because DWORD is a bit field data type
nBYTE := SHR(nBYTE, BYTE#1); // no error because BYTE is a bit field data type

SA0053: Too big bitwise shift

Determines whether the data type width was exceeded in bitwise shift of operands.

Examples:
PROGRAM MAIN
VAR

nBYTE : BYTE;

nWORD : WORD;

nDWORD : DWORD;

nLWORD : LWORD;
END_ VAR
nBYTE := SHR(nBYTE, BYTE#8); // => SA0053
nWORD := SHL (nWORD, BYTE#45) ; // => SA0053
nDWORD := ROR (nDWORD, BYTE#78); // => SA0053
nLWORD := ROL (nLWORD, BYTE#111); // => SA0053
nBYTE = SHR (nBYTE, BYTE#7); // no error
nWORD := SHL (nWORD, BYTE#15); // no error

SA0054: Comparisons of REAL/LREAL for equality/inequality

Determines where the comparison operators = (equality) and <> (inequality) compare operands of type
REAL or LREAL.

Examples:
PROGRAM MAIN
VAR

fREALL : REAL;

fREAL2 : REAL;

fLREALL : LREAL;

fLREAL2 : LREAL;

bResult : BOOL;
END_ VAR
bResult := (fREAL1 = fREAL1); // => SA0054
bResult := (fREAL1 = fREAL2); // => SA0054
bResult := (fREAL1 <> fREAL2); // => SA0054
bResult := (fLREAL1 = fLREALl); // => SA0054
bResult := (fLREAL1 = fLREAL2); // => SA0054
bResult := (fLREAL2 <> fLREAL2); // => SA0054
32 Version: 1.9 TC3 PLC Static Analysis

BECKHUFF Configuration

bResult := (fREAL1 > fREAL2); // no error
bResult := (fLREAL1l < fLREAL2); // no error

SA0055: Unnecessary comparisons of unsigned operands

Determines unnecessary comparisons with unsigned operands. An unsigned data type is never less than
Zero.

Examples:

PROGRAM MAIN

VAR
nBYTE : BYTE;
nWORD : WORD;
nDWORD : DWORD;
nLWORD : LWORD;
nUSINT : USINT;
nUINT : UINT;
nUDINT : UDINT;
nULINT : ULINT;
nSINT : SINT;
nINT : INT;
nDINT : DINT;
nLINT : LINT;

bResult : BOOL;

END_ VAR
bResult := (nBYTE >= BYTE#0) ; // => SA0055
bResult := (nWORD < WORD#0) ; // => SA0055
bResult := (nDWORD >= DWORD#0); // => SA0055
bResult := (nLWORD < LWORD#0) ; // => SA0055
bResult := (nUSINT >= USINT#0); // => SA0055
bResult := (nUINT < UINT#0); // => SA0055
bResult := (nUDINT >= UDINT#0); // => SA0055
bResult := (nULINT < ULINT#O0) ; // => SA0055
bResult := (nSINT < SINT#0); // no error
bResult := (nINT < INT#0); // no error
bResult := (nDINT < DINT#O0); // no error
bResult := (nLINT < LINT#0); // no error

SA0056: Constant out of valid range

Determines literals (constants) outside the valid operator range.

Examples:

PROGRAM MAIN

VAR
nBYTE : BYTE;
nWORD : WORD;
nDWORD : DWORD;
nUSINT : USINT;
nUINT : UINT;
nUDINT : UDINT;

bResult : BOOL;

END VAR
bResult := nBYTE >= 355; // => SA0056
bResult := nWORD > UDINT#70000; // => SA0056
bResult := nDWORD >= ULINT#4294967300; // => SA0056
bResult := nUSINT > UINT#355; // => SA0056
bResult := nUINT >= UDINT#70000; // => SA0056
bResult := nUDINT > ULINT#4294967300; // => SA0056

SA0057: Possible loss of decimal places
Determines positions with possible loss of decimals.

Examples:

PROGRAM MAIN
VAR
fREAL : REAL;

TC3 PLC Static Analysis Version: 1.9 33

Configuration BEGKHGFF

nDINT : DINT;
nLINT : LINT;

END_VAR

nDINT := nDINT + DINT#11;

fREAL := DINT TO REAL (nDINT / DINT#3); // => SA0057
fREAL := DINT TO REAL(nDINT) / 3.0; // no error
fREAL := DINT TO REAL (nDINT) / REAL#3.0; // no error
nLINT := nLINT + LINT#13;

fREAL := LINT_ TO REAL(nLINT / LINT#7); // => SA0057
fREAL := LINT TO REAL (nLINT) / 7.0; // no error
fREAL := LINT TO REAL(nLINT) / REAL#7.0; // no error

SA0058: Operations of enumeration variables
Determines operations on variables of type enumeration. Assignments are permitted.

Exception: If an enumeration is declared as a flag via the pragma attribute {attribute 'flags'}, no SA0058 error
is issued for operations with AND, OR, NOT, XOR.

Example 1:

Enumeration E_Color:

TYPE E Color
(

eRed =1,
eBlue = 2,
eGreen := 3
)i
END TYPE

Program MAIN:

PROGRAM MAIN

VAR

nvar : INT;

eColor : E_Color;
END_ VAR
eColor := E Color.Green; // no error
eColor := E Color.Green + 1; // => SA0058
nvar = E_Color.Blue / 2; // => SA0058
nvVar := E Color.Green + E Color.Red; // => SA0058
Example 2:

Enumeration E_State with attribute 'flags":

{attribute 'flags'}
TYPE E_State :
(

eUnknown := 16#00000001,
eStopped := 16#00000002,
eRunning := 16#00000004
) DWORD;
END TYPE

Program MAIN:

PROGRAM MAIN

VAR
nFlags : DWORD;
nState : DWORD;

END VAR
IF (nFlags AND E_State.eUnknown) <> DWORD#0 THEN // no error
nState := nState AND E State.eUnknown; // no error

ELSIF (nFlags OR E State.eStopped) <> DWORD#0 THEN // no error
nState := nState OR E State.eRunning; // no error
END IF

SA0059: Comparison operations always returning TRUE or FALSE

Determines comparisons with literals that always have the result TRUE or FALSE and can already be
evaluated during compilation.

34 Version: 1.9 TC3 PLC Static Analysis

BECKHOFF

Configuration

Examples:
PROGRAM MAIN
VAR
nBYTE BYTE;
nWORD : WORD;
nDWORD DWORD;
nLWORD LWORD;
nUSINT USINT;
nUINT UINT;
nUDINT UDINT;
nULINT ULINT;
nSINT SINT;
nINT INT;
nDINT DINT;
nLINT LINT;
bResult : BOOL;
END VAR
bResult := nBYTE <=
bResult := nBYTE <=
bResult := nWORD <=
bResult := nDWORD <=
bResult := nLWORD <=
bResult := nUSINT <=
bResult := nUINT <=
bResult := nUDINT <=
bResult := nULINT <=
bResult := nSINT >=
bResult := nSINT >=
bResult := nINT >=
bResult := nDINT >=
bResult := nLINT >=

255;

BYTE#255;

WORD#65535;
DWORD#4294967295;
LWORD#18446744073709551615;
USINT#255;

UINT#65535;
UDINT#4294967295;
ULINT#18446744073709551615;
-128;

SINT#-128;

INT#-32768;
DINT#-2147483648;
LINT#-9223372036854775808;

SA0060: Zero used as invalid operand

// => SA0059
// => SA0059
// => SA0059
// => SA0059
// => SA0059
// => SA0059
// => SA0059
// => SA0059
// => SA0059
// => SA0059
// => SA0059
// => SA0059
// => SA0059
// => SA0059

Determines operations in which an operand with value 0 results in an invalid or meaningless operation.

Examples:

PROGRAM MA
VAR
nBYTE
nWORD
nDWORD
nLWORD
END VAR

nBYTE
nWORD 5=
nDWORD :=
nLWORD :=

IN
BYTE;

: WORD;
DWORD;
LWORD;

= nBYTE + 0;

// => SA0060

nWORD - WORD#0; // => SA0060
nDWORD * DWORD#0; // => SA0060
nLWORD / 0; // Compile error:

SA0061: Unusual operation on pointer

Division by zero

Determines operations on variables of type POINTER TO, which are not = (equality), <> (inequality), +

(addition) or ADR.

Examples:
PROGRAM MAIN

VAR
pINT
nVar
END_ VAR

pPINT :=
PINT :=
pINT :=
pINT :=
PINT :=
PpINT :=

POINTER TO INT;
INT;

ADR (nVar) ;

PINT
PINT
PINT
PINT
PINT

* DWORD#5;
/ DWORD#2;
MOD DWORD#3;
+ DWORD#1;
- DWORD#1;

//
//
//
//
//
//

no error
=> SA0061
=> SA0061
=> SA0061
no error
=> SA0061

SA0062: Using TRUE or FALSE in expressions

Determines the use of the literal TRUE or FALSE in expressions (e.g. bl AND NOT TRUE).

Examples:

TC3 PLC Static Analysis

Version: 1.9

35

Configuration

BECKHOFF

PROGRAM MAIN

VAR

bvarl : BOOL;

bvar?2 : BOOL;
END VAR
bvarl := bVarl AND NOT TRUE;
bVar2 := bVarl OR TRUE;
bvar2 := bvVarl OR NOT FALSE;
bvar2 := bVarl AND FALSE;

1) ==
/] =>
/] =>
[/ =>

SA0062
SA0062
SA0062
SA0062

SA0063: Possibly not 16-bit-compatible operations

Determines 16-bit operations with intermediate results. Background: 32-bit intermediate results may be

truncated on 16-bit systems.
Example:

(nVar+10) may exceed 16 bits.

PROGRAM MAIN

VAR
nVar : INT;
END VAR
nvVar := (nVar + 10) / 2;

SA0064: Addition of pointer

Determines all pointer additions.

Examples:
PROGRAM MAIN
VAR
aTest : ARRAY[0..10] OF INT;
pINT : POINTER TO INT;
nIdx : INT;
END_VAR
PINT := ADR(aTest[0]);
pINT”® := 0;
pINT := ADR (aTest) + SIZEOF (INT)
pINT”® := 1;
pINT := ADR (aTest) + 6;
PINT := ADR(aTest[10]);
FOR nIdx := 0 TO 10 DO
PINT” := nIdx;
pINT := pINT + 2;
END_FOR

/] =>

’

SA0063

// => SA0064

// => SA0064

// => SA0064

SA0065: Incorrect pointer addition to base size

Determines pointer additions in which the value to be added does not match the basic data size of the
pointer. Only literals with the basic size may be added. No multiples of the basic size may be added.

Examples:
PROGRAM MAIN
VAR
PUDINT : POINTER TO UDINT;
nvar : UDINT;
PREAL : POINTER TO REAL;
fVar : REAL;
END VAR
PUDINT := ADR(nVar) + 4;
PUDINT := ADR(nVar) + (2 + 2);
PUDINT := ADR(nVar) + SIZEOF (UDINT) ;
PUDINT := ADR(nVar) + 3; //=>
PUDINT := ADR(nVar) + 2*SIZEOF (UDINT) ; /] =>
PUDINT := ADR(nVar) + (3 + 2); /] =>
PREAL := ADR(fVar);
PREAL := pREAL + 4;
PREAL := pREAL + (2 + 2);
PREAL := pREAL + SIZEOF (REAL) ;
PREAL := pREAL + 1; /] =>
36 Version: 1.9 TC3 PLC Static Analysis

BECKHOFF Configuration

PREAL = pREAL + 2; // => SA0065
PREAL := pREAL + 3; // => SA0065
PREAL := pREAL + (SIZEOF (REAL) - 1); // => SA0065
PREAL := pREAL + (1 + 4); // => SA0065

SA0066: Use of temporary results

Determines applications of intermediate results in statements with a data type that is smaller than the
register size. In this case the implicit cast may lead to undesirable results.

Example:

PROGRAM MAIN

VAR
nBYTE ¢ BYTE;
nDINT : DINT;
nLINT : LINT;
bResult : BOOL;

END VAR

//

// type size smaller than register size
// use of temporary result + implicit casting => SA0066
bResult := ((nBYTE - 1) <> 255); // => SA0066

// correcting this code by explicit cast so that the type size is equal to or bigger than register
size

bResult := ((BYTE TO LINT (nBYTE) - 1) <> 255); // no error
bResult := ((BYTE TO_ LINT (nBYTE) - LINT#1) <> LINT#255); // no error
//

// result depends on solution platform
bResult := ((nDINT - 1) <> 255); // no error on x86 solution platform
// => SA0066 on x64 solution platform

// correcting this code by explicit cast so that the type size is equal to or bigger than register
size

bResult := ((DINT TO LINT(nDINT) - LINT#1) <> LINT#255); // no error

//

// type size equal to or bigger than register size
// use of temporary result and no implicit casting => no error
bResult := ((nLINT - 1) <> 255); // no error

//

SA0072: Invalid uses of counter variable

Determines write access operations to a counter variable within a FOR loop.

Example:

PROGRAM MAIN

VAR_TEMP
nIndex : INT;

END VAR

VAR
aSample : ARRAY[1..10] OF INT;
nLocal : INT;

END VAR

FOR nIndex := 1 TO 10 BY 1 DO
aSample[nIndex] := nlIndex; // no error
nLocal := nIndex; // no error
nIndex := nIndex - 1; // => SA0072
nIndex := nIndex + 1; // => SA0072
nIndex := nLocal; // => SA0072

END FOR

TC3 PLC Static Analysis Version: 1.9

37

Configuration

BECKHOFF

SA0073: Use of non-temporary counter variable

Determines the use of non-temporary variables in FOR loops.

Sample:

PROGRAM MAIN

VAR
nIndex : INT;
nSum : INT;

END VAR

FOR nIndex := 1 TO 10 BY 1 DO // => SA0073
nSum := nSum + nIndex;

END_ FOR

SA0080: Loop index variable for array index exceeds array range

Determines FOR statements in which the index variable is used for access to an array index and exceeds

the array index range.

Examples:

PROGRAM MAIN
VAR CONSTANT
cl : INT := 0;
END VAR
VAR
nIndexl : INT;
nIndex2 : INT;
nIndex3 : INT;

al : ARRAY[1..100] OF INT;
a2 : ARRAY[1..9,1..9,1..9] OF INT;
a3 : ARRAY[0..99] OF INT;
END VAR
// 1 violation of the rule (lower range is exeeded)
FOR nIndexl := cl TO INT#100 BY INT#1 DO
al[nIndexl] := nIndexl;
END_FOR

// 6 violations (lower and upper range is exeeded for each array dimension)

FOR nIndex2 := INT#0 TO INT#10 BY INT#1 DO
a2[nIndex2, nIndex2, nIndex2] := nIndex2;
END FOR

// 1 violation (upper range is exeeded by the end result of the index),

evaluated => no error

FOR nIndex3 := INT#0 TO INT#50 BY INT#1 DO
a3[nIndex3 * INT#2] := nIndex3;
END_FOR

SA0081: Upper border is not a constant

=> 1 error SA0080

// => SA0080

// => SA0080

// no error

=> 3 errors SA0080

expressions on index are not

Determines FOR statements in which the upper limit is not defined with a constant value.

Examples:

PROGRAM MAIN
VAR CONSTANT

cMax : INT := 10;

END VAR

VAR
nIndex : INT;
nvar : INT;
nMaxl : INT := 10;
nMax2 : INT := 10;

END_VAR

FOR nIndex := 0 TO 10 DO // no error
nVar := nIndex;

END_FOR

FOR nIndex := 0 TO cMax DO // no error
nVar := nIndex;

END_FOR

FOR nIndex := 0 TO nMaxl DO // => SA0081
nVar := nIndex;

38 Version: 1.9 TC3 PLC Static Analysis

BECKHOFF

Configuration

END FOR
FOR nIndex := 0 TO nMax2 DO // => SA0081
nVar := nIndex;

IF nVar = 10 THEN
nMax2 := 50;
END IF
END FOR

SA0075: Missing ELSE
Determines CASE statements without ELSE branch.

Example:

PROGRAM MAIN
VAR
nVar : INT;
bVar : BOOL;

END VAR
nvar := nVar + INT#1;
CASE nVar OF // => SA0075
INT#1:
bvVar := FALSE;
INT#2:
bvar := TRUE;
END_CASE

SA0076: Missing enumeration constant

Determines code positions where an enumeration variable is used as condition and not all enumeration

values are treated as CASE branches.

Example:

In the following example the enumeration value eYellow is not treated as a CASE branch.

Enumeration E_Color:

TYPE E_Color
(
eRed,
eGreen,
eBlue,
eYellow
);
END_TYPE

Program MAIN:

PROGRAM MAIN
VAR
eColor : E_Color;
bvar : BOOL;
END_VAR

eColor := E Color.eYellow;

CASE eColor OF // => SA0076
E_Color.eRed:
bvVar := FALSE;

E_Color.eGreen,
E_Color.eBlue:
bVar := TRUE;

ELSE

bVar := NOT bVar;
END CASE

SA0077: Type mismatches with CASE expression

Determines code positions where the data type of a condition does not match that of the CASE branch.

TC3 PLC Static Analysis Version: 1.9

39

Configuration BEGKHGFF

Example:

Enumeration E_Sample:

TYPE E Sample
(
eNull,
eOne,
eTwo
) DWORD;
END_TYPE

Program MAIN:

PROGRAM MAIN

VAR
nDINT : DINT;
bVar : BOOL;
END VAR
nDINT := nDINT + DINT#1;

CASE nDINT OF
DINT#1:
bVar := FALSE;

E Sample.eTwo, // => SA0077
DINT#3:
bvar := TRUE;
ELSE

bVar := NOT bVar;
END CASE

SA0078: Missing CASE branches

Determines CASE statements without cases, i.e. with only a single ELSE statement.

Example:
PROGRAM MAIN
VAR
nvar : DINT;
bVar : BOOL;
END VAR
nVar := nVar + INT#1;
CASE nVar OF // => SA0078
ELSE
bVar := NOT bVar;
END_CASE

SA0090: Return statement before end of function

Determines code positions where the RETURN statement is not the last statement in a function, method,
property or program.

Example:

FUNCTION F TestFunction : BOOL

F TestFunction := FALSE;

RETURN; // => SA0090
F TestFunction := TRUE;

SA0095: Assignments in conditions

Determines assignments in conditions of IF, CASE, WHILE or REPEAT constructs.

Examples:

PROGRAM MAIN

VAR
bTest : BOOL;
bResult : BOOL;
bValue : BOOL;
bl : BOOL;

40 Version: 1.9 TC3 PLC Static Analysis

BECKHUFF Configuration

nl : INT;
n2 : INT;
nCondl : INT = INT#1;
nCond2 : INT = INT#2;
bCond : BOOL := FALSE;
nVar : INT;
eSample : E Sample;

END VAR

// IF constructs

IF (bTest := TRUE) THEN // => SA0095
DoSomething () ;

END IF

IF (bResult := F Sample (bInput := bValue)) THEN // => SA0095
DoSomething () ;

END IF

bl := ((nl := n2) = 99); // => SA0095

IF INT _TO BOOL(nCondl := nCond2) THEN // => SA0095
DoSomething () ;

ELSIF (nCondl := 11) = 11 THEN // => SA0095
DoSomething () ;

END IF

IF bCond := TRUE THEN // => SA0095
DoSomething () ;

END IF

IF (bCond := FALSE) OR (nCondl := nCond2) = 12 THEN // => SA0095
DoSomething () ;

END IF

IF (nVar := nVar + 1) = 120 THEN // => SA0095
DoSomething () ;

END IF

// CASE construct
CASE (eSample := E Sample.eMember0O) OF // => SA0095
E_Sample.eMember0Q:
DoSomething () ;

E_Sample.eMemberl:
DoSomething () ;
END CASE

// WHILE construct

WHILE (bCond = TRUE) OR (nCondl := nCond2) = 12 DO // => SA0095
DoSomething () ;
END WHILE
// REPEAT construct
REPEAT
DoSomething () ;
UNTIL
(bCond = TRUE) OR ((nCondl := nCond2) = 12) // => SA0095
END REPEAT

SA0100: Variables greater than <n> bytes
Determines variables that use more than n bytes; n is defined by the current configuration.

You can configure the parameter that is taken into account in the check by double-clicking on the row for rule
100 in the rule configuration (PLC Project Properties > category "Static Analysis" > "Rules" tab > Rule 100).
You can make the following settings in the dialog that appears:

» Upper limit in bytes (default value: 1024)
Example:

In the following example the variable aSample is greater than 1024 bytes.

PROGRAM MAIN
VAR

aSample : ARRAY [0..1024] OF BYTE; // => SA0100
END_ VAR

TC3 PLC Static Analysis Version: 1.9 41

Configuration BEGKHGFF

SA0101: Names with invalid length

Determines names with invalid length. The object names must have a defined length.

You can configure the parameters that are taken into account in the check by double-clicking on the row for
rule 101 in the rule configuration (PLC Project Properties > category "Static Analysis" > "Rules" tab > Rule
101). You can make the following settings in the dialog that appears:

* Minimum number of characters (default value: 5)
* Maximum number of characters (default value: 30)
» Exceptions

Examples:

Rule 101 is configured with the following parameters:
e Minimum number of characters: 5
« Maximum number of characters: 30
» Exceptions: MAIN, i

Program PRG1:

PROGRAM PRG1 // => SA0101
VAR
END VAR

Program MAIN:

PROGRAM MAIN // no error due to configured exceptions
VAR
i : INT; // no error due to configured exceptions
b : BOOL; // => SA0101
nVarl : INT;
END VAR
PRG1 () ;

SA0102: Access to program/fb variables from the outside
Determines external access to local variables of programs or function blocks.

TwinCAT determines external write access operations to local variables of programs or function blocks as
compilation errors. Since read access operations to local variables are not intercepted by the compiler and
this violates the basic principle of data encapsulation (concealing of data) and contravenes the IEC 61131-3
standard, this rule can be used to determine read access to local variables.

Examples:

Function block FB_Base:

FUNCTION BLOCK FB Base
VAR

nLocal : INT;
END VAR

Method FB_Base.SampleMethod:

METHOD SampleMethod : INT
VAR INPUT
END VAR

nLocal := nLocal + 1;

Function block FB_Sub:

FUNCTION_BLOCK FB_Sub EXTENDS FB_ Base

Method FB_Sub.SampleMethod:

METHOD SampleMethod : INT
VAR INPUT
END_ VAR

nLocal := nLocal + 5;

Program PRG_1:

42 Version: 1.9 TC3 PLC Static Analysis

BECKHOFF

Configuration

PROGRAM PRG 1

VAR

bLocal : BOOL;
END VAR
bLocal := NOT bLocal;

Program MAIN:
PROGRAM MAIN

VAR
bRead : BOOL;
nReadBase : INT;
nReadSub : INT;
fbBase : FB Base;
fbsub : FB Sub;
END VAR
bRead = PRG_1.bLocal;
nReadBase := fbBase.nlLocal;
nReadSub := fbSub.nLocal;

// => SA0102
// => SA0102
// => SA0102

SA0103: Concurrent access on not atomic data

Determines non-atomic variables (for example with data types STRING, WSTRING, ARRAY, STRUCT, FB
instances, 64-bit data types) that are used in more than one task.

This rule does not apply in the following cases:

« If the target system has an FPU (floating point unit), the access of several tasks to LREAL variables is

not determined and reported.

« If the target system is a 64-bit processor or "TwinCAT RT (x64)" is selected as the solution platform,
the rule does not apply for 64-bit data types.

@® See also rule SA0006 [P 18].

1

Samples:

Structure ST_sample:

TYPE ST Sample

STRUCT
bMember : BOOL;
nTest : INT;
END STRUCT
END TYPE

Function block FB_Sample:

FUNCTION BLOCK FB_Sample
VAR INPUT

fInput : LREAL;
END VAR

GVL:

{attribute 'qualified only'}
VAR GLOBAL

fTest : LREAL; // => no error SA0103: Since the target system has a FPU, SA0103
does not apply.
nTest : LINT; // => error reporting depends on the solution platform:
// - SA0103 error if solution platform is set to "TwinCAT
RT (x86) "
// - no error SA0103 if solution platform is set to "TwinCAT
(x64)"
sTest : STRING; // => SA0103
wsTest : WSTRING; // => SA0103
aTest : ARRAY[0..2] OF INT; // => SA0103
aTest2 : ARRAY[0..2] OF INT; // => SA0103
fbTest : FB Sample; // => SA0103
stTest : ST Sample; // => SA0103
END_ VAR
Program MAIN1, called by task PlcTask1:
TC3 PLC Static Analysis Version: 1.9 43

Configuration BEGKHGFF

PROGRAM MAINI1

VAR

END_VAR

GVL.fTest 8= 5,0¢

GVL.nTest 1= 123;

GVL.sTest := 'sample text';
GVL.wsTest := "sample text";
GVL.aTest := GVL.aTest2;

GVL. fbTest.fInput := 3;

GVL.stTest.nTest := GVL.stTest.nTest + 1;

Program MAIN2, called by task PlcTask2:

PROGRAM MAIN2

VAR
fLocal : LREAL;
nLocal : LINT;
sLocal : STRING;
wsLocal : WSTRING;
aLocal : ARRAY[0..2] OF INT;

aLocal?2 : ARRAY[0..2] OF INT;
fLocal2 : LREAL;

nLocal?2 : INT;
END_ VAR
flLlocal := GVL.fTest + 1.5;
nLocal := GVL.nTest + 10;
sLocal := GVL.sTest;
wsLocal := GVL.wsTest;
alocal := GVL.aTest;
alocal2 := GVL.aTest2;
fLocal2 := GVL.fbTest.fInput;
nLocal2 := GVL.stTest.nTest;

SA0105: Multiple instance calls

Determines and reports instances of function blocks that are called more than once. To ensure that an error
message for a repeatedly called function block instance is generated, the Pragmas and attributes [»_84]
must be added in the declaration part of the function block.

Example:

In the following example the static analysis will issue an error for fb2, since the instance is called more than
once, and the function block is declared with the required attribute.

Function block FB_Test1 without attribute:

FUNCTION BLOCK FB Testl

Function block FB_Test2 with attribute:

{attribute 'analysis:report-multiple-instance-calls'}
FUNCTION BLOCK FB Test2

Program MAIN:

PROGRAM MAIN
VAR
fbl : FB_Testl;
fb2 : FB Test2;
END_VAR

fbl ()
fbl () ;
b2 () ; // => SA0105
fb2 () ; // => SA0105

SA0106: Virtual method calls in FB_init

Determines method calls in the method FB_init of a basic function block, which are overwritten by a function
block derived from the basic FB. Background: In such cases it may happen that the variables that are used
in overwritten methods of the basic FB are not yet initialized.

Example:
» Function block FB_Base has the methods FB_init and Mylnit. FB_init calls MylInit for initialization.

44 Version: 1.9 TC3 PLC Static Analysis

BECKHUFF Configuration

» Function block FB_Sub is derived from FB_Base.
* FB_Sub.MyInit overwrites or extends FB_Base.Mylnit.

* MAIN instantiates FB_Sub. During this process it uses the instance variable nSub before it was
initialized, due to the call sequence during the initialization.

Function block FB_Base:

FUNCTION BLOCK FB_Base
VAR

nBase : DINT;
END_ VAR

Method FB_Base.FB_init:

METHOD FB_init : BOOL
VAR INPUT
bInitRetains : BOOL;
bInCopyCode : BOOL;
END_ VAR
VAR
nLocal : DINT;
END VAR

nLocal := MyInit(); // => SA0106

Method FB_Base.MyInit:

METHOD MyInit : DINT

nBase
MyInit

123; // access to member of FB Base
nBase;

Function block FB_Sub:

FUNCTION BLOCK FBisub EXTENDS FB Base
VAR

nSub : DINT;
END VAR

Method FB_Sub.MyInit:

METHOD MyInit : DINT

nSub := 456; // access to member of FB_Sub
SUPER”.MyInit () ; // call of base implementation
MyInit := nSub;

Program MAIN:

PROGRAM MAIN

VAR
fbBase : FB Base;
fbSub : FB Sub;
END_ VAR

The instance MAIN.fbBase has the following variable values after the initialization:

* nBaseis 123

The instance MAIN.fbSub has the following variable values after the initialization:

* nBase is 123
* nSubis 0
The variable MAIN.foSub.nSub is 0 after the initialization, because the following call sequence is used during
the initialization of fbSub:
« Initialization of the basic function block:
o implicit initialization
o explicit initialization: FB_Base.FB _init
o FB_Base.FB_init calls FB_Sub.Mylnit — SA0106
o FB_Sub.MyInit calls FB_Base.Mylnit (via SUPER pointer)

TC3 PLC Static Analysis Version: 1.9 45

Configuration

BECKHOFF

+ Initialization of the derived function block:
o implicit initialization
SA0107: Missing formal parameters
Determines where formal parameters are missing.

Example:

Function F_Sample:

FUNCTION F Sample : BOOL
VAR INPUT

bInl : BOOL;

bIn2 : BOOL;
END_ VAR

F Sample := bInl AND bIn2;

Program MAIN:

PROGRAM MAIN

VAR

bReturn : BOOL;
END_VAR
bReturn := F Sample (TRUE, FALSE); // => SA0107
bReturn := F_Sample (TRUE, bIn2 := FALSE); // => SA0107
bReturn := F Sample (bInl := TRUE, bIn2 := FALSE); // no error

SA0111: Pointer variables
Determines variables of type POINTER TO.

Example:

PROGRAM MAIN
VAR

pINT : POINTER TO INT; // => SA0111
END VAR

SA0112: Reference variables
Determines variables of type REFERENCE TO.

Example:

PROGRAM MAIN
VAR

refInt : REFERENCE TO INT; // => SA0112
END VAR

SA0113: Variables with data type WSTRING
Determines variables of type WSTRING.

Example:

PROGRAM MAIN
VAR

wsVar : WSTRING; // => SA0113
END VAR

SA0114: Variables with data type LTIME

Determines variables of type LTIME.

Example:
PROGRAM MAIN
VAR
tVar : LTIME; // => SA0114
END VAR
// no error SA0114 for the following code line:
tVar := tVar + LTIME#1000D15H23M12S34MS2US44NS;
46 Version: 1.9

TC3 PLC Static Analysis

BECKHOFF

Configuration

SA0115: Variables with data type UNION

Determines declarations of a UNION data type and declarations of variables of the type of a UNION.

Examples:

Union U_Sample:

TYPE U Sample : // => SA0115
UNION
fVar : LREAL;
nVar : LINT;
END UNION
END_TYPE

Program MAIN:

PROGRAM MAIN
VAR

uSample : U_Sample; // => SA0115

END VAR

SA0117: Variables with data type BIT

Determines declarations of variables of type BIT (possible within structure and function block definitions).

Examples:

Structure ST_sample:

TYPE ST Sample :

STRUCT
bBIT : BIT; // => SA0117
bBOOL : BOOL;

END_STRUCT

END_TYPE

Function block FB_Sample:

FUNCTION BLOCK FB Sample
VAR

bBIT : BIT; // => SA0117

bBOOL : BOOL;
END VAR

SA0119: Object-oriented features

Determines the use of object-oriented features such as:
» Function block declarations with EXTENDS or IMPLEMENTS

» Property and interface declarations
* Use of the THIS or SUPER pointer

Examples:

Interface |_Sample:

INTERFACE I Sample // => SA0119
Function block FB_Base:

FUNCTION BLOCK FB Base IMPLEMENTS I Sample // => SA0119
Function block FB_Sub:

FUNCTION BLOCK FB Sub EXTENDS FB Base // => SA0119
Method FB_Sub.SampleMethod:

METHOD SampleMethod : BOOL // no error
Get function of the property FB_Sub.SampleProperty:

VAR // => SA0119
END VAR

Get function of the property FB_Sub.SampleProperty:

TC3 PLC Static Analysis Version: 1.9 47

Configuration

BECKHOFF

VAR // => SR0119
END VAR

SA0120: Program calls
Determines program calls.
Example:

SubProgram:

PROGRAM SubProgram

Program MAIN:

PROGRAM MAIN
SubProgram () ; // => SA0120

SA0121: Missing VAR_EXTERNAL declarations

Determines the use of a global variable in the function block, without it being declared as VAR _EXTERNAL

(required according to the standard).

@® InTwinCAT 3 PLC it is not necessary for variables to be declared as external. The keyword exists

1 in order to maintain compatibility with IEC 61131-3.

Example:

Global variables:

VAR GLOBAL
nGlobal : INT;
END_VAR

Program Prog1:
PROGRAM Progl

VAR
nVar : INT;
END VAR
nVar := nGlobal; // => SA0121

Program Prog2:

PROGRAM Prog2
VAR
nVar : INT;
END VAR
VAR EXTERNAL
nGlobal : INT;
END_VAR

nVar := nGlobal; // no error

SA0122: Array index defined as expression

Determines the use of expressions in the declaration of array boundaries.

Example:

PROGRAM MAIN
VAR CONSTANT

cSample : INT := INT#15;
END_ VAR
VAR
aSamplel : ARRAY[0..10] OF INT;
aSample2 : ARRAY[0..10+5] OF INT; // => SA0122
aSample3 : ARRAY[0..cSample] OF INT;
aSample4 : ARRAY[0..cSample + 1] OF INT; // => SA0122
END VAR
48 Version: 1.9 TC3 PLC Static Analysis

BECKHOFF

Configuration

SA0123: Usages of INI, ADR or BITADR

Determines the use of the (TwinCAT-specific) operators INI, ADR, BITADR.

Example:

PROGRAM MAIN
VAR

nVar : INT;

pINT : P
END VAR

PINT := ADR(

SA0147: Unusual shift operation - strict
Determines bit shift operations that are not performed on bit field data types (BYTE, WORD, DWORD,

OINTER TO INT;

nvVar) ;

// => SA0123

LWORD). The IEC 61131-3 standard only allows bit access to bit field data types. However, the TwinCAT 3
compiler also allows bit shift operations with unsigned data types.

@® See also non-strict rule SA0052 [32].

1

Samples:

PROGRAM MAIN

VAR
nBYTE
nWORD
nUINT
nDINT
nResBYTE
nResWORD
nResUINT
nResDINT
nShift

END_VAR

nResBYTE :
nResWORD
nResUINT
nResDINT :

: BYTE :
: WORD :
: UINT;
: DINT;
NN
: WORD;
: UINT;
: DINT;
: BYTE :

16#45;
16#0045;

25

SHL (nByte,nShift) ;
SHL (nWORD, nShift) ;
SHL (nUINT,nShift);
SHL (nDINT, nShift) ;

//
//
//
//

SA0148: Unusual bit access - strict

Determines bit access operations that are not performed on bit field data types (BYTE, WORD, DWORD,

error because BYTE is a bit field
error because WORD is a bit field
SAQ0147
SA0147

LWORD). The IEC 61131-3 standard only allows bit access to bit field data types. However, the TwinCAT 3
compiler also allows bit access to unsigned data types.

@® See also non-strict rule SA0018 [» 211.

1

Samples:

PROGRAM MAIN

VAR
nINT
nDINT
nULINT
nSINT
nUSINT
nBYTE

END VAR

nINT.3
nDINT. 4
nULINT.18 :
nSINT.2
nUSINT.3
nBYTE. 5

: INT;

: DINT;
: ULINT;
: SINT;
: USINT;
: BYTE;

TRUE;
TRUE;
FALSE;
FALSE;
TRUE;
FALSE;

//
//
//
//
//

SA0148
SA0148
SA0148
SA0148
SA0148
error because BYTE is a bitfield

TC3 PLC Static Analysis

Version: 1.9

49

Configuration BEGKHGFF

SA0118: Initializations not using constants
Determines initializations that do not assign constants.
Examples:

Function F_ReturnDWORD:

FUNCTION F_ReturnDWORD : DWORD

Program MAIN:

PROGRAM MAIN
VAR CONSTANT

cl : DWORD := 100;
END VAR
VAR
nl : DWORD := cl;
n2 : DWORD := FiReturnDWORD(); // => SA0118
n3 : DWORD := 150;
n4 : DWORD := n3; // => SA0118
END VAR

SA0124: Dereference access in initializations

Determines all code locations where dereferenced pointers are used in the declaration part of POUs.

Samples:
FUNCTION BLOCK FB Test
VAR INPUT
pStruct : POINTER TO ST Test;
refStruct : REFERENCE TO ST Test;
END VAR
VAR
bPointer : BOOL := pStruct”.bTest; // => SA0124: Dereference access in initialization
bRef : BOOL := refStruct.bTest; // => SA0125: Reference used in initialization
END_ VAR
bPointer := pStruct”.bTest; // => SA0039: Possible null pointer dereference 'pStruct”"'
bRef := refStruct.bTest; // => SA0145: Possible use of not initialized reference
'refStruct’

IF pStruct <> 0 THEN
bPointer := pStruct”.bTest; // no error SA0039 as the pointer is checked for unequal 0
END IF
IF ISVALIDREF (refStruct) THEN
bRef := refStruct.bTest; // no error SA0145 as the reference is checked via
_ ISVALIDREF
END TF
Overview of the rules on "dereferencing".
Pointers:
» Dereferencing of pointers in the declaration part => SA0124 [» 50
» Possible null pointer dereferences in the implementation part => SA0039 [P 51
References:
» Use of references in the declaration part => SA0125 [» 50
» Possible use of not initialized reference in the implementation part => SA0145 [» 53
Interfaces:

» Possible use of not initialized interface in the implementation part => SA0046 [» 52]

SA0125: References in initializations
Determines all reference variables used for initialization in the declaration part of POUs.

Samples:

50 Version: 1.9 TC3 PLC Static Analysis

BECKHUFF Configuration

FUNCTION BLOCK FB Test

VAR INPUT
pStruct : POINTER TO ST Test;
refStruct : REFERENCE TO ST Test;
END VAR
VAR
bPointer : BOOL := pStruct”.bTest; // => SA0124: Dereference access in initialization
bRef : BOOL := refStruct.bTest; // => SA0125: Reference used in initialization
END VAR
bPointer := pStruct”.bTest; // => SA0039: Possible null pointer dereference 'pStruct”"'
bRef := refStruct.bTest; // => SA0145: Possible use of not initialized reference
'refStruct'’

IF pStruct <> 0 THEN

bPointer := pStruct”.bTest; // no error SA0039 as the pointer is checked for unequal 0
END IF
IF _ ISVALIDREF (refStruct) THEN

bRef := refStruct.bTest; // no error SA0145 as the reference is checked via

_ ISVALIDREF
END IF

Overview of the rules on "dereferencing”.
Pointers:

» Dereferencing of pointers in the declaration part => SA0124 [r 50]
» Possible null pointer dereferences in the implementation part => SA0039 [» 51]

References:

» Use of references in the declaration part => SA0125 [» 50]
» Possible use of not initialized reference in the implementation part => SA0145 [» 53]

Interfaces:
» Possible use of not initialized interface in the implementation part => SA0046 [» 52]

SA0039: Possible null pointer dereferences

Determines code positions at which a NULL pointer may be dereferenced.

Sample 1:
PROGRAM MAIN
VAR
pIntl : POINTER TO INT;
pInt2 : POINTER TO INT;
pInt3 : POINTER TO INT;
nVarl : INT;
nCounter : INT;
END VAR
nCounter := nCounter + INT#1;
pIntl := ADR (nVarl) ;
pIntl” := nCounter; // no error
pInt2” := nCounter; // => SA0039
nVarl := pInt3”; // => SA0039
Sample 2:
FUNCTION BLOCK FB Test
VAR INPUT
pStruct : POINTER TO ST Test;
refStruct : REFERENCE TO ST Test;
END VAR
VAR
bPointer : BOOL := pStruct”.bTest; // => SA0124: Dereference access in initialization
bRef : BOOL := refStruct.bTest; // => SA0125: Reference used in initialization
END VAR
bPointer := pStruct”.bTest; // => SA0039: Possible null pointer dereference 'pStruct”"'
bRef := refStruct.bTest; // => SA0145: Possible use of not initialized reference
'refStruct’

TC3 PLC Static Analysis Version: 1.9 51

Configuration BEGKHGFF

IF pStruct <> 0 THEN

bPointer := pStruct”.bTest; // no error SA0039 as the pointer is checked for unequal 0
END IF
IF ISVALIDREF (refStruct) THEN

bRef := refStruct.bTest; // no error SA0145 as the reference is checked via

_ ISVALIDREF
END_TF

Overview of the rules on "dereferencing”.
Pointers:

» Dereferencing of pointers in the declaration part => SA0124 [»_50]
» Possible null pointer dereferences in the implementation part => SA0039 [» 51]

References:
» Use of references in the declaration part => SA0125 [» 50]
» Possible use of not initialized reference in the implementation part => SA0145 [» 53]

Interfaces:

» Possible use of not initialized interface in the implementation part => SA0046 [»_52]

SA0046: Possible use of not initialized interface
Determines the use of interfaces that may not have been initialized before the use.
Samples:

Interface |_Sample:

INTERFACE I Sample

METHOD SampleMethod : BOOL
VAR _INPUT

nInput : INT;
END VAR

Function block FB_Sample:

FUNCTION BLOCK FB Sample IMPLEMENTS I Sample

METHOD SampleMethod : BOOL
VAR INPUT

nInput : INT;
END VAR

Program MAIN:

PROGRAM MAIN

VAR
fbSample : FB Sample;
iSample : I Sample;
isampleNotSet : I Sample;
nParam : INT;
bReturn : BOOL;
END_VAR
iSample := fbSample;
bReturn := iSample.SampleMethod (nInput := nParam); // no error
bReturn := iSampleNotSet.SampleMethod (nInput := nParam); // => SA0046

Overview of the rules on "dereferencing”.
Pointers:

» Dereferencing of pointers in the declaration part => SA0124 [» 50]

» Possible null pointer dereferences in the implementation part => SA0039 [» 51]
References:

» Use of references in the declaration part => SA0125 [» 50]

52 Version: 1.9 TC3 PLC Static Analysis

BECKHUFF Configuration

» Possible use of not initialized reference in the implementation part => SA0145 [» 53]
Interfaces:

» Possible use of not initialized interface in the implementation part => SA0046 [» 52]

SA0145: Possible use of not initialized reference

Determines all reference variables that may not be initialized before they are used and were not checked by
the _ ISVALIDREF operator. This rule is applied in the implementation part of POUs.

Samples:
FUNCTION BLOCK FB Test
VAR INPUT
pStruct : POINTER TO ST Test;
refStruct : REFERENCE TO ST Test;
END VAR
VAR
bPointer : BOOL := pStruct”.bTest; // => SA0124: Dereference access in initialization
bRef : BOOL := refStruct.bTest; // => SA0125: Reference used in initialization
END VAR
bPointer := pStruct”.bTest; // => SA0039: Possible null pointer dereference 'pStruct”'
bRef := refStruct.bTest; // => SA0145: Possible use of not initialized reference
'refStruct'’

IF pStruct <> 0 THEN

bPointer := pStruct”.bTest; // no error SA0039 as the pointer is checked for unequal 0
END IF
IF _ ISVALIDREF (refStruct) THEN

bRef := refStruct.bTest; // no error SA0145 as the reference is checked via

__ ISVALIDREF
END IF

Overview of the rules on "dereferencing”.
Pointers:

» Dereferencing of pointers in the declaration part => SA0124 [r 50]
» Possible null pointer dereferences in the implementation part => SA0039 [» 51]

References:

» Use of references in the declaration part => SA0125 [» 50]
» Possible use of not initialized reference in the implementation part => SA0145 [» 53]

Interfaces:

» Possible use of not initialized interface in the implementation part => SA0046 [» 52]

SA0140: Statements commented out

Determines statements that are commented out.

Example:

//bStart := TRUE; // => SA0140

SA0150: Violations of lower or upper limits of the metrics

Determines function blocks that violate the enabled metrics at the lower or upper limit.
Example:

The metric "Number of calls" is enabled and configured in the metrics configuration enabled (PLC Project
Properties > category "Static Analysis" > "Metrics" tab).

* Lower limit: 0

* Upper limit: 3

» Function block Prog1 is called 5 times

TC3 PLC Static Analysis Version: 1.9 53

Configuration BEGKHGFF

During the execution of the static analysis the violation of SA0150 is issued as an error or warning in the
message window.

// => SA0150: Metric violation for 'Progl'. Result for metric 'Calls' (5) > 3"

SA0160: Recursive calls

Determines recursive calls in actions, methods and properties of function blocks. Determines possible
recursions through virtual function calls and interface calls.

Sample 1:
Method FB_Sample.SampleMethod1:

METHOD SampleMethodl
VAR INPUT
END VAR

SampleMethodl (); (* => SA0160: Recursive call:
'MAIN -> FB_Sample.SampleMethodl -> FB Sample.SampleMethodl' ¥*)

Method FB_Sample.SampleMethod2:

METHOD SampleMethod2 : BOOL
VAR INPUT
END_VAR

SampleMethod2 := THIS”.SampleMethod2(); (* => SA0160: Recursive call:
'MAIN -> FB Sample.SampleMethod2 ->
FB Sample.SampleMethod2' *)

Program MAIN:
PROGRAM MAIN

VAR
fbSample : FB Sample;
bReturn : BOOL;
END VAR
fbSample.SampleMethodl () ;
bReturn := fbSample.SampleMethod2 () ;
Sample 2:

Please note regarding properties:

For a property, a local input variable is implicitly created with the name of the property. The following Set
function of a property thus assigns the value of the implicit local input variables to the property of an FB
variable.

Function block FB_Sample:

FUNCTION_ BLOCK FB_Sample
VAR

nParameter : INT;
END_ VAR

Set function of the property SampleProperty:

nParameter := SampleProperty;

In the following Set function, the implicit input variable of the property is assigned to itself. The assignment of
a variable to itself does not constitute a recursion, so that this Set function does not generate an SA0160
error.

Set function of the property SampleProperty:

SampleProperty := SampleProperty; // no error SA0160

However, access to a property using the THIS pointer is qualified. By using the THIS pointer, the instance
and thus the property is accessed, rather than the implicit local input variable. This means that the shading of
implicit local input variables and the property itself is lifted. In the following Set function, a new call to the
property is generated, which leads to a recursion and thus to error SA0160.

54 Version: 1.9 TC3 PLC Static Analysis

BEGKHOFF Configuration

Set function of the property SampleProperty:

THIS".SampleProperty := SampleProperty; // => SA0160
SA0161: Unpacked structure in packed structure

Determines unpacked structures that are used in packed structures.
Example:

The structure ST_SingleDataRecord is packed but contains instances of the unpacked structures ST_4Byte
and ST_9Byte. This results in a SA0161 error message.

{attribute 'pack mode' := '1'}

TYPE ST SingleDataRecord :

STRUCT
st9Byte : ST 9Byte; // => SAOl61l
st4Byte : ST 4Byte; // => SA0l6l
nl : UDINT;
n2 : UDINT;
n3 : UDINT;
n4 : UDINT;

END_STRUCT

END_TYPE

Structure ST_9Byte:

TYPE ST 9Byte

STRUCT
nRotorSlots : USINT;
nMaxCurrent : UINT;
nVelocity : USINT;
nAcceleration : UINT;
nDeceleration : UINT;
nDirectionChange : USINT;

END STRUCT

END TYPE

Structure ST_4Byte:

TYPE ST 4Byte
STRUCT
fDummy : REAL;
END STRUCT
END TYPE

SA0162: Missing comments

Determines points in the program that are not commented. Comments are required for:
 the declaration of variables. The comments are shown above or to the right.
« the declaration of POUs, DUTs, GVLs or interfaces. The comments are shown above the declaration
(in the first row).
Samples:

The following sample generates the error "SA0162: Missing comment for 'b1™ for variable b1.

// Comment for MAIN program
PROGRAM MAIN

VAR

bl : BOOL;

// Comment for variable b2

b2 : BOOL;

b3 : BOOL; // Comment for variable b3
END VAR

SA0163: Nested comments
Determines code positions with nested comments.
Examples:

The four nested comments identified accordingly in the following example each result in the error: "SA0163:
Nested comment '<...>".

TC3 PLC Static Analysis Version: 1.9 55

Configuration BEGKHGFF

(* That is

(* nested comment number 1 *)
*)

PROGRAM MAIN

VAR

(* That is

// nested comment
number 2 *)

a : DINT;
b : DINT;

(* That is
(* nested comment number 3 *) *)
(¢} : BOOL;
nCounter : INT;
END VAR

(* That is // nested comment number 4 ¥*)
nCounter := nCounter + 1;

(* This 1s not a nested comment *)

SA0164: Multi-line comments

Determines code positions at which the multi-line comment operator (* *) is used. Only the two single-line
comment operators are allowed: // for standard comments, /// for documentation comments.

Examples:

(*

This comment leads to error:

"SAOled ..

*)

PROGRAM MAIN

VAR
/// Documentation comment not reported by SA0164
nCounterl: DINT;

nCounter2: DINT; // Standard single-line comment not reported by SA0164
END VAR
(* This comment leads to error: "SAO0l64 .." *)
nCounterl := nCounterl + 1;
nCounter2 := nCounter2 + 1;

SA0166: Maximum number of input/output/in-out variables

The check determines whether a defined number of input variables (VAR _INPUT), output variables
(VAR_OUTPUT) or VAR_IN_OUT variables is exceeded in a function block.

You can configure the parameters that are taken into account in the check by double-clicking on the row for
rule 166 in the rule configuration (PLC Project Properties > category "Static Analysis" > "Rules" tab > Rule
166). You can make the following settings in the dialog that appears:

* Maximum number of inputs (default value: 10)
* Maximum number of outputs (default value: 10)
* Maximum number of inputs/outputs (default value: 10)

Example:

Rule 166 is configured with the following parameters:

* Maximum number of inputs: 0
* Maximum number of outputs: 10
* Maximum number of inputs/outputs: 1

The following function block therefore reports two SA0166 errors, since too many inputs (> 0) and too many
inputs/outputs (> 1) are declared.

Function block FB_Sample:

FUNCTION_BLOCK FB_Sample // => SA0166
VAR_INPUT
bIn : BOOL;

56 Version: 1.9 TC3 PLC Static Analysis

BECKHOFF

Configuration

END VAR
VAR OUTPUT
bOut : BOOL;
END VAR
VAR IN OUT
bInOutl : BOOL;
bInOut2 : BOOL;
END VAR

SA0167: Report temporary FunctionBlock instances

Determines function block instances that are declared as temporary variables. This applies to instances that
are declared in a method, in a function or as VAR_TEMP, and which are reinitialized in each processing

cycle or each function block call.
Examples:

Method FB_Sample.SampleMethod:

METHOD SampleMethod : INT
VAR INPUT
END VAR
VAR
fbTrigger : R TRIG; // => SA0167
END VAR

Function F_Sample:

FUNCTION Fisample : INT
VAR INPUT
END_VAR
VAR
fbSample : FB_Sample; // => SA0167
END VAR

Program MAIN:
PROGRAM MAIN

VAR TEMP
fbSample : FB_Sample; // => SA0167
nReturn : INT;

END_VAR

nReturn := F Sample();

4.3 Naming conventions

In the naming conventions tab you can define naming conventions. Their compliance is accounted for in
the static analysis execution [P 76]. You define mandatory prefixes for the different data types of variables
as well as for different scopes, function block types, and data type declarations. The names of all objects for
which a convention can be specified are displayed in the project properties as a tree structure. The objects

are arranged below organizational nodes.

TC3 PLC Static Analysis Version: 1.9

57

Configuration

BECKHOFF

R

M/A

PlcZampleProject & X

Commaon

Compile
Licenses Solution options
Statistic Setlings I Rules | Maming C i | Meti I Fort
SFC Mames Prefix T
Visualization = Prefizes for POUs
= Prefiges for POU type
“isualization Profile PROGR&M [102)
ysi FUNCTIONBLOCK [103) FEB
Deployment FUMCTION [104] F_
METHOD [103)
CompilerWarmings ACTIDN [106]
urAL PROPERTY [107)
Advanced INTERFACE [108] _
= Method scope
PRIVATE (121)
PROTECTED [122]
INTERMAL [123]
FUELIC [124]
= Prefizes for DUTs i
Structure [151] ST
Enumeration [152] E_ E
“Yariables with data type UMIOM [153] u_
Alias [154) L4

Configuration of the naming conventions:

You can define the required conventions by entering the required prefix in the Prefix column. Please note

the following notes and options:

» Several possible prefixes per line

o

o

Multiple prefixes can be entered separated by commas.

Example: "x, b" as prefixes for variables of data type BOOL. "x" and "b" may be used as prefix for
Boolean variables.

* Regular expressions

i o

1

o

You can also use regular expressions (RegEx) for the prefix. In this case you have to use @ as
additional prefix.

Example: "@b[a-dA-D]" as prefix for variables of data type BOOL. The name of the boolean variable
must start with "b", and may be followed by a character in the range "a-dA-D".

Formation of the expected prefix

The prefix expected for the different declarations is formed depending on the configuration of the
options found in the Naming conventions (2) [P 67] dialog.

On the Naming conventions (2) [P_67] page you will also find explanations on how the expected
prefix is formed, as well as some samples.

Placeholder {datatype} with alias variables and properties

Please also note the possibilities of the placeholder {datatype} [»_66], which you can use for the
prefix definition of alias variables and properties.

Syntax of convention violations in the message window:

Each naming convention has a unique number (shown in parentheses after the convention in the naming
convention configuration view). If a violation of a convention or a preset is detected during the static analysis,
the number is output in the error list together with an error description based on the following syntax. The
abbreviation "NC" stands for "Naming Convention".

Syntax: "NC<prefix convention number>: <convention description>"

58

Version: 1.9 TC3 PLC Static Analysis

BECKHUFF Configuration

Example for convention number 151 (DUTs of type Structure): "NC0151: Invalid type name 'STR_Sample'.
Expected prefix 'ST_"

Temporary deactivation of naming conventions:

Individual conventions can be disabled temporarily, i.e. for particular code lines. To this end you can add a
pragma or an attribute in the declaration or implementation part of the code. For variables of structured types
you may specify a prefix locally via an attribute in the data type declaration. For further information please

refer to Pragmas and attributes [» 81].

Overview of naming conventions:

An overview of naming conventions can be found under Naming conventions — overview and description

[»591.

4.3.1 Naming conventions — overview and description

Overview
- Prefixes for variables

- Prefixes for types
- NC0003: BOOL [r 61]
- NC0004: BIT [» 61]

- NCO005: BYTE [» 61]
- NC0006: WORD [P 61]

- NC0O007: DWORD [»r 61]

- NC0008: LWORD [» 61]
- NC0OO013: SINT [r 61]

- NCOO014: INT [r 61]

- NCO0015: DINT [r 61]

- NCO0016: LINT [» 61]

- NC0009: USINT [» 61]

- NC0O010: UINT [» 61]
- NCO011: UDINT [r 61]

- NCO012: ULINT [» 61]

- NCOO17: REAL [» 61]
- NCO018: LREAL [» 61]

- NC0019: STRING [P 61]

- NC0020: WSTRING [r 61]

- NC0021: TIME [r 61]
- NC0022: LTIME [» 61]

TC3 PLC Static Analysis Version: 1.9 59

Configuration BEGKHOFF

- NC0023: DATE [» 61]
- NC0024: DATE AND TIME [P 61]

- NC0025: TIME OF DAY [» 61]

- NC0026: POINTER [P 62]

- NCO0027: REFERENCE [» 62]

- NC0028: SUBRANGE [r 62]

- NC0030: ARRAY [» 62]

- NC0031: Function block instance [P _63]

- NC0036: Interface [» 63]

- NC0032: Structure [» 63]

- NC0029: ENUM [r 63]

- NC0033: Alias [r 64]
- NC0034: Union [P 64]

- NC0035:. XWORD [r 61]

- NC0037: UXINT [P 61]

- NC0038: XINT [» 61]

- Prefixes for scopes

- NCO051: VAR GLOBAL [» 64]

- NC0070: VAR GLOBAL CONSTANT [»_64]

- NCO071: VAR GLOBAL RETAIN [»_64]

- NC0072: VAR GLOBAL PERSISTENT [r 64]

- NCO073: VAR GLOBAL RETAIN PERSISTENT [» 64]

- VAR

- NC0053: Program variables [64]

- NC0054: Function block variables [» 64]

- NCO0055: Function/method variables [P 64]

- NC0056: VAR INPUT [r 64]

- NC0057: VAR OUTPUT [»_64]

- NCO0058: VAR IN OUT [r 64]

- NC0O059: VAR STAT [r 64]

- NC0061: VAR TEMP [r 64]

- NC0062: VAR CONSTANT [r 64]

- NCO063: VAR PERSISTENT [r 64]

60 Version: 1.9 TC3 PLC Static Analysis

BECKHUFF Configuration

- NC0064: VAR RETAIN [P 64]

- NCO0065: 1I/0O variables [P 65]
- Prefixes for POUs

- Prefixes for POU type
- NC0102: PROGRAM [P 65]

- NC0103: FUNCTIONBLOCK [r 65]

- NC0104: FUNCTION [» 65]

- NC0105: METHOD [P 65]

- NC0106: ACTION [P 65]

- NC0107: PROPERTY [r 65]

- NCO0108: INTERFACE [r 65]

- Method/property scope
- NC0121: PRIVATE [» 65]

- NC0122: PROTECTED [P 65]

- NCO123: INTERNAL [» 65]

- NC0124: PUBLIC [» 65]

- Prefixes for DUTs
- NC0151: Structure [» 66]

- NC0152: Enumeration [P 66]

- NCO0153: Union [» 66]
- NC0154: Alias [P 66]

Detailed description

The following sections contain explanations and examples of which declarations (i.e. at which point in the
project) use the individual naming conventions. The declarations samples illustrate cases for which the
corresponding prefix would be expected if a prefix was defined with the corresponding naming convention. It
should become clear where and how a type or variable can be declared so that the naming convention
NC<xxxx> is checked at this point. However, the samples do not show which concrete prefix is defined for
the individual naming conventions and would therefore be expected in the sample declarations. There is
therefore no OK/NOK comparison.

For concrete examples with a defined prefix, please refer to the page Naming conventions (2) [P 67].

Basic data types:

NCO0003: BOOL
Configuration of a prefix for a variable declaration of type BOOL.
Sample declarations:

For the following variable declarations the prefix configured for NC0003 is used for the formation of the
overall prefix, compliance with which is checked during execution of the static analysis [»_76].

TC3 PLC Static Analysis Version: 1.9 61

Configuration BEGKHGFF

bStatus : BOOL;
abVar : ARRAY[1..2] OF BOOL;
IbInput ATS$I* : BOOL;

The description of "NC0003: BOOL" is transferrable to the other basic data types:
- NC0004: BIT, NC0005: BYTE
- NC0006: WORD, NC0007: DWORD, NC0008: LWORD

- NC0013: SINT, NC0014: INT, NC0015: DINT, NC0O016: LINT, NC0O009: USINT, NC0010: UINT, NC0011:
UDINT, NC0012: ULINT

- NC0017: REAL, NC0018: LREAL

- NC0019: STRING, NC0020: WSTRING

- NC0021: TIME, NC0022: LTIME, NC0023: DATE, NC0024: DATE_AND_TIME, NC0025: TIME_OF_DAY
- NC0035: __ XWORD, NC0037: __UXINT, NC0038: __ XINT

Nested data types:

NC0026: POINTER
Configuration of a prefix for a variable declaration of type POINTER TO.
Sample declaration:

For the following variable declaration the prefix configured for NC0026 is used for the formation of the overall
prefix, compliance with which is checked during execution of the static analysis [P_76].

pnID : POINTER TO INT;

NC0027: REFERENCE
Configuration of a prefix for a variable declaration of type REFERENCE TO.
Sample declaration:

For the following variable declaration the prefix configured for NC0027 is used for the formation of the overall
prefix, compliance with which is checked during execution of the static analysis [P _76].

reffCurrentPosition : REFERENCE TO REAL;

NC0028: SUBRANGE

Configuration of a prefix for a variable declaration of a subrange type. A subrange type is a data type whose
value range only covers a subset of a base type.

Possible basic data types for a subrange type: SINT, USINT, INT, UINT, DINT, UDINT, BYTE, WORD,
DWORD, LINT, ULINT, LWORD.

Sample declarations:

For the following variable declaration the prefix configured for NC0028 is used for the formation of the overall
prefix, compliance with which is checked during execution of the static analysis [P _76].

subiRange : INT(3..5);
sublwRange : LWORD(100..150);

NC0030: ARRAY
Configuration of a prefix for a variable declaration of type ARRAY]...] OF.

Sample declaration:

62 Version: 1.9 TC3 PLC Static Analysis

BEGKHOFF Configuration

For the following variable declaration the prefix configured for NC0030 is used for the formation of the overall
prefix, compliance with which is checked during execution of the static analysis [P_76].

anTargetPositions : ARRAY[1..10] OF INT;

Instance-based data types:

NC0031: Function block instance
Configuration of a prefix for a variable declaration of a function block type.
Sample declaration:

Declaration of a function block:

FUNCTION BLOCK FB Sample

For the following variable declaration the prefix configured for NC0031 is used for the formation of the overall
prefix, compliance with which is checked during execution of the static analysis [P_76].

fbSample : FB Sample;

NCO0036: Interface
Configuration of a prefix for a variable declaration of an interface type.
Sample declaration:

Interface declaration:

INTERFACE I Sample

For the following variable declaration the prefix configured for NC0036 is used for the formation of the overall
prefix, compliance with which is checked during execution of the static analysis [P _76].

isample : I Sample;

NCO0032: Structure
Configuration of a prefix for a variable declaration of a structure type.
Sample declaration:

Declaration of a structure:

TYPE ST Sample :

STRUCT
bVar : BOOL;
sVar : STRING;
END_ STRUCT
END_TYPE

For the following variable declaration the prefix configured for NC0032 is used for the formation of the overall
prefix, compliance with which is checked during execution of the static analysis [P_76].

stSample : ST Sample;

NC0029: ENUM
Configuration of a prefix for a variable declaration of an enumeration type.
Sample declaration:

Declaration of an enumeration:

TYPE E_Sample :

(
eMemberl := 1,
eMember?2

)i

END TYPE

TC3 PLC Static Analysis Version: 1.9 63

Configuration BEGKHGFF

For the following variable declaration the prefix configured for NC0029 is used for the formation of the overall
prefix, compliance with which is checked during execution of the static analysis [P_76].

eSample : E Sample;

NCO0033: Alias
Configuration of a prefix for a variable declaration of an alias type.
Sample declaration:

Declaration of an alias:

TYPE T_Message : STRING; END_TYPE

For the following variable declaration the prefix configured for NC0033 is used for the formation of the overall
prefix, compliance with which is checked during execution of the static analysis [P _76].

tMessage : T Message;

NCO0034: Union
Configuration of a prefix for a variable declaration of a union type.
Sample declaration:

Declaration of a union:

TYPE U Sample :
UNION
nl : WORD;
n2 : INT;
END UNION
END_TYPE

For the following variable declaration the prefix configured for NC0034 is used for the formation of the overall
prefix, compliance with which is checked during execution of the static analysis [P_76].

uSample : U Sample;

Scopes of variable declarations:

NC0051: VAR_GLOBAL
Configuration of a prefix for a variable declaration between the keywords VAR_GLOBAL and END_VAR.
Sample declaration:

For the following declaration of a global variable, the prefix configured for NC0051 is used for the formation
of the overall prefix, compliance with which is checked during execution of the static analysis [»_76].
VAR GLOBAL

gbErrorAcknowledge : BOOL;
END_ VAR

The description of "NC0051: VAR_GLOBAL" is transferrable to other scopes of variable declarations:
- NC0070: VAR_GLOBAL CONSTANT

- NC0071: VAR_GLOBAL RETAIN

- NC0072: VAR_GLOBAL PERSISTENT

- NC0073: VAR_GLOBAL RETAIN PERSISTENT

- NC0053: Program variables (VAR within a program)

- NC0054: Function block variables (VAR within a function block)

- NC0055: Function/method variables (VAR within a function/method)

64 Version: 1.9 TC3 PLC Static Analysis

BEGKHOFF Configuration

- NC0056: VAR_INPUT

- NC0057: VAR_OUTPUT

- NC0058: VAR_IN_OUT

- NC0059: VAR_STAT

- NC0061: VAR_TEMP

- NC0062: VAR CONSTANT

- NC0063: VAR PERSISTENT
- NC0064: VAR RETAIN

NCO0065: 1/0 variables
Configuration of a prefix for a variable declaration with AT declaration.
Sample declarations:

For the following variable declarations with AT declaration, the prefix configured for NC0O065 is used for the
formation of the overall prefix, compliance with which is checked during execution of the static analysis

[»_76].

iovarl ATSI* : INT;
iovar2 ATSIX1.0 : BOOL;
iovar3 ATSQ* : INT;
iovar4 AT$QX2.0 : BOOL;
POU types:

NC0102: PROGRAM

Configuration of a prefix for the declaration of a program (name of the program in the project tree).
The description of "NC0102: PROGRAM'" is transferrable to the other POU types:

- NC0103: FUNCTIONBLOCK

- NC0104: FUNCTION

-NC0105: METHOD

- NC0106: ACTION

-NC0107: PROPERTY

- NC0108: INTERFACE

Scopes of methods and properties:

NC0121: PRIVATE

Configuration of a prefix for the declaration of a method or a property (name of the method/property in the
project tree), whose access modifier is PRIVATE.

The description of "NC121: PRIVATE" is transferrable to the other scopes of methods and properties:
- NC0122: PROTECTED

- NC0123: INTERNAL

- NC0124: PUBLIC

TC3 PLC Static Analysis Version: 1.9 65

Configuration BEGKHGFF

DUTs:

NCO0151: Structure

Configuration of a prefix for the declaration of a structure (name of the structure in the project tree).
The description of "NC0151: Structure" is transferrable to the other DUT types:

- NC0152: Enumeration

- NC0153: Union

- NC0154: Alias

4.3.2 Placeholder {datatype}

For variables of type Alias and for properties, the placeholder "{datatype}" can be defined as a prefix in the
"Naming Conventions" tab. The placeholder {datatype} is thereby replaced by the prefix that is defined for
the data type of the alias or for the data type of the property. The static analysis thus reports errors for all
alias variables that do not possess the prefix for the data type of the alias or for all properties that do not
possess the prefix for the data type of the property.

The placeholder "{datatype}" can also be combined with further prefixes in the prefix definition, e.g. to
"P_{datatype} ".
Example 1 for an alias variable:

 In the project there is an alias "TYPE MyMessageType : STRING; END_TYPE" as well as a variable of
this type (var : MyMessageType;).

* Prefix definitions
o Prefix for the variable data type alias (33) = "{datatype}"
o Prefix for the variable data type STRING (19) = "s"

* In the prefix definitions mentioned the data type prefix "s" is expected for a variable of the alias type
"MyMessageType" (e.g. for the variable "var").

Example 2 for an alias variable:

» Same situation as in example 1 for an alias variable, the only difference being:
o Prefix for the variable data type alias (33) = "al_{datatype}"

* In this case the data type prefix "al_s" is expected for a variable of the alias type "MyMessageType".

Example of a property:
* Prefix definitions
o Prefix for the method/property scope PRIVATE (121) = "priv_"
o Prefix for the POU type PROPERTY (107) = "P_{datatype}"
o Prefix for the variable data type LREAL (18) = "f"

* Note: For POUs with an access modifier (methods or properties), the combination of the prefix for the
scope (NC0121-NC0124: PRIVATE/PROTECTED/INTERNAL/PUBLIC) and the prefix for the POU
type (NC0105 for method, NC0107 for property) is expected as the overall prefix.

» With the prefix definitions mentioned the overall prefix "priv_P_f" is thus expected for a property with
the access modifier PRIVATE and the data type LREAL.

66 Version: 1.9 TC3 PLC Static Analysis

BECKHOFF

Configuration

4.4

Naming conventions (2)

The Naming Conventions (2) tab contains options that extend the settings of the Naming conventions
[»_57] tab. You can use these options to configure how the expected overall prefix for variables/declarations

is to be composed.

The observance of the naming conventions is checked during the execution of the Static Analysis [P_76].

Options

Option

Functionality

Examples of enabled
option

Examples of disabled
option

—_

First character after
prefix should be an
upper case letter

If this option is enabled,
the system checks
whether the first
character after the prefix
is an upper-case
character.

« If this option is disabled,
no such check takes
place.

Standard setting: disabled

If this option is enabled, an
error is reported for the
following declarations after
the Static Analysis to
indicate that the first
character after the prefix
must be upper-case.

Variable "bvar" with the
expected prefix "b" (a
correct identifier would
be "bVar")

» Function block
"FB_sample" with the
expected prefix "FB_" (a
correct identifier would
be "FB_Sample")

If this option is disabled,
the identifiers "bvar" and
"FB_sample" are permitted
for the expected prefixes
listed on the left. No upper/
lower case error is output.

TC3 PLC Static Analysis

Version: 1.9

67

Configuration BEGKHOFF
2|Recursive prefixes for |« If this option is enabled, |If this option is enabled, If this option is disabled,
combinable data variables of combinable |the following overall the following overall
types data types (POINTER, |prefixes are expected prefixes are expected
REFRENCE, ARRAY, |when performing the Static \when performing the Static
SUBRANGE) must have |Analysis. Analysis.
a composite datatype |, £qr 5 variable oftype |+ Only the prefix for the
prefix. The composite "POINTER TO outermost data type, in
prefix is formed from the | ARRAY[..] OF INT", the | this case POINTER, is
individual prefixes partial prefixes for expected for a variable
configured for the POINTER (26), ARRAY | of type "POINTER TO
individual components | 30) ang INT (14) are ARRAY[...] OF INT".
of the combined data expected as a If the prefix "p" is
type. composition. configured for POINTER
« If this option is disabled, | If the prefix "p" is (26), the prefix "a" for
only the prefix of the configured for POINTER| ARRAY (30) and the
outermost data type is (26), the prefix "a" for prefix "n" for INT (14),
expected as the data ARRAY (30) and the the data type prefix "p"
type prefix. prefix "n" for INT (14), is expected for a
the data type prefix variable of type
) "pan" is expected for a "POINTER TO
Standard setting: enabled | yariaple of type ARRAYI...] OF INT".
"POINTER TO * Only the prefix for the
ARRAY[...] OF INT". outermost data type, in
» For a variable of type this case ARRAY, is
"ARRAY]I...] OF expected for a variable
ARRAY]I...] OF BOOL", of type "ARRAY]...] OF
the partial prefixes for ARRAY]I...] OF BOOL".
ARRAY (30), ARRAY If the prefix "a" has been
(30) and BOOL (3) are configured for ARRAY
expected as a (30) and the prefix "b"
composition. for BOOL (3), the data
If the prefix "a" has been| type prefix "a" is
configured for ARRAY expected for a variable
(30) and the prefix "b" of type "ARRAY]...] OF
for BOOL (3), the data ARRAY]I...] OF BOOL".
type prefix "aab" is
expected for a variable
of type "ARRAY]...] OF
ARRAYI...] OF BOOL".
68 Version: 1.9 TC3 PLC Static Analysis

BECKHOFF

Configuration

prefix with data type
prefix

(namespace = scope)

3/Combine scope .

If this option is enabled,
a variable must have the
prefix defined in the
naming conventions
for its namespace
followed by its data
type prefix.

If this option is disabled,
a variable must only
have the prefix defined
in the naming
conventions for its
namespace. The data
type prefix is not
expected after the
namespace prefix.

Standard setting: enabled

If this option is enabled,
the following overall
prefixes are expected
when performing the Static
Analysis.

» For a variable of type
"BOOL" declared within
the namespace
VAR_INPUT of a
function block, the
partial prefixes for
VAR_INPUT (56) and
BOOL (3) are expected
as a composition.

If the prefix "in_" has
been configured for
VAR_INPUT (56) and
the prefix "b" for BOOL
(3), the overall prefix
"in_b" is expected for a
corresponding variable.

» For a variable of type
"INT" declared within
the VAR_GLOBAL
namespace of a global
variable list, the partial
prefixes for
VAR_GLOBAL (51) and
INT (14) are expected
as a composition.

If the prefix "g" was
configured for
VAR_GLOBAL (51) and
the prefix "n" for INT
(14), the overall prefix
"gn" is expected for a
corresponding variable.

If this option is disabled,
the following overall
prefixes are expected
when performing the Static
Analysis.

* Only the prefix for
namespace
VAR_INPUT (56) is
expected for a variable
declared within
namespace
VAR_INPUT of a
function block.

If the prefix "in_" has
been configured for
VAR_INPUT (56) and
the prefix "b" for BOOL
(3), the overall prefix
"in_"is expected for a
corresponding variable.

* Only the prefix for
namespace
VAR_GLOBAL (51) is
expected for a variable
declared within
namespace
VAR_GLOBAL of a
global variable list.

If the prefix "g" was
configured for
VAR_GLOBAL (51) and
the prefix "n" for INT
(14), the overall prefix
"g" is expected for a
corresponding variable.

Further notes/samples:

For POUs with an access modifier (methods or properties), the combination of the prefix for the scope
(NC0121-NC0124: PRIVATE/PROTECTED/INTERNAL/PUBLIC) and the prefix for the POU type (NC0105
for method, NCO107 for property) is expected as the overall prefix. Examples:

« If the prefix "priv_" has been configured for PRIVATE (121) and the prefix "M_" for METHOD (105), the
overall prefix "priv_M_" is expected for a PRIVATE method.

« If the prefix "M_" is still configured for METHOD (105), but no prefix has been configured for PRIVATE
(121), that is, if the field is empty in the naming conventions, the overall prefix "M_" is expected for a

PRIVATE method.

4.5 Metrics

In the Metrics tab you can select and configure the metrics to be displayed for each function block in the
Standard Metrics view when the command View Standard Metrics [P 77] is executed.

TC3 PLC Static Analysis

Version: 1.9

69

Configuration BEGKHGFF

PleSampleProject + X

Corron
[P MEA
Cornpile
Licenses Solution options
Statistic Settings | Rules | Naming C | Metiics | Forbi ymbol
SFC Metric Active Lower limit Upper limit il

Wisualization Code size [number of bytes]

Yariables size [number of bytes]
Visualization Profile Stack size [number of bytes]
Mumber of callz

Called in tasks

Used different global Variables

Deployrment

m

Compiler Warnings Mumber of direct address accesses

LIkAL Murmber of local variables
Bdvanced Mumber of inputs variables
Mumber of output variables
MOS - Number OF Statements

Percentage of comment

20 a0
Complexity [McCabe]

Complexity of nesting [Prather]

DIT - Depth of Inheritance Tree

MOC - Number Of Children

FFC - Response For Class

CEQ - Coupling Between Objects
Complexity of ieference (Elshof]

| ack of Cohesion Of Methods - | COIk

NOREREREREEOOORIROMEER

® Analysis of libraries

The following metrics are also output for the libraries integrated in the project: code size, variables
size, stack size, number of calls.

Configuration of the metrics:

You can enable or disable the individual metrics using the checkbox for the respective row. When command

View Standard Metrics [P _77] is executed, the metrics that are enabled in the respective configuration are
shown for each programming function block in the Standard Metrics view.

« [: The metric is disabled and is not displayed in the Standard Metrics view when the command
View Standard Metrics is executed.

. : The metric is enabled and is displayed in the Standard Metrics view when the command View
Standard Metrics is executed.

Upper and lower limits:

For each metric you can define an individual upper and lower limit by entering the required number in the
respective metric row (column Lower limit or Upper limit).

If a metric is only limited in one direction, you can leave the configuration for the other direction blank. In
other words, you may specify either only the lower limit or only the upper limit.

Evaluation of the upper and lower limits:

The set upper and lower limits you can be evaluated in two ways.
« Standard Metrics view:
o Enable the metric whose configured upper and lower limits you want to evaluate.
o Execute the command View Standard Metrics [P 77].

o TwinCAT shows the enabled metrics for each programming function block in the tabular Standard
Metrics view.

o If a value is outside the range defined by an upper and/or lower limit in the configuration, the table
cell is shown in red.

 Static analysis:
o Enable rule 150 as error or warning in the Rules [»_11] tab.
o Perform the static analysis (see: Run Static Analysis [»_76]).

70 Version: 1.9 TC3 PLC Static Analysis

BECKHOFF

Configuration

> Violations of the upper and/or lower limits are issued as error or warning in the message window.

Overview and description of the metrics:

An overview of the metrics and a detailed description of the rules can be found under Metrics - overview and

description [P _71].

451

Overview

Metrics - overview and description

Column abbreviation in Standard Metrics view

Description

Code size

Code size [number of bytes] ("code size") [P 72]

Variables size

Variables size [number of bytes] ("variables size")

72

Stack size Stack size [number of bytes] ("stack size") [» 72]
Calls Number of calls ("calls") [» 72]

Tasks Called in tasks ("tasks") [» 72]

Globals Used different global variables ("Globals") [P 72]
I0s Number of direct address accesses ("I0s") [P 72]
Locals Number of local variables ("locals") [P 72]

Inputs Number input variables (inputs") [72]

Outputs Number output variables ("outputs") [P 72]
NOS Number of statements ("NOS") [F 72]
Comments Percentage of comments ("comments") [P 72]
McCabe Complexity (McCabe) ("McCabe") [» 73]

Prather Complexitiy of nesting (Prather) ("Prather") [P 73]
DIT Depth of inheritance tree ("DIT") [» 73]

NOC Number of children ("NOC") [» 73]

RFC Response for class ("RFC") [» 73]

CBO Coupling between objects ("CBO") [» 73]

Elshof Complexity of reference ("Elshof") [P 73]

LCOM

Lack of cohesion of methods ("LCOM") [P 73]

n1 (Halstead)

Halstead — number of different used operators (n1)

73]

N1 (Halstead)

Halstead — number of operators (N1) [» 73]

n2 (Halstead)

Halstead — number of different used operands (n2)

73]

N2 (Halstead)

Halstead — number of operands (N2) [» 73]

HL (Halstead)

Halstead — length (HL) [» 73]

HV (Halstead)

Halstead — volume (HV) [P 731

D (Halstead)

Halstead — difficulty (D) [P 73]

SFC branches

Number of SFC branches [P 74]

SFC steps

Number of SFC steps [74]

Detailed description

TC3 PLC Static Analysis

Version: 1.9

Configuration BEGKHOFF

Code size [number of bytes] ("code size")

Code size as number of bytes.

Variables size [number of bytes] ("variable size")

Variables size as number of bytes.

Stack size [number of bytes] ("stack size")

Stack size as number of bytes.

Number of calls ("calls™)

Number of function block calls within the application.

Called in tasks ("tasks")

Number of tasks calling the function block.

Used different global variables ("Globals")

Number of different global variables used in the function block.

Number of direct address accesses ("lOs")

Number of IO access operations in the function block = number of all read and write access operations to a
direct address.

Example:

The number of direct address access operations for the MAIN program is 2.

PROGRAM MAIN

VAR
OnOutput AT%QB1l : INT;
nVar . INT;
END_ VAR
OnOutput := 123;
nVar = OnOutput;

Number of local variables ("local™)

Number of local variables in the function block (VAR).

Number input variables ("inputs")

Number of input variables in the function block (VAR _INPUT).

Number output variables ("outputs™)

Number of output variables in the function block (VAR_OUTPUT).

Number of statements ("NOS")
NOS: Number Of executable Statements

NOS = number of executable statements in the function block

Percentage of comments ("comments™)
Comment proportion = number of comments / number of statements in a function block

For the purpose of this definition, statements also include declaration statements, for example.

72 Version: 1.9 TC3 PLC Static Analysis

BECKHUFF Configuration

Complexity (McCabe) ("McCabe")

Complexity = number of binary branches in the control flow graph for the function block (e.g. the number of
branches in IF and CASE statements and loops)

Complexity of nesting (Prather) ("Prather™)
Nesting weight = statements * nesting depth
Complexity of nesting = nesting weight / number statements

Nesting through IF/ELSEIF or CASE/ELSE statements, for example.

Depth of inheritance tree ("DIT")
DIT: Depth of Inheritance Tree

DIT = inheritance depth or maximum path length from the root to the class under consideration

Number of children ("NOC")
NOC: Number Of Children

NOC = number of child classes or number of direct class specializations

Response for class ("RFC")
RFC: Response For Class

RFC = number of methods that can potentially be executed, if an object of the class under consideration
responds to a received message

The value is used for measuring the complexity (in terms of testability and maintainability). All possible direct
and indirect method calls can be reached via associations are taken into account.

Coupling between objects ("CBO")
CBO: Coupling Between Objects
CBO = number of classes coupled with the class under consideration

The value is used to indicate the coupling between object classes. Coupling refers to a situation where a
class uses instance variables (variables of an instantiated class) and the methods of another class.

Complexity of reference (Elshof) ("Elshof")

Complexity of reference = referenced data (number of variables) / number of data references

Lack of cohesion of methods (LCOM) ("LCOM")

Cohesion = pairs of methods without common instance variables minus pairs of methods with common
instance variables

This cohesion value is a measure for the encapsulation of a class. The higher the value, the poorer the
encapsulation. Reciprocal method and property calls (without init or exit) are also taken into account.

Halstead ("n1","N1","n2","N2", "HL", "HV", "D")
The following metrics are part of the "Halstead" range:
- Number of different used operators - Halstead (n1)

- Number of operators - Halstead (N1)

- Number of different used operands - Halstead (n2)

- Number of operands - Halstead (N2)

TC3 PLC Static Analysis Version: 1.9 73

Configuration BEGKHOFF

- Length - Halstead (HL)

- Volume - Halstead (HV)
- Difficulty - Halstead (D)

Background information:

» Relationship between operators and operands (number, complexity, test effort)
+ Based on the assumption that executable programs consist of operators and operands.
» Operands in TwWinCAT: Variables, constants, components, literals and IEC addresses.

» Operators in TwinCAT: keywords, logical and comparison operators, assignments, IF, FOR, BY, #,
ELSE, CASE, case label, BREAK, RETURN, SIN, +, labels, calls, pragmas, conversions, SUPER,
THIS, index access, component access etc.

For each program the following basic parameters are formed:

* Number of different used operators - Halstead (n1),
Number of different used operands - Halstead (n2):

o Number of different used operators (h,) and operands (h,); together they form the vocabulary size h.

* Number of operators - Halstead (N1),
Number of operands - Halstead (N2):

o Number of total used operators (N,) and operands (N,); together they form the implementation class
N.

« (Language complexity = operators/operator occurrences * operands/operand occurrences)

These parameters are used to calculate the Halstead length (HL) and Halstead volume (HV):

* Length - Halstead (HL),
Volume - Halstead (HV):

o HL = h;* log,h, + h,* log,h,
o HV = N* log,h

Various indicators are calculated from the basic parameters:
« Difficulty - Halstead (D):
o Describes the difficulty to write or understand a program (during a code review, for example)
o D =h,/2*N2/h,
+ Effort:
o E=D*V

The indicators usually match the actual measured values very well. The disadvantage is that the method
only applies to individual functions and only measures lexical/textual complexity.

Number of SFC branches

If the function block is implemented in the Sequential Function Chart language (SFC), this code metric
indicates the number of branches in the function block.

Number of SFC steps

If the function block is implemented in the Sequential Function Chart language (SFC), this code metric
indicates the number of steps in the function block.

74 Version: 1.9 TC3 PLC Static Analysis

BECKHOFF Configuration

4.6 Forbidden symbols

In the Forbidden Symbols tab you can configure the symbols that are taken into account when the static
analysis is performed [»_76]. Examples of forbidden symbols are keywords or identifiers that must not be
used in the code.

PlcsarmpleProject B X

Cornrmon

M2, M8

Compile
Licenses Solution options
Statistic 59‘“"93' Rules I" ing C i I" tri | Forbidden symbol
SFC

XOR
Wisualization SHL
“isualization Profile SHR

ROL
ROR

Deployrment

Compiler¥¥arnings
LkAL

Advanced

Configuration of forbidden symbols:

You can enter these symbols directly in the row or select them via the input assistant. During the static
analysis the code is checked for the presence of these terms. Any hits result in an error being issued in the
message window.

Syntax of symbol violations in the message window:

If a symbol is used in the code that is configured as a forbidden symbol, an error is issued in the message
window after the static analysis has been performed.

Syntax: "Forbidden symbol '<symbol>"

Example for the symbol XOR: "Forbidden symbol 'XOR™

TC3 PLC Static Analysis Version: 1.9 75

Execution BEGKHOFF

5 Execution

5.1 Run Static Analysis

During execution of the static analysis, compliance with the coding rules, naming conventions and forbidden
symbols is checked. The static analysis can be triggered manually (explicit) or performed automatically
during the code generation (implicit).

TwinCAT issues the result of the static analysis, i.e. messages relating to rule violations, in the message
window. The rules [P 11], naming conventions [» 57] and forbidden symbols [»_75] to be taken into account in

the static analysis can be configured [»_10] in the PLC project properties. You can also define whether the
violation of a coding rule should appear as an error or a warning in the message window (see: Rules [P 11]).

Scope:

On execution of the static analysis using the Run static analysis command, the objects that are used in the
application are checked. The scope of this command thus corresponds to the build commands Build
Project/Solution or Build new Project/Solution respectively.

If you also wish to have the unused objects checked by the static analysis, which is useful, for example,
when processing library projects, you can use the command Run static analysis [check all objects] [» 77].

Syntax of rule violations in the message window:

Each rule has a unique number (shown in parentheses after the rule in the rule configuration view). If a rule
violation is detected during the static analysis, the number together with an error or warning description is
issued in the message window, based on the following syntax. The abbreviation "SA" stands for "Static
Analysis".

Syntax: "SA<rule number>: <rule description>"
Example for rule number 33 (unused variables): "SA0033: Not used: variable 'bSample™
Syntax of convention violations in the message window:

Each naming convention has a unique number (shown in parentheses after the convention in the naming
convention configuration view). If a violation of a convention or a preset is detected during the static analysis,
the number is output in the error list together with an error description based on the following syntax. The
abbreviation "NC" stands for "Naming Convention".

Syntax: "NC<prefix convention number>: <convention description>"

Example for convention number 151 (DUTs of type Structure): "NC0151: Invalid type name 'STR_Sample'.
Expected prefix 'ST_"

Syntax of symbol violations in the message window:

If a symbol is used in the code that is configured as a forbidden symbol, an error is issued in the message
window after the static analysis has been performed.

13

Syntax: "Forbidden symbol '<symbol>

Example for the symbol XOR: "Forbidden symbol 'XOR"™

@ Please note that the code generation takes place before the static analysis. The static analysis only
1 starts if the code generation was successful, i.e. if the compiler has not detected any compilation er-
rors.

76 Version: 1.9 TC3 PLC Static Analysis

BECKHUFF Execution

Implicit execution:

Implicit execution of the static analysis during each code generation can be enabled or disabled in the PLC
project properties (Settings [»_10] tab). If you have activated the option Perform static analysis
automatically, TwinCAT runs the static analysis directly after the successful code generation (as in the case
of the command Build Project, for example).

Explicit execution:

Explicit execution of the static analysis can be initiated via the command Run Static Analysis, which can be
found in the context menu of the PLC project or in the Build menu. You can also use this command for the
explicit execution if you have activated implicit execution (option Perform static analysis automatically,
see "Implicit execution" above).

The command first starts the code generation for the selected PLC project and then, if this is successful, the
static analysis.

5.2 Run static analysis [check all objects]

Virtually the same information found on the documentation page for Run Static Analysis [P 76] also applies to
the command Run static analysis [check all objects]. The two commands differ only in two points:

« firstly in the scope (see below)
« and secondly the "check all objects" variant cannot be executed implicitly, but only explicitly.

Scope:

On execution of the static analysis using the command Run static analysis [check all objects], all objects
located in the project tree of the PLC project are checked. This is primarily useful when creating libraries or
when processing library projects. The area of application of this command thus corresponds to the build
command Check all objects.

5.3 View Standard Metrics

The metrics can be displayed in a dedicated view by issuing the command View Standard Metrics, which
can be found in the context menu of the PLC project or in the Build menu.

TC3 PLC Static Analysis Version: 1.9 77

Execution BEGKHOFF

Solution Explorer = 1 %
& o-al &
Search Solution Explorer (Ctrl+;) P~

] Solution TuinCAT Projekt2' (1 project)
P Ha TC3 SampleProject
b SYSTEM
MOTION
4 PLC
4 PlcsarmpleProject
4 % PlzSampleProject Projec

[
[

b [External Types Login
[<3l References I:;I Build
DU ERRRE
1 &L
3 S |:||:||_|SS Check all ohjects
3 WIss Clean

E._'g PlcSampleProjectitmy § Run static analysis

b3 PleTask (PlcTask) B iew standard metrics
@ PlcSampleProject Instanc

4
53 SAFETY fdd
E C++ Export to P
Fi UO Irnport from ZIP
T2 Devices B Export PLCopen¥ML..
ﬁj Mappings —
g8 Irnport PLCapenXhiL...
2L Rernowe Diel

Sawve as library ..

Sawve as library and install ...

Open Folder in File Explorer

*

Properties Alt+Enter

For the selected PLC project the command first starts the code generation (as with the command Build
project, for example). For each programming function block TwinCAT then shows the metrics (indicators),
which are enabled in the project properties, in a tabular Standard Metrics view (see Configuration of the
metrics [P_69]). This configuration can also be accessed directly from Standard Metrics output window (see
below: Configure as command in the context menu).

If a value is outside the range defined by a lower and/or upper limit in the configuration, the table cell is
shown in red.

The table can be sorted by columns by clicking on the respective column header.

Commands in the context menu

Right-click in the Standard Metrics view to open a context menu that offers several commands.

78 Version: 1.9 TC3 PLC Static Analysis

BECKHUFF Execution

B Caculate

Copy Table
&5 Print Table...
Export Table...

Configure. .

Open POL

The context menu offers options for updating, printing or exporting the metrics table, or to copy to the
clipboard. Via the context menu you can also navigate to a view for configuring the metrics — just like in the
PLC project properties. In addition, you can generate a Kiviat diagram for the selected function blocks or
open the block in the corresponding editor. A prerequisite for generating a Kiviat diagram is that at least
three metrics are configured with a defined value range (lower and upper limit).

The following commands are available:

» Calculate: The values are updated.
Print table: The standard dialog for setting up the print job appears.

Copy table: The data are copied to the clipboard, separated by tabs. From there you can paste the
table directly in a spreadsheet or a word processor.

Export table: The data are exported into a text file (*.csv), separated by semicolons.

Kiviat diagram: A spider chart is created for the selected function block. This is a graphical
representation of the function blocks, for which the metrics define a lower and upper limit. It is used to
visualize how well the code for the programming unit matches a particular standard.

Each metric is shown as an axis in a circle, which starts in the center (value 0) and runs through three
ring zones. The inner ring zone represents the range below the lower limit defined for the metric, the
outer ring zone represents the range above the upper limit. The axes for the respective metrics are
distributed evenly around the circle.

The current values for the individual metrics on their axes are linked with lines. Ideally, the whole line
should be within the central ring zone.

@® Prerequisite for using a Kiviat diagram
1 At least three metrics with a define value range must be configured.

The following diagram shows an example for 3 metrics with defined ranges (the name of the metric is shown
at the end of each axis, the name of the function block at the top right):

TC3 PLC Static Analysis Version: 1.9 79

Execution BEGKHOFF

Kiviat Diagram @
Code size
&

mmm SampleProgran (PRG)

Locals o Inputs

» Configure: A table opens in which the metrics can be configured. The view, functionality and settings
correspond to the metric configuration [»_69] in the PLC project properties. If you make a change in
this table, it is automatically applied to the PLC project properties.

* Open POU: The programming function block opens in the corresponding editor.

80 Version: 1.9 TC3 PLC Static Analysis

BECKHUFF Pragmas and attributes

6 Pragmas and attributes

A pragma and various attributes are available to temporarily disable individual rules or naming conventions
for the static analysis, i.e. to exclude certain code lines or program units from the evaluation.

Requirement: The rules or conventions are enabled or defined in the PLC-project properties. See also:

e Rules [» 11]
* Naming conventions [» 57]

@® Rules that are disabled in the project properties cannot be activated by a pragma or attribute.

@® Rule SA0004 cannot be disabled by a pragma.

1

The following section provides an overview and a detailed description of the available pragmas and
attributes.

Overview
« Pragma {analysis ...} [> 81]
o for disabling coding rules in the implementation part
o can be used for individual code lines
« Attribute {attribute 'no-analysis'} [» 82]

o for excluding programming objects (e.g. POU, GVL, DUT) from the static analysis (coding rules,
naming conventions, forbidden symbols)

o can only be used for whole programming objects
 Attribute {attribute 'analysis' := "..."} [P 82]

o for disabling coding rules in the declaration part

o can be used for individual declarations or for whole programming objects
 Attribute {attribute 'naming' :=".."} [» _83]

o for disabling naming conventions in the declaration part

o can be used for individual declarations or for whole programming objects
* Attribute {attribute 'nameprefix' := '..."} [» 83]

o for defining prefixes for instances of a structured data type

o can be used in the declaration part of a structured data type

 Attribute {attribute 'analysis:report-multiple-instance-calls'} [» 84

o for specifying that a function block instance should only be called once
o can be used in the declaration part of a function block

Detailed description

Pragma {analysis ...}

The pragma {analysis} can be used in the implementation part of a programming block in order to disable
individual coding rules for the subsequent lines of code. It has to be entered twice: in the line above the
respective code (rule is disabled) and in the line below (rule is enabled again). You have to specify the

numbers of the respective rules: use a prefixed minus sign ("-") to disable, use a plus sign ("+") to enable
again.

TC3 PLC Static Analysis Version: 1.9 81

Pragmas and attributes BEGKHGFF

Syntax:
{analysis <sign><rule number>|,<further sign/rule number combinations, comma-separated>}
Examples:

Rule 24 (only typed literals permitted) is to be disabled for one line (i.e. in these lines it is not necessary to
write "nTest := DINT#99") and then enabled again:

{analysis -24}

nTest := 99;
{analysis +24}
nvar := INT#2;

Specification of several rules:
{analysis -10, -24, -18}

Attribute {attribute 'no-analysis'}

The attribute {attributes 'no-analysis'} can be used above the declaration of a programming object, in order to
exclude the whole programming object from the verification through the static analysis. For this programming
object no checks are carried out for the coding rules, naming conventions and invalid symbols.

Syntax:
{attribute 'no-analysis'}

Examples:

{attribute 'qualified only'}
{attribute 'no-analysis'}
VAR GLOBAL

END_ VAR

{attribute 'no-analysis'}
PROGRAM MAIN
VAR

END VAR

Attribute {attribute 'analysis’ :="..."}

The attribute {attribute 'analysis' := '<><rule number>'} can be added in the declaration part of a
programming function block, in order to disable certain rules for individual declarations or for a whole
programming object.

Syntax:
{attribute 'analysis' := '-<rule number>|,<further rule numbers, comma-separated>'}
Examples:

You want to disable rule 31 (unused signatures) for the structure.

{attribute 'analysis' := '-31"}
TYPE ST Sample :
STRUCT
bMember : BOOL;
nMember : INT;
END STRUCT
END TYPE

Rule 33 (unused variables) is to be disabled for all variables of the structure.

{attribute 'analysis' := '-33'}
TYPE ST Sample :
STRUCT
bMember : BOOL;
nMember : INT;
END STRUCT
END_TYPE

82 Version: 1.9 TC3 PLC Static Analysis

BEGKHOFF Pragmas and attributes

You want to disable rule 100 (variable greater than <n> bytes) for the array "aNotReported":
{attribute 'analysis' := '-100"'}

aNotReported : ARRAY[1..10000] OF DWORD;
aReported : ARRAY[1..10000] OF DWORD;

Attribute {attribute 'naming’ :="..."}

The attribute {attribute 'naming' :="..."} can be used in the declaration part of POUs and DUTs, in order to
exclude individual declaration lines from the check for compliance with the current naming conventions:

Syntax:

{attribute 'naming' := '<off|on|omit>"}
« off, on: the check is disabled for all rows between the "off" and "on" statements
« omit: only the next row is excluded from the check

Example:

It is assumed that the following naming conventions are defined:
» The identifiers of INT variables must have a prefix "n" (naming convention NC0014), e.g. "nVar1".
* Function block names must start with "FB_" (naming convention NC0103), e.g. "FB_Sample".

For the code shown below, the static analysis then only issues messages for the following variables: cVar,
aVariable, bVariable.

PROGRAM MAIN
VAR
{attribute 'naming' := 'off'}
aVar : INT;
bvar : INT;
{attribute 'naming' :

lonl}
cVar : INT;

{attribute 'naming' := 'omit'}
dvar : INT;

fbl : SampleFB;
fb2 : FB;
END VAR

{attribute 'naming' := 'omit'}
FUNCTION BLOCK SampleFB

{attribute 'naming' := 'off'}
FUNCTION BLOCK FB
VAR
{attribute 'naming' := 'on'}
aVariable : INT;
bvVariable : INT;

Attribute {attribute 'nameprefix’' :="..."}

The attribute {attribute 'nameprefix' :='..."} can be added in the line before the declaration of a structured data
type for defining a prefix. A naming convention then applies to the effect that identifiers for instances of this
type must have this prefix.

Syntax:
{attribute ‘nameprefix’ := '<prefix>'}
Sample:

The prefix "ST_" is generally defined for structures in the naming conventions of the PLC project properties
(NCO0151). Instances of type "ST_Point" should start with the prefix "pt".

TC3 PLC Static Analysis Version: 1.9 83

Pragmas and attributes BEGKHGFF

In the following static analysis sample a message is issued for "a" and "b", because the variable names do
not start with "pt".
{attribute 'nameprefix' := 'pt'}
TYPE STiPoint
STRUCT
X : INT;
y : INT;
END STRUCT
END TYPE

PROGRAM MAIN

VAR
a : ST Point; // => Invalid variable name 'a'. Expect prefix 'pt'
b : ST _Point; // => Invalid variable name 'a'. Expect prefix 'pt'
ptl : ST Point;

END VAR

Attribute {attribute 'analysis:report-multiple-instance-calls"}

The attribute {attribute 'analysis:report-multiple-instance-call’} can be added in the declaration part of a
function block whose instance should only be called once. In case that the global instance is called multiple
times, the static analysis will generate a message.

Requirement: Rule SA0105 ("Multiple instance calls") is enabled in the Rules [P 11] category of the PLC
project properties, i.e. the rule is configured as warning or error.

Syntax:
{attribute 'analysis:report-multiple-instance-calls'}
Example:

In the following example the static analysis will issue an error for fb2, since the instance is called more than
once.

Function block FB_Test1 without attribute:

FUNCTION BLOCK FB Testl

Function block FB_Test2 with attribute:

{attribute 'analysis:report-multiple-instance-calls'}
FUNCTION_ BLOCK FB_TestZ

Program MAIN:

PROGRAM MAIN

VAR
fbl : FB Testl;
fb2 : FB Test2;
END VAR
fbl () ;
fbl (),
fb2 () ; // => SA0105: Instance 'fb2' called more than once
fb2 () ; // => SA0105: Instance 'fb2' called more than once

84 Version: 1.9 TC3 PLC Static Analysis

BEGKHOFF Examples

7 Examples

71 Static analysis

During execution of the static analysis [»_76], compliance with the coding rules [P 11], naming conventions

[»_57] and forbidden symbols [P 75] is checked. The following section provides an example for each of these
aspects.

1) Coding rules

In this example some coding rules are configured as error. The violations of this coding rules are therefore
reported as an error after the static analysis has been performed. Further information is shown in the
following diagram.

r - I x| MAIN & X
@ e-a & 1 PROGRAM MAIN [z
= z VAR
Search Solution Explorer (Ctrl ;) P - 3 nvarl mr i- 123, 0
1 Solution TwinCAT Projects’ (1 project) N nVard : INT = INT#123 I
4 gl TE3 SampleProject 5 fhiauple FB_$aumple
b @ srstem 5 bResult BoOL
MOTION 7 mboiR & -
— 2 3
4 @ec =
1 bResult := fbSauple.DoSomething(nArg := nvarl):
PlcSampleProject B
4] FleSampleProject Project N [—
b [Extenal Types d =
b [l References 5 fhSawple.DoSomething(nhry := nVar?):
[DUTs e
[GVLs
4 [POUs T
4 (5] FB_Sample (F8) 1 METHOD DoSomething : BOOL -[E]
[54 DoSomething =z vie_mmur HD
] MAIN (PRG) 3 nirg . s 3
[MISUs < ED VAR
23 PlcSampleProject.tme o _— i @&
b [PlcTask (PIcTask) 1
[T] PlcsamplePraject Instance i &R
| SAFETY < i D
[c++
Error List v I x
» Ervo .
T | @ 9kmors | ¢ 0wamings | @ 15 Messsges | Clear Search Enor List pP-
Description File Line Calumn Project
()13 s Intyped literal found MATN.TePOL 3 1 PlcSampleProject
€3 14 S80012: Variable 'nVarl' could be declared a5 constant MATN.TePOU 3 1 PlcSampleProject
€3 15 SAD012: Variable 'nVar?' could be declared 25 constant MAIN.TePOL 4 1 PlcSamplePraject
€3 16 S8000%: Ignoring retum value of 'DoSomething' MATN.TePOL 5 1 PlcSampleProject
€) 17 SA0090: Return statement befare end of function MAIN.TePOL 3 1 PleSamplePraject
€3 18 S8000L: Unreachable code detected in MAIN' MATN.TePOL 5 1 PlcSampleProject
) 19 SA0002: Empty FunctionBlock 'FB_Sample’ FB_Sample. TePOL 0] PleSamplePraject
€3 20 SA0002: Empty Method 'FB_Sample.DoSomething' FB_Sample.DiaSomething 0 0 PlcSampleProject
€ 21 580022 Return value (possibly) urassigned FB_Sample. DaSamething 0] PleSamplePraject

Erorlist

2) Naming conventions

The following naming conventions are configured:
» Prefix "b" for variables of type BOOL (NC0003)
 Prefix "fb" for function block instances (NC0031)
» Prefix "FB_" for function blocks (NC0103)
» Prefix "I_" for interfaces (NC0108)
This naming conventions are not adhered to in the declaration of Boolean variables ("x"), the instantiation of

function block ("f") and the declaration of the interface type ("ITF_"). These code positions are reported as an
error after the static analysis has been performed.

TC3 PLC Static Analysis Version: 1.9 85

Examples BEGKHOFF

- x| Man s X

pa 1
@ - & I e
Search Solution Explarer (Ctrl+) o~ 3 %Flag : BOOL: =i
2] Salution "TC3_SampleProject’ (1 project) 4 Liauple : FB_Sample;
4 ol TC3 SamplePraject B iSample : ITF_Sample;
bl SYSTEM j EHD_VAR
MOTION
4 @ ruc &N
- —
“ @f_'fsamp'eP’D”“ 1| xFlag :- HOT xFlag;
4 =] PleSarnpleProject Project 2 iSample == ESample;
b [External Types
b [l References
[3 DUTs
[GVLs
4 [POUs iR
17 FB_Sarnple (FB) Errar List > 1 x
g ITF_Sample
LR Y- 3 Errors 0 Warnings 16 Messages | Clear Search Error List P~
&) MAIN (PRG) i< | |0 2
[WIsUs Description File Line Column Project
23 PleSamplePrajecttme 3 NCO003: Imvalid variable name 'sFlag’, Expect prefix 'b' BTN, TePOU 3
b gh PlcTask (PleTask) €3 14 NCO03L: Invwalid variable name ‘fSample’, Expect prefiz ‘fo’ MAIN.TePOU 4 1 PlcSamplePraject
I PleSsmpleProject Instance €3 15 NC0108: Invalid name 'TTF_Sample’, Expect prefic T ITF_Sample.TclO D i PlcSampleProject
[SAFETY
[id Co+
b Ero
Error List JOE g

3) Forbidden symbols

The bit string operator XOR and the bit shift-operators SHL, SHR, ROL and ROR are configured as
forbidden symbols. These operators should not be used in the code.
Accordingly, any use of these operators is reported as an error after the static analysis has been performed.

Solution Explorer = @ X | MAIN & X
g 1 PROGRAM MAIN -
® o-a & I e “EN conmon o
Search Solution Explorer (Ctrl+;) P~ 3 nln : BYTE := 16445, 8 Compile
] Solution 'TC3 SsmpleProject’ (1 project) 4 nResult : BYTE; = Licenses HAA
4] TC3 SampleProject N unber : BYTE := 2
b m SYSTEM £ bTest : BOOL; Statistic Solulion options
7 END VAR L i 1
=] MOTION - - SFC Settings | Rules | Naming Conventions | Metrics| Forbidden Symbols
4 ¢ _— m &~ N slizstion
SampleProject 1| nResult := SHLinIn, nihmber); Visualization Profi XOR B
PlcSampleProject Project z mResult := , number) ; 1uslization Frofle SHL
b [External Types 3 nResult := ROLinIn, niuber); Static Analysis SHR L
b [References 4 nResult := ROR{nTn, nifumber]: Deployment ROL
3 DUTs 5 bTest := hTest ﬂ bTest; ROR
[GWLs — s =
4 [pOUs L
] MAIN (PRG) Error List T A x
= WIS Y - @seren | ¢ 0wamings | @ 15 Messages | Clear Search Error List P~
B PleSampleProject tme
b @ PIcTask (PlcTask) Description File Line Column Project
o1 PlesampleProject Instance ()13 Forbidden s SHL, MAIN, TcPOU 1 PlcSamplePraject
(L] SaFETY €3 14 Forbidden symbol 'SHR' MAIN.TcPOU 2 1 PlcSampleProject:
[cee 3 15 Forbidden symbol ROL' MAIN TcPOU 3 1 PlcSamplePraject
b =0 3 16 Forbidden symbol 'ROR'. MAIN TcPOU 4 1 FlcSamplePraject
17 Forbidden symbol 'XOR', MAIN TcPOU 5 1 PlcSamplePraject
" pleProj
Error List [T

7.2 Standard metrics

An example for dealing with the standard metrics is provided below.

In this example "650" (= 650 bytes) is defined as upper limit for the metric "code size" and "5" as upper limit
for the metric "number of input variables" (see: Configuration of the metrics [»_69]). In addition, rule 150
(SA0150: Violation of lower or upper metrics limits) is enabled and configured as warning.

When the command View Standard Metrics [P 77] is issued, the metric view opens and the indicators that
were determined are displayed in tabular form. Since the size of the MAIN program is 688 bytes and the
program SampleProgram has 7 input variables, these indicators exceed the defined upper limit in each case,
so that the corresponding table cells are shown in red.

sandard reetics < [

4 Prograrm unit Codesize Variables size Stack size Calls Tasks Glaobals 105 Locals Ihputs Outputs MNOS Co..

MAIN (FRG) | ems | 10 0 1 1 0 0 7 3 0 & 0
SampleProgram (PRG) 352 1z i 1 1 i i 5 _ 0 33 0

In this example, the fact that the defined upper limits are exceeded is not only apparent in the metric view.
Since rule 150 is configured as warning, the static analysis checks for violations of lower and upper metric
limits. After the static analysis [P_76] has been performed, the violation of the two upper limits is therefore
reported as a warning in the message window.

86 Version: 1.9 TC3 PLC Static Analysis

BEGKHOFF Examples

Error List

T - 0 Errars ! 2'Warhings | © 16 Messages Clear

Description File

113 540150 Metric wialation for 'RAIN', Result for metric 'Code size' (688) = 650 rAAIM. TP OLU
1 14 SA0150: Metric wiolation for "SampleProgram’, Result for metric Tnputs' (73 =5 SampleProgram. TePOU

TC3 PLC Static Analysis Version: 1.9 87

	 Table of contents
	1 Foreword
	1.1 Notes on the documentation
	1.2 Safety instructions

	2 Overview
	3 Installation
	4 Configuration
	4.1 Settings
	4.2 Rules
	4.2.1 Rules - overview and description

	4.3 Naming conventions
	4.3.1 Naming conventions – overview and description
	4.3.2 Placeholder {datatype}

	4.4 Naming conventions (2)
	4.5 Metrics
	4.5.1 Metrics - overview and description

	4.6 Forbidden symbols

	5 Execution
	5.1 Run Static Analysis
	5.2 Run static analysis [check all objects]
	5.3 View Standard Metrics

	6 Pragmas and attributes
	7 Examples
	7.1 Static analysis
	7.2 Standard metrics

