
Manual

TC3 Condition Monitoring

TwinCAT 3

1.4
2018-10-17
TF3600

Version:
Date:
Order No.:





Table of contents

TC3 Condition Monitoring 3Version: 1.4

Table of contents
1 Foreword .................................................................................................................................................... 7

1.1 Notes on the documentation.............................................................................................................. 7
1.2 Safety instructions ............................................................................................................................. 8

2 Overview..................................................................................................................................................... 9
2.1 Introduction...................................................................................................................................... 10

2.1.1 Fourier analysis ...............................................................................................................  11
2.1.2 Analysis of data streams..................................................................................................  16
2.1.3 Triggered analysis of a time period..................................................................................  21
2.1.4 Scaling of spectra ............................................................................................................  22
2.1.5 Statistical analysis ...........................................................................................................  25

2.2 Application concepts........................................................................................................................ 30
2.2.1 Vibration assessment ......................................................................................................  31
2.2.2 Frequency analysis..........................................................................................................  35
2.2.3 Bearing monitoring...........................................................................................................  39
2.2.4 Gearbox monitoring .........................................................................................................  47

2.3 Literature notes................................................................................................................................ 51

3 Installation................................................................................................................................................ 53
3.1 System requirements....................................................................................................................... 53
3.2 Installation ....................................................................................................................................... 53
3.3 Licensing ......................................................................................................................................... 56

4 Technical introduction ............................................................................................................................ 62
4.1 Memory Management...................................................................................................................... 62
4.2 Task Setting..................................................................................................................................... 63
4.3 NaN values ...................................................................................................................................... 65
4.4 Parallel processing with Transfer Tray ............................................................................................ 66
4.5 MultiArray Handling ......................................................................................................................... 68

5 PLC API..................................................................................................................................................... 73
5.1 Function blocks................................................................................................................................ 74

5.1.1 FB_CMA_AnalyticSignal..................................................................................................  76
5.1.2 FB_CMA_ArgSort ............................................................................................................  78
5.1.3 FB_CMA_BufferConverting .............................................................................................  81
5.1.4 FB_CMA_CrestFactor .....................................................................................................  83
5.1.5 FB_CMA_ComplexFFT ...................................................................................................  86
5.1.6 FB_CMA_DiscreteClassification......................................................................................  89
5.1.7 FB_CMA_Downsampling.................................................................................................  92
5.1.8 FB_CMA_EmpiricalExcess..............................................................................................  93
5.1.9 FB_CMA_EmpiricalMean ................................................................................................  97
5.1.10 FB_CMA_EmpiricalSkew...............................................................................................  101
5.1.11 FB_CMA_EmpiricalStandardDeviation..........................................................................  105
5.1.12 FB_CMA_Envelope .......................................................................................................  109
5.1.13 FB_CMA_EnvelopeSpectrum........................................................................................  112
5.1.14 FB_CMA_HistArray .......................................................................................................  115
5.1.15 FB_CMA_InstantaneousFrequency...............................................................................  119



Table of contents

TC3 Condition Monitoring4 Version: 1.4

5.1.16 FB_CMA_InstantaneousPhase .....................................................................................  121
5.1.17 FB_CMA_IntegratedRMS ..............................................................................................  124
5.1.18 FB_CMA_MagnitudeSpectrum ......................................................................................  127
5.1.19 FB_CMA_MomentCoefficients ......................................................................................  130
5.1.20 FB_CMA_MultiBandRMS ..............................................................................................  135
5.1.21 FB_CMA_PowerCepstrum ............................................................................................  138
5.1.22 FB_CMA_PowerSpectrum.............................................................................................  142
5.1.23 FB_CMA_RealFFT ........................................................................................................  145
5.1.24 FB_CMA_Quantiles .......................................................................................................  148
5.1.25 FB_CMA_RMS ..............................................................................................................  152
5.1.26 FB_CMA_Sink ...............................................................................................................  155
5.1.27 FB_CMA_Source...........................................................................................................  158
5.1.28 FB_CMA_WatchUpperThresholds ................................................................................  162

5.2 Functions ....................................................................................................................................... 165
5.2.1 F_MA_IsNAN.................................................................................................................  165

5.3 Data types ..................................................................................................................................... 165
5.3.1 E_CM_MCoefOrder .......................................................................................................  165
5.3.2 E_CM_ScalingType .......................................................................................................  165
5.3.3 E_CM_WindowType ......................................................................................................  166
5.3.4 E_MA_ElementTypeCode .............................................................................................  166
5.3.5 Error codes ....................................................................................................................  167
5.3.6 InitPars structures..........................................................................................................  172

5.4 Global constants ............................................................................................................................ 185
5.4.1 GVL_CM ........................................................................................................................  185
5.4.2 GVL_CM_Base..............................................................................................................  186
5.4.3 Global_Version ..............................................................................................................  186

6 Samples.................................................................................................................................................. 188
6.1 FFT with real-value input signal..................................................................................................... 188
6.2 FFT with complex-value input signal ............................................................................................. 190
6.3 Magnitude spectrum: ..................................................................................................................... 192
6.4 Multi-channel magnitude spectrum................................................................................................ 195
6.5 Window functions .......................................................................................................................... 198
6.6 Scaling of spectra .......................................................................................................................... 199
6.7 Time-based RMS........................................................................................................................... 200
6.8 Multi-band RMS............................................................................................................................. 202
6.9 Histogram ...................................................................................................................................... 204
6.10 Statistical methods ........................................................................................................................ 206
6.11 Vibration assessment according to ISO 10816-3 .......................................................................... 207
6.12 Condition Monitoring with frequency analysis ............................................................................... 209
6.13 Threshold value consideration for averaged magnitude spectra................................................... 214
6.14 Crest factor .................................................................................................................................... 215
6.15 Envelope spectrum........................................................................................................................ 218
6.16 Power cepstrum............................................................................................................................. 220
6.17 Event-based frequency analysis.................................................................................................... 221

7 Appendix ................................................................................................................................................ 224



Table of contents

TC3 Condition Monitoring 5Version: 1.4

7.1 Error Codes Overview ................................................................................................................... 224
7.2 ADS Return Codes ........................................................................................................................ 225
7.3 Spectrum Scaling Options ............................................................................................................. 227

Glossary ................................................................................................................................................. 230



Table of contents

TC3 Condition Monitoring6 Version: 1.4



Foreword

TC3 Condition Monitoring 7Version: 1.4

1 Foreword

1.1 Notes on the documentation
This description is only intended for the use of trained specialists in control and automation engineering who
are familiar with the applicable national standards.
It is essential that the documentation and the following notes and explanations are followed when installing
and commissioning the components. 
It is the duty of the technical personnel to use the documentation published at the respective time of each
installation and commissioning.

The responsible staff must ensure that the application or use of the products described satisfy all the
requirements for safety, including all the relevant laws, regulations, guidelines and standards.

Disclaimer

The documentation has been prepared with care. The products described are, however, constantly under
development.
We reserve the right to revise and change the documentation at any time and without prior announcement.
No claims for the modification of products that have already been supplied may be made on the basis of the
data, diagrams and descriptions in this documentation.

Trademarks

Beckhoff®, TwinCAT®, EtherCAT®, Safety over EtherCAT®, TwinSAFE®, XFC® and XTS® are registered
trademarks of and licensed by Beckhoff Automation GmbH.
Other designations used in this publication may be trademarks whose use by third parties for their own
purposes could violate the rights of the owners.

Patent Pending

The EtherCAT Technology is covered, including but not limited to the following patent applications and
patents:
EP1590927, EP1789857, DE102004044764, DE102007017835
with corresponding applications or registrations in various other countries.

The TwinCAT Technology is covered, including but not limited to the following patent applications and
patents:
EP0851348, US6167425 with corresponding applications or registrations in various other countries.

EtherCAT® is registered trademark and patented technology, licensed by Beckhoff Automation GmbH,
Germany

Copyright

© Beckhoff Automation GmbH & Co. KG, Germany.
The reproduction, distribution and utilization of this document as well as the communication of its contents to
others without express authorization are prohibited.
Offenders will be held liable for the payment of damages. All rights reserved in the event of the grant of a
patent, utility model or design.



Foreword

TC3 Condition Monitoring8 Version: 1.4

1.2 Safety instructions

Safety regulations

Please note the following safety instructions and explanations!
Product-specific safety instructions can be found on following pages or in the areas mounting, wiring,
commissioning etc.

Exclusion of liability

All the components are supplied in particular hardware and software configurations appropriate for the
application. Modifications to hardware or software configurations other than those described in the
documentation are not permitted, and nullify the liability of Beckhoff Automation GmbH & Co. KG.

Personnel qualification

This description is only intended for trained specialists in control, automation and drive engineering who are
familiar with the applicable national standards.

Description of symbols

In this documentation the following symbols are used with an accompanying safety instruction or note. The
safety instructions must be read carefully and followed without fail!

 DANGER
Serious risk of injury!
Failure to follow the safety instructions associated with this symbol directly endangers the life and health of
persons.

 WARNING
Risk of injury!
Failure to follow the safety instructions associated with this symbol endangers the life and health of per-
sons.

 CAUTION
Personal injuries!
Failure to follow the safety instructions associated with this symbol can lead to injuries to persons.

NOTE
Damage to the environment or devices
Failure to follow the instructions associated with this symbol can lead to damage to the environment or
equipment.

Tip or pointer
This symbol indicates information that contributes to better understanding.



Overview

TC3 Condition Monitoring 9Version: 1.4

2 Overview
Beckhoff offers a toolbox consisting of hardware and software components for implementing a Condition
Monitoring system that is integrated in the control system. The benefit of the Beckhoff solution is integration
into the standard machine control system, thereby avoiding additional subsystems with complex cross
communication. Machine control and Condition Monitoring run on the same platform and can be
programmed with the same engineering tools, and they both use EtherCAT as common fieldbus system.

The TwinCAT Condition Monitoring Library forms a significant part of the software toolbox. Various
mathematical algorithms are available as PLC function blocks.

Product information

The current version of the TwinCAT 3 Condition Monitoring library is available as  download. The PLC library
provides different algorithms for data analysis.
Multi task applications are recommended. The data communication between different tasks and CPU cores
are done by the mechanism of the library.

Product components

The TF360x Condition Monitoring product consists of the following components:

• PLC libraries:  Tc3_CM.compiled-library, Tc3_CM_Base.compiled-library and
Tc3_MultiArray.compiled-library

• Drivers: TcCM.sys and TcMultiArray.sys

Product features

The table shows the functionalities of the Condition Monitoring Library for the corresponding product level.

http://www.beckhoff.de/forms/twincat3/warenkorb2.aspx?id=1890111418901120160&lg=de&Title=TF36xx%2520%7C%2520TC3%2520Condition%2520Monitoring


Overview

TC3 Condition Monitoring10 Version: 1.4

Algorithms/Features: TF3600 Condition Monitoring Level 1 
Signal-frame processing and inter-task
communication
Power Spectrum

Magnitude Spectrum

Signal envelope

Envelope Spectrum

Power Cepstrum

Fast-Fourier-Transform of real signal

Fast-Fourier-Transform of complex signal

Instantaneous Frequency

Instantaneous Phase

Analytic Signal

Crest Factor

Moment Coefficients (mean, standard deviation,
skewness, excess kurtosis)
Histogram

Time based RMS

(Time-)Integrated RMS

Multiband RMS

Quantiles

Discrete Classification

Watch Upper Thresholds

ArgSort

Downsampling

2.1 Introduction
For users without previous experience of Condition Monitoring and signal processing, we strongly
recommend consulting additional reference material, to complement this documentation. See list of
references at the end of this section.

Basic signal processing concepts, in particular Fourier analysis and statistics, are introduced below. This
does not include programming details and is limited to a description of the interfaces and functions of the
algorithms used in the Condition Monitoring library.

What you will learn:

• How does a frequency analysis work?



Overview

TC3 Condition Monitoring 11Version: 1.4

• How does a seamless analysis of a continuous data stream work?
• How do I analyze a time segment, and how do I trigger an analysis?
• How to scale a spectrum, and why is this important?
• How to obtain statistically resilient results when measuring signals are affected by noise or

interference?

2.1.1 Fourier analysis

Introduction

The most important frequency analysis method is the Fourier analysis. The fundamental significance of the
Fourier analysis arises from the fact that it decomposes a signal x(t) into superimposed sine and cosine
vibrations. The result of this transformation is referred to as signal spectrum or simply spectrum. Definition of
the Fourier transformation:

In terms of information content, the signal spectrum is equivalent to the original signal. In addition, it provides
information on the origin of vibrations, for example. If two machine components give rise to vibrations with
different periods (frequencies) that are additively superposed, the Fourier transform makes these two
components visible. The combination of sine and cosine for each frequency also enables phase angles to be
mapped.

For example, superimposition of two sine waves with different frequencies and amplitudes results in the
diagram shown below. From the variation over time it is difficult or impossible to glean the composition of the
resulting signal. On the other hand, with appropriate scaling (see Spectrum scaling [} 22]) the magnitude
spectrum |X(w)| and the magnitude of the Fourier transform clearly show that the signal is composed of two
vibrations – one with a frequency of 0.2 kHz and an amplitude of 2.6, and one with a frequency of 1 kHz and
an amplitude of 3.8. The phase information is hidden due to the absolute value calculation.

In the Magnitude spectrum: [} 192] sample, the magnitude spectrum is calculated and displayed for a signal
of this form.



Overview

TC3 Condition Monitoring12 Version: 1.4

There are two processes that influence the vibration signals originating in a machine during sound transfer.
Firstly transfer via machine components that attenuate the vibrations to different degrees depending on the
frequency, and secondly superposition with vibrations from other machine components, with amplitudes
adding up without interaction. Both factors are separated due to the properties of the Fourier transformation:

• Delays only affect the phase of the Fourier transform
• Frequency-selective attenuation and constructive superposition of vibration amplitudes show up in the

magnitude of the Fourier transform.

Processing of time-discrete signals and the discrete Fourier transform

A very important aspect in the application of Fourier analysis is temporal sampling of the signal. The Fourier
transform is mathematically defined for continuous, temporally unlimited signals.

However, in practice the discrete Fourier transformation (DFT) is used. It is defined for a discrete, periodic
signal with a finite number of discrete frequency components. "Discrete" means that the signal is scanned at
equal intervals, usually directly with an analog/digital converter, e.g. an EL3xxx or ELM3xxx.

If a time-continuous signal with a period of T is sampled, the resulting value string is:

Using DFT, this series, which consists of N values, can be transformed to a discrete spectrum.

The variable k represents a frequency channel, which also referred to as frequency bin. Like the variable n, it
runs from 0 to N -1.



Overview

TC3 Condition Monitoring 13Version: 1.4

Discretization of time and quantization of values (digitization)

Two operations are required for digital processing of analog signals: Quantization from analog to digital value
representation, and sampling of the temporally continuous physical signal to form a discrete sequence of
quantized values.

The analog-to-digital converter digitizes the measured values in the I/O terminal. Quantization of the values
generally takes the form of an integer signal with signed 16-bit representation or 24-bit representation.
Processing in the TwinCAT 3 Condition Monitoring Library consistently takes place in the 64-bit IEEE double
floating point format, which is hard-wired in advanced processors. The temporal sampling also takes place in
the I/O terminal, through sampling of the input signal with a defined sampling frequency. The sampling
frequency can be calculated from the task cycle time Tc and the oversampling factor cs:

Example: With a task cycle time of 1 ms and an oversampling factor of 10, the resulting sampling rate is fs =
10 * 1 / ( 10-3 * 1s ) = 10 kHz.

Pay particular attention to the sampling frequency
In TwinCAT the sampling frequency results from the task cycle time and the oversampling factor of
the terminal used: fs := Oversamples*1000.0/TaskCycleTime_ms. Caution: The unit mil-
liseconds is used for the task cycle time, as usual in TwinCAT.

Sampling theorem

The main practical limitation in the application of the DFT is the restriction of uniquely representable
frequencies. According to the Nyquist theorem or sampling theorem, only signals whose highest frequency
fmax is less than half the sampling frequency fs can be represented unambiguously (slightly simplified
description). Accordingly, the sampling frequency must be greater than the highest frequency occurring in
the analog signal.

The presence of higher frequencies in the analog signal leads to an undesirable effect referred to as aliasing
in the spectrum. The analog signal is then no longer correctly represented in the discrete signal. Before the
analog-to-digital conversion, higher frequencies should therefore be removed from the analog signal using
configurable analog filters.

Anti-aliasing filter
The EL3xxx and ELM3xxx EtherCAT Terminals provide various filters, depending on the terminal
type. The EL3632 EtherCAT Terminal, for example, features a parameterizable analog 5th order
low-pass filter, which is used to avoid aliasing. The EL3751 and ELM3xxx modules feature several
filter stages, which can be used for anti-aliasing filtering and for wanted-signal filtering.

Frequency resolution

Since the frequency resolution (discrete resolution based on frequency components in the signal) enables
different signal components to be allocated to certain machine elements and defects, in many cases it will be
of advantage to achieve a resolution of the discrete frequency axis that is as high as possible.

Generally, the length of the Fourier transformation N determines the step size Δf of the discrete frequency
axis k .Δf. A basic consideration facilitates understanding: In order to be able to represent the frequency of a
sine wave in the frequency range, the measuring time must be at least one full period of this oscillation. This
results in the following relationship between the resolution Δf and the measuring time Tm:

Typical PLC code syntax, e.g. in the MAIN routine of the Magnitude spectrum: [} 192] sample:



Overview

TC3 Condition Monitoring14 Version: 1.4

fSampleRate := cOversamples * (1000.0 / fSampleTaskCycleTime);

fResolution := fSampleRate / cFFTLength;

A high frequency resolution therefore requires a long measuring time. It is possible to extend the input data
for the DFT through symmetric addition of zeros before and after the input signal (zero padding). This
increases the length N of the signal sequence at constant sampling rate fs, thereby refining the discrete
resolution Δf. Zero padding does not add additional information to the signal. A distinction is made between
two different types of resolution when zero padding is used: on the one hand the step size between one
frequency bin to the next on the discrete frequency axis, i.e. the transition from k.Δf to (k +1).Δf , on the other
hand the resolution for distinguishing between two adjacent frequencies of the input signal.

Although zero padding reduces the discrete resolution Δf, it does not change the measuring resolution. A
refinement of the measuring resolution can only be realized through a correspondingly long measuring time.
For practical applications, the key factor is usually the frequency resolution of the measurement, which
influences the differentiability between two closely adjacent signal frequencies.

Zero padding
Zero padding does not add any information to the signal to be analyzed. For distinguishing between
two adjacent signal frequencies, it is therefore not the frequency resolution that is refined, only the
numeric resolution of the frequency axis.

Illustration based on an example:

With a task cycle time Tc = 1 ms and an oversampling factor of 10 (i.e. fs = 10 kHz), a buffer with a length of
3200 is filled. The resulting measuring time is Tm = Tc * 3200 / 10 = 320 ms, with a measuring resolution of Δf
= 1 / 320 ms = 3.125 Hz. Using FFT for further analyses/calculations, the buffer is symmetrically expanded
with 2*448 zeros to reach a length N of 2^12 = 4096 > 3200 (N must be a power of 2, see next section). Zero
padding therefore refines the numerical resolution to Δf = 10 kHz / 4096 = 2.44140625 Hz.

The discrete frequency axis is limited by the zero frequency (off-set) and the Nyquist frequency fnyq, which
corresponds to half the sampling frequency. According to the Nyquist theorem, it corresponds to the highest
representable frequency of the recorded signal. If the discrete spectrum X[k] is stored in an array with index
m, which runs between 1 and N, the resulting frequency axis X[k] is

fFrequency := (m-1) * fResolution; // m = 1..N/2+1

m = 1 represents the off-set, m = N/2+1 represents the Nyquist frequency. The indices for m from N/2+2 to N
form the so-called negative frequencies, which are only relevant in practice if the input signal x[n] for the FFT
has a complex value. See section Image frequencies [} 15].

The following diagram illustrates the configuration of the frequency axis for a DFT of length N (with N an
even number).

Efficient calculation through FFT algorithms



Overview

TC3 Condition Monitoring 15Version: 1.4

Strictly speaking, the fast Fourier transformation (FFT) is a family of algorithms for discrete Fourier
transformation (DFT) which are implemented particularly efficiently and lead to the same numerical result.
While the complexity of a naïvely implemented DFT with N time values is O(N 2), for a FFT it is only N(2 *
log2N). For larger values of N, the difference is substantial. For N=1024, for example, it is already a factor of
around one hundred. Generally FFT algorithms are defined for values of N (the length of the FFT) that
represent a power of two, i.e. 256, 512, 1024 etc.

Complex valued result

The FFT (and the DFT) splits the incoming signal x[n] into a number of sine and cosine oscillations. Each
frequency is associated with a coefficient for the sine and cosine components. Both factors are represented
together as a complex number. The decomposition is expressed in Euler's formula:

The real part Re{..} of each Fourier coefficient corresponds to the cosine component, the imaginary part
Im{..} to the sine component. The ratio of the two components reflects the phase angle of the frequency
components.

In many cases it is not the precise temporal characteristic of the signal that is of interest, but the magnitude
spectrum. This can be determined from the Fourier transform by calculating the absolute value of the
complex number:

Complex data type
The result of the FFT of a real-valued or complex-valued input signal is complex-valued. The data
types LREAL and LCOMPLEX are used for the signal representation. If a function block is used for
calculating the magnitude spectrum [} 127] or power spectrum [} 142], the result is directly real-val-
ued.

Image frequencies

In the Fourier transform of a real signal the coefficients for negative frequencies are equal to the complex
conjugate coefficients for positive frequencies. If X[k] is the Fourier-transform of x[n] and X*[k] the complex
conjugated, the following applies for a Fourier transformation with N points:

For real-valued signals a time reversal of the input signal corresponds to complex conjugation of the Fourier
transform. It follows that the spectral value for frequencies below the Nyquist frequency occur mirrored in the
values above the Nyquist frequency. Since the values with k > N/2 +1 are therefore redundant for real input
frequencies, the Fourier transform for real sequences is usually limited to the first N/2 +1 values.

Function blocks in the Condition Monitoring Library

The Condition Monitoring Library offers various function blocks that facilitate a Fourier analysis.

• FB_CMA_RealFFT [} 145]: Calculating the FFT of a real-valued input signal.

• FB_CMA_ComplexFFT [} 86]: Calculating the FFT of a complex-valued input signal.



Overview

TC3 Condition Monitoring16 Version: 1.4

• FB_CMA_MagnitudeSpectrum [} 127]: Calculating the magnitude spectrum of a real-valued input
signal, including windowing of the input signal with overlapping windows [} 16] and different scaling
options [} 22].

• FB_CMA_PowerSpectrum [} 142]: Calculating the power spectrum (periodogram) of a real-valued input
signal, including windowing of the input signal with overlapping windows [} 16] and different scaling
options [} 22].

2.1.2 Analysis of data streams

Block-by-block FFT analysis from a data stream

The DFT/FFT is defined on a continued cyclic, periodic signal. This leads to an initially surprising conclusion:
If an FFT analysis for a long signal is required, the input signal cannot simply be subdivided into sections and
transformed with DFT. Because if the last value in such a section does not match the first, the FFT interprets
this as a discontinuity in the cyclic sequence, which clearly shows up in the spectrum (spectral leakage). The
following diagram illustrates the principle. A partial signal (blue) is cut from the total signal (black). The FFT
implies a cyclic continuation of the partial signal (lower diagram) and assumes step changes in the signal to
be transformed, as clearly indicated in the spectrum.

The situation can be rectified by weighting the signal sections before the transformation with a suitable
window function (for details see next section). In a suitable window, time values near the start and the end
are multiplied with a factor zero or closed to zero. The following diagram shows the same scenario, but now
with a window function (red). Windowing removes the step changes in the cyclic continuation, although
please note that the properties of the window show up in the spectrum of the windowed partial signal.
However, the window property generally affects the spectrum to a significantly lower degree.



Overview

TC3 Condition Monitoring 17Version: 1.4

A problematic aspect of windowing is that values at the edge of the window are hardly taken into account in
the spectrum. In situations where this region contains signal characteristics that indicate possible damage,
key information may be lost. In order to prevent the loss of information, the TwinCAT Condition Monitoring
Library uses overlapping signal sections for the windowing procedure. For example, the standard Hann
window is based on 50% overlapping. As a result, samples that are at the edge of one window section are in
the center of the next window section.

The following diagram illustrates the process for a FFT analysis from a data stream. Initially, buffers with a
defined length of 1600 values are filled from the data stream. The previous buffer is included in the
evaluation of the data from buffer n, so that the data packet that is windowed now contains 3200 values. The
maximum of the window function is precisely in the middle between the two buffers and falls to zero towards
the edges of the two buffers. Zero padding extends the data packet to a length of 4096 values, so that the
length is a power of 2 and can therefore be efficiently calculated with an FFT algorithm. The result of the FFT
is a data packet with 4096 values, which can be reduced to 2049 values if required, provided the input data
are all real-valued (see Fourier analysis [} 15]).



Overview

TC3 Condition Monitoring18 Version: 1.4

During the evaluation of buffer n, buffer n+1 is filled, and buffer n is included in its evaluation. This approach
always results in a 50% overlap of the windowed time ranges.

Analysis of a data stream in TwinCAT 3
The signal analysis scheme shown in the diagram above is implemented in the Condition Monitor-
ing Library through FB_CMA_MagnitudeSpectrum and FB_CMA_PowerSpectrum. All that is re-
quired is a configuration of the parameters (length of the buffers, length of the FFT, …) and provi-
sion of the data buffers.

Window functions

The properties of the window functions used are shown in the result of the transformation. It is not the signal
x[n] that is Fourier-transformed, but the signal x[n].w[n], with w[n] as time values of the window function. Note
the basic characteristics of window functions.

If "no" window function is used, i.e. if a signal section is taken from a longer overall signal, this corresponds
to the application of a rectangular window. An example is used to compare the properties of window
functions with a rectangular window: A harmonic sine with an amplitude of 13 and a frequency of 500 Hz is
sampled with a rate of 10 kHz and windowed with a window function with a length of 1600 samples, followed
by calculation of the magnitude spectrum (with the scaling option [} 227] eCM_PeakAmplitude). The
following diagram shows the magnitude spectrum based on a Hann window (hann) and a rectangular
window (rect).

A sample for the reconstruction of the following graphic can be found here: Window functions [} 198]



Overview

TC3 Condition Monitoring 19Version: 1.4

It illustrates two key features of window functions:

• The width of the main lobe, in this case around 500 Hz.
• The attenuation of the side lobes, relative to the maximum of the main lobe.

The width of the main lobe affects the achievable frequency resolution. The height of the side lobes indicates
the spectral leakage, since it is caused solely by the window and not by the signal to be analyzed. Note that
the rectangular window enables very good frequency resolution but results in strong spectral leakage, which
becomes problematic if a frequency component with an amplitude of 0.5 occurs at 550 Hz, in addition to the
peak at 500 Hz, for example. The Hann window reduces the side lobes significantly, although it also reduces
the achievable frequency resolution. Nevertheless, it provides a good compromise.

An important parameter of the frequency resolution, if a window function is used, is the equivalent noise
bandwidth (ENBW).

The value Δf is derived from the FFT-length N and the sampling rate fs (see Fourier analysis [} 11]). The
expression in the equation before Δf is defined via the window properties. For a rectangular window it is 1,
for the Hann window it is 1.5, for example. This means, for example, that each frequency bin also contains
components from the neighboring frequency bins. When selecting the measuring time, the reduction of the
frequency resolution due to the window used must be taken into account.



Overview

TC3 Condition Monitoring20 Version: 1.4

Sample for determining the frequency resolution
The following approach can be used, if a frequency resolution of 1 Hz is required from the applica-
tion. The measuring time for achieving a resolution of 1 Hz corresponds to 1 second. If a Hann win-
dow is used, the resolution deteriorates by the factor 1.5, i.e. the measuring time has to be longer
by this factor, in order to bring the effective frequency resolution back to 1 Hz: In other words, the
measuring time should be 1.5 s. The number of sampling values to be buffered results from the se-
lected sampling rate. The resulting FFT-length is the next higher numerical value that is also a
power of 2.

The choice of the used window is realized with initialization parameters for the respective function blocks via
the block-specific structure, e.g. ST_CM_MagnitudeSpectrum_InitPars [} 179].

Overlap-Add Method

Some function blocks of the Condition Monitoring Library work by manipulating the spectrum of the input
signal, i.e. the input signal is first split into overlapping partial signals and Fourier-transformed, as described
above. The spectrum is then manipulated, and an inverse Fourier transformation is calculated. Depending on
the window function used, a correction function may be required to compensate the influence of the window.
The individual overlapping results are then added up at the function block output, so that once again a data
stream is created. This method is referred to as overlay-add and is illustrated in the diagram below by means
of the calculation of the signal envelope (FB_CMA_Envelope [} 109]).



Overview

TC3 Condition Monitoring 21Version: 1.4

Overlap-add in TwinCAT 3
The method is used within of some function blocks of the library and does not have to be imple-
mented by the user. All that is required is a configuration of the parameters (length of the buffers,
length of the FFT, …) and provision of the data buffers.

2.1.3 Triggered analysis of a time period

Motivation

In addition to the continuous time analysis of a process, e.g. the vibration behavior of a continuously rotating
shaft, another frequent application is the analysis of a defined timeframe. Application examples include
analysis of vibration signals on a drill head, a milling unit or a shaft which only rotates during certain periods
of time.

The advantage of an analysis integrated into the controller is particularly apparent in this case. The control
usually initiates a certain process step, e.g. drilling. Accordingly, the sequential machine control can be used
to trigger not only the process step but also the corresponding analysis step.

Implementation in the Condition Monitoring Library

With regard to the analysis functions, there is virtually no difference between the evaluation of a defined
timeframe and the continuous analysis of a data stream. The only difference is that each triggered analysis is
independent, i.e. not in a continuous context. Accordingly, all analysis function blocks of the TC3 Condition
Monitoring Library can be used for continuous and triggered time window analyses. In order to clearly
separate the individual analyses from each other, it is only necessary to ensure that all analysis function
blocks with memory properties (see the respective documentation for the individual algorithms; section
Memory Properties) are reset once an analysis has been completed. For all these function blocks the
ResetData() method is available for this purpose.

Sample implementation

A sample based on a synthetic signal is described below. The synthetic signal consists of background noise
and an additively superimposed sine signal with a frequency of 200 Hz and amplitude 2. The sine signal is
switched on and off alternately every two seconds.

If continuous evaluation is selected for such a signal, it is not possible to determine in which time intervals
the signal segments used for the evaluation lie. Accordingly, it is advisable to always start an evaluation
window for a defined measuring time when the sine signal is switched on. The schematic diagram below
shows the described synthetic signal and the amplitude spectrum based on the indicated evaluation window.



Overview

TC3 Condition Monitoring22 Version: 1.4

The source code and a more detailed description of the sample can be found here: Event-based frequency
analysis [} 221].

Documents about this
2 Event_based_FrequencyAnalysis.zip (Resources/zip/5261425419.zip)

2.1.4 Scaling of spectra

Magnitude and power spectrum

There are several common ways of evaluating the spectrum:

• The magnitude spectrum [} 127], which uses linearly scaled magnitude values of the complex-valued
spectral values |X[k]|. It is also called the magnitude spectrum or amplitude spectrum.

• The power spectrum [} 142], whose values represent the squares of the magnitude values |X[k]|2.

Using the power spectrum makes sense if power values are added up or consolidated, since the squared
spectral values |X[k]|2 relate exactly to the RMS value of the time signal via Parseval's theorem.

According to Parseval’s theorem, the power of signal x[n] in the time representation equals the power of the
signal in the Fourier transform:



Overview

TC3 Condition Monitoring 23Version: 1.4

If one now calculates the RMS value of the signal x[n], this can be realized in the time range or in the
frequency range, since both representations are identical with regard to the power:

In practice, this enables calculation of RMS values for limited frequency ranges of a signal, which is used
internally in function block FB_CMA_IntegratedRMS [} 124] or FB_CMA_MultiBandRMS [} 135], for example.
Practical scaling options [} 227] of the Condition Monitoring Library, which relate to the properties referred to
in this section, include eCM_ROOT_POWER_SUM and eCM_RMS.

The power spectral density

Another important concept for spectral analysis is the Power Spectral Density (PSD). It refers to the output
value based on the effective frequency resolution, as indicated by the Equivalent Noise Bandwidth (ENBW)

A look at the physical units for the signal, magnitude spectrum and PSD illustrates the relationships. If a
signal x[n] is measured in volt (V), the discrete magnitude spectrum |X[k]| is also stated in V. Squaring
means that the power spectrum is stated in V2. By definition, the power density spectrum is a power value
(V2) based on the frequency in Hz. Relating the power spectrum to the effective frequency resolution in hertz
(Hz) results in the unit V2/Hz.

This representation can also be used for magnitude values. Correspondingly, the linear spectral density
(LSD) is

Decibel scale

In vibration analysis and machine acoustics, it is common practice to convert values from the linear scale to
the logarithmic decibel scale. The decibel scale facilitates interpretation in cases where very large and very
small values occur in the same spectrum, and the analysis should cover both large and small values. The
magnitude spectrum can be converted to the decibel scale via:

The decibel scale can be expressed as 10 times the logarithm of the power spectrum and 20 times the
logarithm of the magnitude spectrum. The result of a calculation from FB_CMA_MagnitudeSpectrum [} 127]
and FB_CMA_PowerSpectrum [} 142] is therefore identical in the decibel scale.

The conversion of results to the decibel scale can conveniently activated in the Condition Monitoring Library
via a Boolean variable in the function block initialization parameters, see ST_CM_PowerSpectrum_InitPars
[} 182], for example.

Scaling options based on signal type

By selecting a suitable scaling option [} 227], the spectral values calculated through the power spectrum
[} 142] or the magnitude spectrum [} 127] function block can automatically be adapted to a reference
parameter, as required. The correct interpretation of the reference variable is of particular importance here.

In terms of the scaling options, in practice and assuming a steady-state signals, it is important to distinguish
between deterministic and stochastic signals.

Deterministic signals consist of periodic vibrations with a defined frequency. The key is that the frequency
resolution (ENBW) is wider than a harmonic frequency. The total power of this frequency component of the
signal is consolidated in this frequency channel. The spectral values are therefore directly scalable to an



Overview

TC3 Condition Monitoring24 Version: 1.4

amplitude (scaling option [} 227]eCM_PeakAmplitude) or an RMS value of an equivalent sine signal. If the
signal does not fall into the center of the FFT frequency channel, then so-called scalloping losses occur,
which decrease the observed maximum amplitude. This can be compensated by analyzing the power values
from adjacent frequency channels in added-up form, see scaling option [} 227]eCM_ROOT_POWER_SUM and
eCM_RMS.

Stochastic or broadband signals require analysis of power spectral densities (PSD) or linear spectral
densities (LSD), since all frequencies contain signal power over a defined frequency range. In this case the
determined power values depend on the effective width of the frequency channels of the FFT. It makes
sense to use this bandwidth as a basis, in order to obtain results that are independent of the analysis
parameters. When window functions are used, the effective width of the frequency channels depends on the
length and form of the window function. In this case, the equivalent noise bandwidth (ENBW) referred to
above should therefore be used, see scaling option [} 227]eCM_PowerSpectralDensity or
eCM_UnitaryScaling.

Scaling based on PSD does not enable consistent scaling of the "direct current component". If required this
should be determined by low-pass filtering or averaging.

If a signal contains both deterministic portions and wide-band portions, both scalings must be used
independently of each other in order to obtain values that are independent of the processing parameters. An
example would be the analysis of signals that is composed of a harmonic sine and band-limited noise. If the
amplitude of the harmonic sine is to be determined, scaling for deterministic signals is required. If the
stochastic background noise is to be analyzed, scaling as PSD or LSD should be applied.

Scaling of spectra with the Condition Monitoring Library
Various scaling options are already implemented in the Condition Monitoring Library and can be pa-
rameterized with initialization parameters via the function-block-specific structure. See E_CM_Scal-
ingType [} 165] and Spectrum Scaling Options [} 227]. A tutorial can be found here: Scaling of spec-
tra [} 199]

Referencing

Classification of the scaling

While comparison of absolute measured values is very important for measurement technology, for vibration
assessment [} 31] according to ISO 10816-3 and for machine protection, absolute calibration is not required
for trend-based or comparative condition monitoring.

In many cases, generic limit values that are not tailored to a specific machine, are less suitable for early
diagnostic detection of damage. Since the choice of measuring point (location of the measurement, coupling
of the sensor etc.) has significant influence on the attenuation factors of the transmission link, for trend
monitoring it is much more important to consistently maintain the selected test point and the coupling
conditions. In many cases signal components with initially low signal level can be important. If they are
periodic, they appear particularly clearly and early when using high-resolution FFT spectra with the
narrowest possible bandwidth and suitable statistical functions. In condition monitoring trend observations
over long periods and relative comparisons at the decibel scale usually play a much more important role than
individual absolute values. For the sensors this means that expensive, high-precision absolute calibration
and smooth frequency response are generally less important than high long-term stability and sufficiently low
temperature dependence, although this does not mean that a calibration can be neglected completely.

Scaling on the basis of reference signals

In many cases, mathematical referencing (scaling by means of a reference) of measured values be much
more complex than would appear at first glance. As soon as the processing involves several steps that are
non-linearly dependent on diverse parameters, it is in many cases simpler and above all less prone to error
to carry out the scaling with the aid of a calibration device. Here we make use of the fact that the magnitude
values of the calculated spectra are always linear to the input values. In order to scale the signal correctly,
therefore, we only need to determine the associated linear factor on the basis of a well-known reference
input value. Professionally this is done by generating a physical signal with a defined amplitude (or a defined
RMS value) using a calibration device, measuring the output value and determining the required correction
factor as the quotient of input and output. The big advantage of scaling on the basis of a reference signals is



Overview

TC3 Condition Monitoring 25Version: 1.4

that physical defects such as damage to an accelerometer as well as incorrect configurations of the
measuring system can be reliably discovered. This method has its limits if a large number of parameter
combinations are to be tested when evaluating.

2.1.5 Statistical analysis
Condition monitoring is used for monitoring of limit values. Value transgressions cause messages and
warnings. In practice the individual values of the FFT often fluctuate strongly, so that averaging or other
statistical analysis is required. An analysis of individual values would result in a high value leading to a
transgression of the limits.

Basic concepts

If a quantity (e.g. temperature, pressure, voltage etc.) is measured in an actual process, for a repeated
measurement it is very likely that the previous measured value does not match the value determined in the
repeat measurement. Since the sequence of randomly fluctuating quantities cannot be determined
deterministic (i.e. via a concrete equation), statistical parameters are used for describing such signals. The
fact that in practice deterministic and stochastic signals are often superimposed (e.g. a direct voltage
superimposed by measurement noise) is irrelevant. The summary result is random and therefore a
stochastic signal.

An individual measurement of a randomly fluctuating quantity is a random event. Each individual
measurement is referred to as realization of a random experiment. If N random samples are taken from the
random experiment, this number of realizations describes the sample size.

Histograms

A central property of random events is the probability that the measured parameter assumes a certain value.
This is described via the absolute or relative frequency distribution, which is represented in a histogram.

Simple example: Suppose a measured variable of 10 V is superimposed with normal distribution noise
(average value 0 V, standard deviation 4 V). Repeating the measurement for this parameter 1 million times
results in the diagram below (upper part). The 1 million realization of the random experiment can be shown
in a histogram for a better overview. The absolute frequency distribution can be generated such that the
range of the measured variable is subdivided into classes (bins). The upper part of the diagram shows the
measured variable over each individual measurement, the lower part only shows the first 250 measurements
and the class limits for the histogram.



Overview

TC3 Condition Monitoring26 Version: 1.4

The absolute frequency distribution is then simply results from the number of measured values that lie within
a class (bin), see diagram below, left. The distribution is parameterized based on the number of considered
classes – the more classes, the finer the distribution. The relative frequency distribution can be calculated
from the absolute frequency distribution through referencing of the sample size; see diagram below, right.
This is then independent of the number of measurements and shows the probability with which a value was
measured, e.g. values in the class around 10 V were measured with a probability of 0.157=15.7%.



Overview

TC3 Condition Monitoring 27Version: 1.4

The frequency distribution can be used for simple initial visual examination of an experimentally examined
process. Three questions can be explored:

• How strong is the scattering of the measured value?
• Is the measured value scattered around a single value (as above around 10 V), or around further

values?
• How are the values distributed? - normal distribution, Student's t-distribution, chi-square distribution?

Calculation of absolute frequency distribution in TwinCAT 3
The Condition Monitoring Library can be used to calculate the absolute frequency distribution con-
veniently via the function block FB_CMA_HistArray [} 115]. Only the range under consideration and
the number of classes are required for parameterizing the function block. A graphic display is possi-
ble with the array bar chart in TwinCAT Scope View. A sample is available for download from here
[} 204].
The Statistical methods [} 206] sample illustrates further Condition Monitoring Library options for
statistical data evaluation.

Central moments

A value that is as close as possible to the actual value can be estimated based on multiple observations of a
random process. It is referred to as best estimate. Different estimators (e.g. the arithmetic mean) with
different properties can be used for this purpose. In addition to the calculation of the best estimate, in many
cases it is important to also express the uncertainty of the estimate, which is usually calculated via the
experimental standard deviation (also referred to as empirical standard deviation).

The central moments: average value, variance, skew, kurtosis etc. are particularly suitable for calculating
statistical parameters from a given sample. While the average value provides a suitable estimated value for
the sample, the other central moments provide insight into the distribution of the values around this
estimated value.



Overview

TC3 Condition Monitoring28 Version: 1.4

Illustration based on a sample:

The sample described above under histogram has a "true value" of 10 V and was retrospectively subjected
to noise. From the given sample of 1 million realization the average value can be calculated as 9.9977 V.
This is the best estimate of the true value. The variance around this average value is 16.01 V2. The square
root of the variance corresponds to the standard deviation and is 4.0013 V. If the measured values are
distributed normally, as in this case, the distribution of the measured values is fully described with these two
central moments, i.e. the skew and kurtosis are (theoretically) zero. The skew describes the symmetry of the
distribution around the average value, the kurtosis describes the steepness (peakiness) of a distribution
function.

Assessing the uncertainty of an estimated result:

In 1995 the Joint Committee for Guides in Metrology (JCGM) published a guide on stating measurement
uncertainty. The JCGM is composed of central umbrella organizations such as BIPM, IEC; IFC, ISO etc.,
who developed this guide as a joint effort. The basic paper "Guide to the Expression of Uncertainty in
Measurement" (GUM) is available for download free of charge from the BIPM website. A brief introduction
into the central idea is provided below.

As described above, a best estimate can be calculated from a given set of N observations (average value =
sample mean). The variance of the best estimate is calculated and used as uncertainty value, rather than the
variance of the set of observations (standard deviation). This makes sense, because the aim is to assess the
uncertainty of the estimated value. The variance of the best estimate can simply be calculated from the
standard deviation of the set of observations by dividing this value by the root of N. If the sample size is
sufficiently large, the uncertainty value can be multiplied by 2 (otherwise a larger factor), in order to
calculated the extended uncertainty. The average value plus/minus this extended uncertainty will then
contain the true measured value with a probability of 95%.

Accordingly, the algorithms of the Condition Monitoring Library can be used to make GUM-compliant
statements on the measurement uncertainty.

Calculating the central moments in TwinCAT 3
The function block FB_CMA_MomentCoefficients [} 130] contained in the Condition Monitoring Li-
brary can be used to calculate the first four central moments of a sample. The function block only
has to be parametrized in terms of the sample size used.

Quantile

The p-quantile Qp of a random variable x is the value for which Qp > x applies for the component p of all
realizations of x. In other words: If a finite number of values is given, the p-quantile divides the data into two
areas. The 50%-quantile (median), for example, marks the value below which at least 50% of all the values
lie. This value should not be confused with the average value of the sample.

The value of p can be between zero and one. If p is specified in percent, the values are percentiles. Q0.5
precisely corresponds to the median, while Q0.9 represents the 90-percent-percentile and Q1 the maximum of
an observed value series.

The closer p comes to one, the stronger Qp is determined by outliers and extreme individual values. The
closer p comes to 0.5, the closer Qp comes to the median, which is very robust against outliers. The value of
p, which can be configured in TwinCAT at runtime, can be used to dynamically change the sensitivity of a
sample evaluation in relation to individual values.

To illustrate the basic idea of quantiles, the following diagram shows a series of 1000 values, which are
spread around an average value of 13.



Overview

TC3 Condition Monitoring 29Version: 1.4

The value sequence can be used to calculate a histogram, which indicates how often a value occurs in the
series (sample) under consideration. The empirical cumulative frequency distribution can be calculated
through integration of the absolute frequency shown in the histogram and referencing with the total number
of values in series under consideration (here 1000), from which the quantiles become apparent. In this case
the 25% quantile is 11.8, for example, i.e. at least 25% of the individual values of the sample of 1000 values
are below this value.



Overview

TC3 Condition Monitoring30 Version: 1.4

The library function blocks for calculating quantiles [} 148] operate in two substeps, which can be called up
together or individually. In the first step values are added to an internal histogram, whose parameters can be
configured in advance. This step requires very little computational effort. In the second step the previously
selected quantiles are calculated from the stored histogram. Depending on the configuration, this second
operation is significantly more computationally intensive, since it is defined through more complex
operations, although it has to be executed much less frequently.

Calculation of quantiles in TwinCAT 3
The function block FB_CMA_Quantiles [} 148] can be used for calculating quantiles. Several quan-
tiles can be calculated with a single function block call. The function block is parameterized like the
histogram function block, plus the quantile to be calculated and sample size to be used.

2.2 Application concepts
This part of the introduction provides an overview of basic application patterns and solutions for Condition
Monitoring tasks. The overview focuses on some underlying strategies and solutions, without providing
programming and interface details. At the end of each concept an implementation scheme based on the
Condition Monitoring Library is provided, thereby building up an overview of the library options.

You will learn the following:

• How does vibration monitoring according to ISO 10816-3 work?
• How does threshold value monitoring in the frequency range work?
• How is Condition Monitoring for a roller bearing configured?
• How is Condition Monitoring for a gear unit configured?



Overview

TC3 Condition Monitoring 31Version: 1.4

2.2.1 Vibration assessment

Introductory disambiguation

Vibration assessment aims to ensure reliable and safe operation of a machine, based on evaluation of the
machine operating state by means of vibration measurements. Local diagnostics/analysis of machine
components is outside the scope of this documentation. Solutions for diagnostic condition monitoring of
components such as roller bearings and gear units are described separately below.

References to common standards

A number of standards exist for assessing machine vibrations, including the following:

• ISO 5348, Mechanical vibration and shock - Mechanical mounting of accelerometers
• ISO 10816, Mechanical vibration - Evaluation of machine vibration by measurements on non-rotating

parts (previously VDI Guideline 2056). This standard consists of several parts.
◦ ISO 10816-3 refers to industrial machines with a rated capacity of more than 15 kW and rated

speeds between 120 rpm and 15000 rpm, measured on site.
◦ ISO 10816-7 refers to centrifugal pumps for industrial application
◦ ISO 10816-21 refers to wind turbines with horizontal axis and gearbox

• ISO 7919, Mechanical vibration - Evaluation of machine vibration by measurements on rotating shafts.
This standard consists of several parts.
◦ ISO 7919-3 refers to coupled industrial machines
◦ ISO 7919-2 refers to stationary steam turbines and generators with a capacity of more than 50 MW

an nominal operating speeds of 1500 min-1, 1800 min-1, 3000 min-1 and 3600 min-1

• ISO 20816-1, Mechanical vibration - Measurement and evaluation of machine vibration. Consolidation
of ISO 7919-1 and ISO 10816-1.

Evaluation of machine vibrations based on DIN ISO 10816-3

The scope of this standard includes steam turbines up to 50 MW, electric motors and fans. Because the
scope is quite wide, the standard is explained in more detail below. The standard aims to classify the
machine state in four different classes by means of vibration data for acceptance measurements and
operational monitoring.

Assessment criteria according to the standard are the RMS value of the vibration velocity and the RMS value
of the vibration displacement. Usually it is sufficient to measure the vibration velocity. The additional
evaluation of the vibration displacement is recommended if low frequency components are encountered. If
both vibration parameters are logged and analyzed, the poorer of the two determined classes is applied.

The frequency range of the vibrations to be captured depends on the machine speed:

• 10 Hz to 1000 Hz for speeds of more than 600 rpm
• 2 Hz to 1000 Hz for speeds of less than 600 rpm

Suitable measuring points are characterized by the fact that they reflect the dynamic forces of the machine
as purely as possible. For example, locations where local resonances occur are not suitable. Suitable
locations tend to be bearing stands and bearing covers; measurements are usually carried out in two
orthogonal directions.

The classification also takes into account the machine substructure, subdivided into rigid and elastic
substructures. If the lowest natural frequency of the whole system consisting of machine and substructure is
at least 25% higher than the main exciting frequency (generally the rotational frequency), the substructure
can be regarded as rigid, otherwise as elastic. This evaluation should be carried out separately for each
measuring direction (two orthogonal directions, see above).

DIN ISO 10816-3:2009 describes four evaluation zones (A, B, C, D), with limit values as listed in the
following table.

Machine group 1 2
Installation rigid elastic rigid elastic



Overview

TC3 Condition Monitoring32 Version: 1.4

RMS value of the vi-
bration velocity in mm/

s

11.00 .. ∞ D D D D
7.10 .. 11.00 D C D D
4.50 .. 7.10 C B D C
3.50 .. 4.50 B B C B
2.80 .. 3.50 B A C B
2.30 .. 2.80 B A B B
1.40 .. 2.30 A A B A
0.00 .. 1.40 A A A A

Machine group 1 2
Installation rigid elastic rigid elastic

RMS value of the vi-
bration displacement

in µm

140 .. ∞ D D D D
113 .. 140 D C D D
90 .. 113 D C D C
71 .. 90 C B D C
57 .. 71 C B C B
45 .. 57 B B C B
37 .. 45 B A B B
29 .. 37 B A B A
22 .. 29 A A B A
0 .. 22 A A A A

Zone A The vibrations of recently commissioned machines tend to be in this zone.
Zone B Machines with vibrations in this zone are usually regarded as suitable for

continuous operation without restrictions.
Zone C Machines with vibrations in this zone are usually regarded as unsuitable for

continuous operation. The machine may generally be operated in this state for a
limited period, until a suitable opportunity for remedial measures arises.

Zone D Vibration values in this zone are usually regarded as dangerous in the sense
that damage to the machine may occur.

Machine group 1 Large machines with a rated output of 300 kW to 50 MW and electrical
machines with a shaft height of more than 315 mm

Machine group 2 Medium-sized machines with a rated output of 15 kW to 300 kW and electrical
machines with a shaft height between 160 mm and 315 mm

Processing concept

The classification defined in DIN 10816-3 can easily be implemented in TwinCAT 3 with the Condition
Monitoring Library. A proposal for implementation is described below.

The diagram below provides an abstract description of the processing structure for the data collected via the
fieldbus. The numbers at the arrows represent the dimension of the (multi-)array transferred from one
function block to the next. The color of the function block indicates the task in whose context the block runs.
The corresponding sample can be downloaded from here [} 207].



Overview

TC3 Condition Monitoring 33Version: 1.4

Data input

In the sample, oversampling is set to 10, and the PLC task linked to the I/Os is set to 1 ms. This results in a
sampling rate of 10 kHz for the data input. According to the sampling theorem, signals in the spectrum up to
5 kHz can now be analyzed correctly, provided the anti-aliasing filter is set correctly in the I/O terminal (see
Fourier analysis [} 13]).

Buffering of the data stream

The input data of the two channels are buffered in the MAIN routine with a source function block.
Accordingly, a two-dimensional array with the size [cChannels, cBufferLength] is established. According to
DIN ISO 10816-3, frequency range of 10 Hz to 1000 Hz should be evaluated for a rotational speed of more
than 600 min-1. The frequency resolution of the frequency analysis (calculated internally in the



Overview

TC3 Condition Monitoring34 Version: 1.4

IntegratedRMS function block) should therefore be well below 10 Hz. If a buffer of 4000 samples is used at a
sampling rate of 10 kHz, the resulting frequency resolution is 2.5 Hz. If the Hann window is used, this is
formally reduced to 2.5 Hz * 1.5 = 3.75 Hz. In addition, the FFT-length must be a power of 2 and greater than
the WindowLength. The BufferLength results from a 50% overlap of the windows. The parameterization in
terms of the internal FFT is defined accordingly in the GVL_Constant as follows:
cFFTLength     : UDINT  := 4096;            // length of FFT
cWindowLength  : UDINT  := 4000;            // 96 samples Zero padding
cBufferLength  : UDINT  := cWindowLength/2; // buffer due to 50% overlap

The result is an array of size [2.2000], as shown in the diagram above, for transfer to the
FB_CMA_IntegratedRMS function block.

Frequency-selective RMS value calculation

In the function block FB_CMA_IntegratedRMS an FFT is now calculated, and the RMS value for the
transferred frequency range (here 10 Hz to 1000 Hz) is calculated (formally several ranges may be
specified). In addition to the RMS values of the direct input signal (when an accelerometer is connected, this
is usually an acceleration signal), the function block also calculates the respective integrated parameters, i.e.
the RMS value of the vibration velocity and the RMS value of the vibration displacement. Accordingly, the
function block output is a two-dimensional [2,3] array (2 channels, 3 RMS values per channel).
// define frequency interval according to ISO 10816-3
// e.g. 10 .. 1000 Hz for rotating speed over 600r/min
cfLowerFrequencyLimit : UDINT := 10;   
cfUpperFrequencyLimit : UDINT := 1000; 
    
// Parameters for RMS calculation
cOrderRMS   : UDINT := 2; // acceleration, velocity, and displacement
cChannels   : UDINT := 2; // ISO 10816-3 says 2 orthogonal sensors
cResult_Length : UDINT := cOrderRMS+1; // nOrder+1 (see InfoSys)

In the settings referred to above the source function block requires 2000/10 = 200 cycles with 1 ms for filling
the buffer. The cycle time of the PlcTask_CM should be less than 0.5 * 200 ms, see Task Setting [} 63].
Since the function block only requires little computing time, the cycle time of the PlcTask_CM is set to 10 ms.
The transfer of the data from the source function block to FB_CMA_IntegratedRMS across the task
boundaries is handled internally by the Condition Monitoring Library.

Analyzing the result

The results of the RMS value calculation are transferred back to the fast PLC task with 1 ms via a sink
function block. All that is required for this purpose is specification of an array in the MAIN routine, which
matches the size of the array at the output of FB_CMA_IntegratedRMS, see variable aRMSResult.

The sink function block sets a flag to TRUE when a valid result was calculated, see variable bCalcuate.
(* Push results to sink *)
fbSink.Output2D(    pDataOut         := ADR(aRMSResult), 
                    nDataOutSize     := SIZEOF(aRMSResult), 
                    eElementType     := eMA_TypeCode_LREAL, 
                    nWorkDim0         := 0,
                    nWorkDim1         := 1,
                    nElementsDim0    := 0,
                    nElementsDim1    := 0,
                    pStartIndex     := 0,
                    nOptionPars        := 0,
                    bNewResult        => bCalculate );

Based on this flag, the result of the RMS value calculation can then be used in the MAIN routine. In this case
the RMS values of the vibration velocity and the vibration displacement are checked for the limit values
defined in the ISO standard. Simple IF queries are used in order to keep the sample simple.

The class according to ISO 10816-3 is determined for each two channels and stored in the variables
ISOClassIs_Vel (for the classification with regard to the vibration velocity) and ISOClassIs_Displ (for
the classification with regard to the vibration displacement). This sample results in four classifications.
According to ISO 10816-3, the larger of the two values should be used, if orthogonally arranged sensors are



Overview

TC3 Condition Monitoring 35Version: 1.4

used. In addition, the stricter evaluation should be used if both the vibration displacement and the vibration
velocity are used. Accordingly, the worst case of the four evaluations is sought in the source code and
defined as output variable ISO_10816_Classification.

Interaction and comments on the sample

In the sample two harmonic vibrations with identical amplitude (4 m/s2) but different frequency (400 Hz and
35 Hz) are defined as input variables. While this acceleration amplitude means classification in class A for a
frequency of 400 Hz for an evaluation based on vibration displacement and vibration velocity, for a vibration
with 35 Hz an evaluation based on vibration displacement results in class C, for vibration velocity even down
to class D. The output variable ISO_10816_Classification therefore corresponds to class D.

If the amplitude of the oscillation with 35 Hz is changed to 1 m/s2, the classification changes to B (for
vibration velocity) or A (for vibration displacement). Accordingly, the variable
ISO_10816_Classification is set to B.

Alternatively, you can leave the amplitude at 4 m/s2 and increase the frequency, e.g. to 800 Hz. This results
in Class A classification throughout, and the variable ISO_10816_Classification is set to A.

2.2.2 Frequency analysis

Motivation

One of the main techniques for diagnostic/analytical machine monitoring is logging of vibrations with
accelerometers and corresponding frequency analysis. This is based on the fact that machines are made of
metal and therefore elastically resilient structures that are nearly always subjected to periodic forces. This
leads to vibrations in which the excitation frequencies and forces and the characteristic frequencies of the
respective structures are reflected. Vibration measurements therefore enable conclusions to be drawn
regarding the structures and forces in the machine. Damage and structural changes of machine elements,
such as bearings, result in changes to the vibration pattern.

The vibrations spread in the form of sound waves (structure-borne noise) in the machine components. Since
machines consist of a large number of parts, which on the one hand elastically transfer vibrations originating
from other parts and on the other hand oscillate themselves, the vibration patterns are characterized by
filtering and superimpositions of the individual vibration components. Accordingly, a vibration signal consists
of several components, which add up to the total signal based on different delays and attenuation that
depend on the travelled path. Individual vibration components may therefore no longer be recognizable in
the total signal curve. The power of frequency analysis is that it can split the linearly superimposed vibrations
into frequency components. These frequency components can then be more readily allocated to a particular
machine state, component or process.

The concept of frequency-selective monitoring of components is split into:

• Calculation of the spectrum
• Statistical evaluation of the result
• Threshold value monitoring.

Practical elements of frequency analysis

The key aspects of Fourier analysis were are already discussed in section Fourier analysis [} 11]. The main
practical aspects are repeated here.

The following questions are of central importance for the configuration of the parameters for the function
block for Fourier analysis (e.g. FB_CMA_MagnitudeSpectrum [} 127] or FB_CMA_PowerSpectrum [} 142]).

• What is the highest frequency to be analyzed? 
The sampling frequency should be set accordingly via the oversampling factor for the terminal and the
corresponding task cycle time. An anti-aliasing filter should also be set. See section on Fourier analysis
[} 13].



Overview

TC3 Condition Monitoring36 Version: 1.4

• What are the requirements for frequency resolution?
The measuring time (length of the input array) should be as long as required, see Fourier analysis
[} 13]. The deterioration of the frequency resolution when applying a window function should also be
taken into account, see Window functions [} 18].

• The FFT length must be larger than the length of the input array, and it must be a power of two. The
remaining elements are filled with zeros, see zero padding or Fourier analysis [} 13].

• Select a suitable scaling for the spectrum, see Scaling of spectra [} 22].

Statistical evaluation

The Fourier spectrum is very sensitive to noise and interference in the signal. Normally, the Fourier transform
of noisy signals is therefore not particularly well suited for direct analysis or evaluation. In order to
compensate this, the magnitude spectrum is usually averaged, or a quantile evaluation method is used, see
Statistical analysis [} 25]. This approach requires temporal stability or cyclic repetition of the signals to be
analyzed. The parameters determined in this way are significantly more robust against interference and
easier to assess visually. An evaluation based on the average value of several spectra is illustrated below as
an example.

Statistical analysis of the magnitude spectrum
It makes sense to form several magnitude spectra and analyze them statistically, e.g. via averaging
or quantile calculation. This reduces the uncertainty of the determined values and makes a thresh-
old value analysis more reliable.

An alternative method is averaging of the calculated Fourier coefficients via the frequency. In this case
several adjacent frequency values are combined through averaging. On the one hand this method is largely
equivalent, although somewhat more computationally intensive, than calculating the FFT with lower
frequency resolution and temporal averaging of the spectral values. The equivalence is a result of the fact
that the averaging of several short FFT spectrums equivalent in terms of time with the calculation of a long
spectrum and subsequent averaging via the frequency. The higher computational effort is a result of the fact
that the complexity of the FFT calculation increases slightly above-proportional with increasing length.
Excessive high frequency resolution should therefore generally be avoided.

Threshold value monitoring

The last step of the concept explained here consists of automatic threshold value monitoring. For each
frequency channel threshold values are defined that are allocated to several categories of different priority,
e.g. "normal operation", "warning" and "alarm". These threshold values can be set based on experiences and
adjusted during operation.

Processing concept

The concept described above can be implemented conveniently with the TwinCAT Condition Monitoring
Library through parameterization of the function blocks provided. A sample configuration is described below.



Overview

TC3 Condition Monitoring 37Version: 1.4

Threshold value monitoring of averaged magnitude spectra is to be implemented. The following components
of the Condition Monitoring Library with the described functions are used:

• FB_CMA_Source
◦ Buffers of the input data

• FB_CMA_MagnitudeSpectrum
◦ Arrangement of the input buffers into overlapping sections
◦ Windowing of the calculation sections
◦ Calculation of the Fourier transformation
◦ Calculation of the absolute value of the Fourier coefficients
◦ Scaling of the result (RMS)

• FB_CMA_MomentCoefficients
◦ Formation of the arithmetic mean value

• FB_CMA_BufferConverting
◦ Adjustment of the buffer dimensions for transfer between FB_CMA_MomentCoefficients and

FB_CMA_DiscreteClassification
• FB_CMA_DiscreteClassification

◦ Monitoring of each calculated frequency for threshold value violation

In a representation of the above diagram that is closer to the source code, a possible implementation is as
follows:



Overview

TC3 Condition Monitoring38 Version: 1.4

The sample project for the concept shown here can be downloaded from here: download [} 214].

Parameterization of the calculation of a magnitude spectrum

The cycle time and the oversampling factor are set such that the resulting sampling rate is 10 kHz. The
following settings are used in the sample for parameterization of the MagnitudeSpectrum function block and
the source function block

// constant for input
cOversamples  : UDINT     := 10;    // number of oversamples
cFSample      : UDINT     := 10000; // 1ms task with 10 oversamples = 10kHz
    
// constants for FFT (Magnitude Spectrum)
cBufferLength : UDINT  := 3200;             // buffer size
cWindowLength : UDINT  := 2*cBufferLength;  // 50% overlap
cFFTLength    : UDINT:= 8192;// length of FFT for mag. spectrum, power of 2
cFFTResult    : UDINT  := cFFTLength/2+1;     // result of mag. spectrum

The numerical frequency resolution is 10 kHz / 8192 = 1.22 Hz. As described in the context of zero padding
and Fourier analysis [} 13], this does not correspond to the frequency resolution, which enables two adjacent
frequencies to be distinguished. In this case this is 10 kHz / (2*3200) * 1.5 = 2.34 Hz; 2*3200 corresponds to
the length of the signal section used for calculating the FFT (measuring time in sampling values). The
expansion factor of 1.5 is defined through the choice of the Hann window (windowing in the
MagnitudeSpectrum function block). The FFT-length of 8192 is the smallest number greater than 2*3200
representing a power of two. The length of the result array from the calculation of magnitude spectrum is
4097. It is defined through the symmetry property of the FFT.

Averaging of the magnitude spectra

The result of the MagnitudeSpectrum function block is transferred to FB_CMA_MomentCoefficients, which is
configured such that it returns the average value (first central moment) as result. By default, the function
block also provides the sample size that was used for calculating the central moment. For this reason the
result array becomes two-dimensional. The present sample uses the CallEx() method of the function block to
average 25 magnitude spectra and then reset the function block. Since in this case the sample size is always
25, this information is no longer required. The corresponding sink function block is therefore parameterized
such that only the mean values are copied from the function block result to the context of the PLC task. In



Overview

TC3 Condition Monitoring 39Version: 1.4

addition, a buffer conversion (FB_CMA_BufferConverting) is applied between the classification function
block and the MomentCoefficients function block, which also omits the column containing the sample size
information.

Classification

In the present case, the function block FB_CMA_DiscreteClassification is used as simple threshold value
classifier. Accordingly, only two classes are defined (nMaxClasses = 1). The configuration of the threshold
values, which is applied individually for each discrete frequency, takes place at runtime. In the sample the
threshold value for array indices 30 to 50 (corresponding to approx. 36 Hz to 61 Hz) is set to 6 VRMS, for the
remaining frequencies it is set to 2 VRMS. If the value falls below the threshold value, -1 is returned as result
for the corresponding frequency. If the threshold value is exceeded, 0 is output.

Further information on the sample code

The project includes an measurement project, which contains a scope array project with three axes. The
upper diagram shows the result of FB_CMA_MagnitudeSpectrum, i.e. the magnitude spectrum of the input
signal. The input signal is generated by a function generator and represents a noisy sine with 50 Hz and an
amplitude of 25 V. Accordingly, the result of the non-averaged magnitude spectrum is time-variable
(uncertain). Averaging stabilizes the result noticeably. The averaged magnitude spectrum is shown in the
center of the Scope Array Project. The lower diagram shows the classification result; for each frequency -1 is
shown if the value is below the threshold, 0 is shown if the defined threshold value is exceeded.

Further example for Condition Monitoring with frequency analysis

The Examples section contains several code examples. Section Condition Monitoring with frequency
analysis [} 209] contains an example that is similar to the one described in this section. It is intended to
illustrate the flexibility your individual solution, which you can create with the Condition Monitoring Library.

Overview: Various function blocks for frequency analysis

The TwinCAT 3 Condition Monitoring library offers various function blocks for frequency analysis. The
following table provides an overview of the differences in the algorithms.

Function block Input data
type

Output data
type

Window-
ing

Comment

FB_CMA_RealFFT [} 145] LREAL LCOMPLEX No Pure FFT formation for real input
signals

FB_CMA_ComplexFFT [} 86] LCOMPLEX LCOMPLEX No Pure FFT formation for complex
input signals

FB_CMA_MagnitudeSpectrum
[} 127]

LREAL LREAL Yes FFT analysis with overlapping
buffering and windowing, and
formation of the magnitude
spectrum.

FB_CMA_PowerSpectrum [} 142] LREAL LREAL Yes FFT analysis with overlapping
buffering and windowing, and
formation of the power spectrum.

2.2.3 Bearing monitoring

Motivation

Bearings are among the commonest and most highly stressed machine elements. In many cases they can
be of critical importance for the operation of a plant. While the downtime alone can cause high costs for the
procurement of spare parts for large bearings, the failure of small bearings can also cause costs that far
exceed the costs of the spare part.

Causes of damage

There are many different possible causes of the failure of roller bearings:



Overview

TC3 Condition Monitoring40 Version: 1.4

• The ‘natural’ cause of the failure of roller bearings is material fatigue due to the high stresses that occur
on the contact surfaces of the rolling elements during operation. After a certain time these lead to
cracks in the material and to break-outs on the running surface. Small defects result that initially grow
very slowly and become larger with increasing speed towards the end of the service life. The
mechanisms of material fatigue are understood well in theory and can be statistically described; they
are a component of normal wear. In designing a normal bearing the dimensions are selected such that
the probability of serious damage within the service life of the machine is low. Under normal
circumstances, therefore, it can be expected that correctly dimensioned and maintained bearings will
have a very long service life. The service life actually attained is often considerably shorter, but not
accurately predictable and can vary considerably due to the following causes.

• The stress on rolling elements and running surfaces is significantly increased by incorrect lubrication,
since the lubricant distributes part of the stress and also prevents the bearing from overheating.

• A further cause of damage is contamination, for example due to faulty seals or metal swarf. The
penetration of water can also lead to the failure of the lubrication, since even small amounts of water
render lubricants unusable.

• Further, not unimportant sources of error are inaccuracies in the alignment or damaging stresses
during the installation.

• Excessive stresses lead to plastic deformations of the running surface (brinelling). A similar situation
can be caused by vibrations when the bearing is at a standstill, which are not mitigated by a lubricant
film (false brinelling).

• In electrical machines the flow of current can destroy the running surfaces.
• Corrosion can be the cause of the initial surface damage.

The common factor in all these causes is that damage to the contact surfaces of the roller bearing can be
detected at an early stage. From the fact that, in the overwhelming majority of cases, bearing failures are not
caused by material fatigue, it follows that the early recognition of damage and the analysis and tracing of the
primary causes (Root Cause Failure Analysis (RCFA)) make it possible in the mid-term to preventively avoid
many types of damage and to significantly prolong the service lives of bearings, in addition to reducing
downtime costs.

Consequences of damage

Following the initial damage to the running surfaces, the increasing stresses result in the spreading of
defects. Apart from the running surface other components can also be affected, such as the cage of the
rolling elements. Vibrations do not necessarily indicate the first stages of the damage process, since they
usually represent a symptom rather than a cause of the damage. Nevertheless, all damage processes lead
sooner or later to defects at the points of contact, which express themselves in the form of increasing
vibrations.

Monitoring strategies

Since the direct recognition of the first causes may be difficult, the focus is placed on the early recognition of
the consequential damage to the running surface of the bearing. The earlier this is noticed and investigated,
the greater the chances are of finding the initial damage and rectifying it on the basis of the causes. This
strategy often leads to sustainable savings in the long run. Furthermore, early recognition facilitates the
planning of maintenance, which is an advantage above all for plant operators. Another strategy is to identify
the elements concerned by analyzing the vibration signals.

To aid understanding of the following signal analysis options, a short phenomenological introduction into the
formation of vibrations in defective roller bearings is provided.

Schematic cross-section of a roller bearing:



Overview

TC3 Condition Monitoring 41Version: 1.4

The critical parts of a roller bearing are moving surfaces in contact with each other. These are the rolling
element surface, the contact surface of the inner race and the contact surface of the outer race. Rolling over
local damage in a contact surface results in a shock pulse, which can be picked up by an accelerometer. The
more severe the damage, the stronger the shock pulse.

Evaluation of the vibration in the time range

A simple method for evaluating the state of a roller bearing is to analyze the pulse content of the vibration
signal. Common methods are the calculation of the crest factor of the kurtosis value.

The crest factor

The crest factor is defined as the ratio between the maximum amplitude and the RMS value of the signal. It
is specified in decibel and is a number greater than or equal to zero. The crest factor thus determines the
relationship between maximum amplitude and the effective mean measured oscillation amplitude. Shock
pulses resulting from incipient damage lead to an increase in the crest factor. The following diagram shows
the increase in crest factor with increasing pulse content of the signals.

The bottom diagram shows the typical strong increase in the crest factor when acute shock pulses are
encountered. An increase in the crest factor is usually a good indicator for damage. That makes this variable
a suitable tool for the early recognition of damage and for trend analyses.

Signals from a roller bearing can be interpreted as follows.



Overview

TC3 Condition Monitoring42 Version: 1.4

The diagram above shows two vibration signals from bearings with different wear, in each case with the
corresponding crest factor. The signal sequence at the bottom clearly shows peaks resulting from damage.
While the undamaged bearing has a crest factor of 4.8 dB, the damaged component has a value of 11.4 dB,
clearly indicating the presence of damage.

The crest factor has the advantage that it is very efficient to calculate and easy to interpret. In addition, it can
easily be displayed in a diagram over the time. In order to be able to use it correctly, it is important to
understand the fundamental limits of this type of evaluation:

• The crest factor is strongly influenced by the signal maximum and is therefore not a robust parameter
in a statistical sense.

• The crest factor increases with increasing local damage. However, above a certain degree of damage,
the peak values of the shock pulses will no longer increase significantly, although the number of local
defects will increase. As a result, the signal maxima will not increase, while the RMS value of the signal
continues to increase. Consequently, for heavily damaged bearings the crest factor will fall again.

For this reason it is advisable to measure the crest factor continuously and analyze the results in terms of the
trend.

The kurtosis value

In some cases the limited statistical robustness of the crest factor can be problematic. A more robust, yet
somewhat more computationally demanding parameter is the kurtosis value (also referred to as curvature,
fourth central moment). Like the average value and the variance, the kurtosis is a so-called moment
coefficient, with can be used to describe parameters statistically. The kurtosis describes the ratio between
the extreme values (far away from the mean value) of a distribution and the mean variation. Since occasional
outliers in a measurement series have no significant effect on the result, the kurtosis is statistically much
more robust than the crest factor.

In practice, the kurtosis tends to be used similar to the crest factor. The kurtosis (or the excess) and other
common statistical moment coefficients are calculated in the TwinCAT 3 Condition Monitoring Library using
the MomentCoefficients [} 130] function block.

Processing concepts



Overview

TC3 Condition Monitoring 43Version: 1.4

The above diagram shows the function blocks available for calculating the crest factor and kurtosis. The
CrestFactor [} 83] function block can evaluate data from several sensors at the same time, provided that the
number of individual values is the same for each channel. The return value consists of an individual value for
each channel. The individual values are returned in a vector. In the above diagram this is indicated by the
arrows in horizontal and vertical direction. The crest factor function block in each case contains 5 individual
values (vertical) for 7 channels (horizontal) and returns the crest factor for each of the 7 channels.

The kurtosis can be evaluated with the MomentCoefficients [} 130] function block. Here the values are
transferred alternatively for all channels and individual time steps, or block-by-block for several time steps,
which is more efficient for single-channel signals due to the smaller overhead.

Envelope spectrum

Theory

The determination of the crest factor or kurtosis provides early pointers to the presence of damage with very
little expenditure. Since the dismantling and inspection of components always entails expense – in some
cases considerable – and in view of the fact that there may be a large number of bearings, additional
diagnostic possibilities are of interest with which damaged bearings or even individual components can be
more accurately identified. The identification of defects is based on the evaluation of shocks which can be
traced back to damage to the contact surfaces. In case of damage to a rotating part, the shock pulses occur
periodically, wherein the length of the period depends on the frequency with which a defect touches the
contact surface. This shock pulse period depends on the speed of rotation of the bearing on the one hand
and on the geometry of the element on the other. Hence, the period of the shock pulses can identify the
defective component.

The shock pulses contain a high-frequency signal component, which is due to the vibrations of the activated
machine component, and a superimposed (folded) and possibly also a modulated low-frequency component,
which contains information about the periodic repetitions of the shocks. These low-frequency portions of the
signal can be determined by the calculation of the envelope. The envelope can be calculated efficiently by
applying the Hilbert transformation in the frequency range. Prior filtering by a high-pass filter, such as that
provided by the TwinCAT 3 Controller Toolbox, may be useful, but is not absolutely necessary. Following the
calculation of the envelope the power spectrum of the envelope signal is determined. The distinctive
frequencies of this envelope spectrum identify the shock periods.

Application

The envelope spectrum is helpful in particular for diagnosing which units or which components of a bearing
may be defective. In addition to that, the possibility of evaluating specific important portions of the signal and
excluding interfering parts is of interest for the early recognition of damage. If they are to be used for early
recognition, then the damage frequencies in question must be determined from the bearing geometry and
monitored.



Overview

TC3 Condition Monitoring44 Version: 1.4

The above diagram shows the envelope of the signal of a damaged roller bearing already used before. The
time signal is marked by the blue points, the envelope by the red line. For better understanding a green
dotted line plots the sliding mean value of the time signal, which is not exactly zero, and the light blue line
plots the amounts of the negative values in the time signal. It can be seen that the envelope always lies very
close to the maximum values of the time signal or the amount of the time values. Peaks or negative
deflections in the time signal lead to peaks in the envelope, whilst ‘background noise’ in the time signal is
changed very little by the envelope formation.

Analysis of the envelope spectrum

Since a sequence of periodic shocks (pulse train) corresponds to a signal with many harmonics, the
envelope spectrum contains the base frequency on the one hand and the integer multiples of the base
frequency on the other. Just like for a power or magnitude spectrum, the frequency associated with the
spectral values is derived from the index of the result array multiplied with the frequency resolution of the
FFT; see Fourier analysis [} 13]. with the length of the FFT N and the sampling rate fs it follows: Δf = fs ⁄ N and
therefore for the frequency of the frequency bin with index m : fm = (m-1) Δf (assuming the array index m
starts with 1).

For diagnosis the base frequency of the pulse train must be identified. The harmonics are recognizable by a
comb-like sequence of sharp maxima with an even spacing. The base frequency is the distance between
these maxima, i.e. usually the frequency of the first maximum of this series. Their inverse value results in the
period of the shocks; the unit of the inverse value is thus a time difference. Together with the rotational
speed of the axis, which has to be measured, and the speed ratios of the damage frequencies, which can be
determined from the bearing geometry, components from which the damage may have originated can be
determined.

Characteristic damage frequencies in roller bearings

The illustration below shows by way of example the speed ratios that can occur in a simple roller bearing. In
principle, shock pulses occur at the frequency with which the point of contact between two bearing elements
passes a point with a damaged surface (on the upper side of the rolling element at the very bottom in the
picture). This point of contact also moves due to the movement of the elements relative to each other. The
rotary speed or angular speed of the point of contact can be determined based on the rule that there is
hardly any slip in a correctly functioning bearing, which means that the elements roll off one another almost
completely.

Roller bearing geometry parameter



Overview

TC3 Condition Monitoring 45Version: 1.4

Assuming the speed frot of an axis that is connected to the inner race is measured and the diameters of the
bearing parts behave as follows: Diameter of the inner race DI, diameter of the balls DB, diameter of the outer
race DA. Suppose the number of balls is Z. DI and DA can be used to determine the pitch diameter: DP = (DI
+ DA)/2 If the inner race rotates with a speed of frot, this can be used to determine the pulse frequency. The
following acronyms are common for the designation of the frequencies:

• BPFO (Rolling element pass frequency outer race): Frequency with which the roller elements pass the
outer race.

• BPFI (Rolling element pass frequency inner race): Frequency with which the roller elements pass the
inner race.

• BSF (Bearing spin frequency rolling elements): Frequency with which the balls/rolling elements roll
relative to a running surface.

• BPF (Ball pass frequency): Rolling element frequency, the frequency with which a defect on a ball
passes a running surface.

• FTF (Fundamental Train frequency): Speed of rotation of the cage or the bearing element modulation
frequency

Angle of contact:

For an accurate calculation in the case of bearings that bear axial loads, the diameter of the balls is to be
corrected with the angle of contact α with which the balls touch the running surface: Db = cos(α) DB. For
radial bearings this angle is 0°.This results in the following formulas used in practice:

BPFO = Z * frot /2 * (1 - Db / DP)
BPFI = Z * frot /2 * (1 + Db / DP)
BSF = frot /2 * DP/DB * (1 - (Db/DP)2)
BPF = 2 * BSF
Rotating inner race: 
FTF = frot /2 * (1 - Db/DP)
Rotating outer race: 
FTF = frot /2 * (1 + Db/DP) (BPFI + BPFO) / frot always equals the number of roller elements Z. Slight deviations
result from these formulas in practice because, for example, the angle of contact α can vary under load. As a
simple rule of thumb, the value



Overview

TC3 Condition Monitoring46 Version: 1.4

f BPFI = 0.6 * frot * Z

is often used as indicator frequency for a defective inner race, while

fBPFO = 0.4 * frot * Z

is used as indicator for a defective outer race. For the determination of the bearing geometry it is useful to
refer to the bearing manufacturer’s data. It may be helpful to use calculation programs made available for
download by some manufacturer.

Praktischer Hinweis: The type number of a roller bearing does not allow any clear conclusion to be drawn
with regard to the bearing geometry; parameters such as the number of rolling elements can by all means
change.

Processing concept

Frequency analysis processing steps

Analysis steps:

The above diagram shows the processing steps for the envelope spectrum as well as the function blocks
that can be used here. First of all the envelope is calculated using the Envelope [} 109] function block.
Subsequently the power spectrum is calculated (PowerSpectrum [} 142]) function block, in the same way as
the spectrum for any time signal. Since the envelope spectrum obtained fluctuates relatively strongly with
non-stationary signals, it is recommended to evaluate it statistically using the quantile calculation method
(Quantiles) as described above in the section Frequency analysis [} 35]. The values obtained can be
automatically checked for adherence to certain threshold values by means of limit value monitoring using the
WatchUpperThreshold [} 162] function block.



Overview

TC3 Condition Monitoring 47Version: 1.4

2.2.4 Gearbox monitoring

Motivation

This section describes the concept of the monitoring of gearboxes. Like roller bearings, gearboxes are
among the commonest machine elements. Since they are used in a wide range of drives, they usually play a
key role for the reliable function of a system. Typical gearbox damage differs from damage in roller bearings.
This is due on the one hand to the fact that in gearboxes highly stressed parts slide directly on top of one
another, which places particular demands both on the lubrication and on the quality of the surface. Due to
the forces resulting from normal operation that have to be absorbed, gearboxes are relatively large and thus
expensive and a replacement may be necessary during the service life of the machine even if maintenance
has been performed correctly. Adequate lubrication and correct assembly are also important here. However,
the damage patterns that occur are by no means exclusively attributable to errors in these points. Excessive
voltages at the contact points or interaction between corrosion and overheating can lead to incipient surface
damage (pitting, micropitting, spalling, wear) right up to chipping and deformation of the tooth surfaces.
Mechanical shocks and overload can cause the direct breakage of gear wheels. Compared with roller
bearings, gear unit defects tend to result in abrupt failure and significant consequential costs. This is due to
the fact that in gearwheels the greatest tension is at the tooth base – see diagram below (red surfaces).
Consequently, fatigue symptoms occur at an early stage there, which lead in the course of the time to deep
cracks and ultimately to the breaking off of teeth. The latter leads in extreme cases to the whole gearbox
blocking apparently without preliminary warning and causing extensive consequential damage, for example
due to the breakage of axles. The causes just mentioned and the consequential behavior give rise to two
objectives for the monitoring of gearboxes:

• Firstly, it is of interest to monitor symptoms of wear on a long-term basis and to recognize problems at
an early stage through trend observations and to rectify them promptly, before damage occurs.

• Secondly, acute damage can be recognized immediately by monitoring, whereby repair measures can
be initiated earlier and failures and downtime can be reduced.

Theory

The theoretical background of the early detection for gearbox damage is briefly outlined below.

Meshing oscillations

In a gearbox the gear wheels roll off one another, in the course of which the individual teeth periodically
come into contact, transfer force and then separate from each another again. While it is possible for this to
take place with a precisely constant transmission ratio and largely constant force in a new, well-designed
gearbox (involute toothing), it is not feasible for this roll-off to take place without a portion of sliding
movement. As the above picture shows, a predominantly rotary motion takes place in the center of the tooth
surface, with a growing portion of sliding movement as the distance from the center increases. In addition,
the speed ratio is largely constant with such toothing, but the transmitted torque varies. Since the teeth are
made of hard, elastic material and therefore deform slightly, they are excited to oscillate with the period of
the meshing – the so-called meshing frequency.

Harmonics of the meshing frequency



Overview

TC3 Condition Monitoring48 Version: 1.4

Since the meshing oscillation is a forced oscillation that does not have a sinusoidal appearance, but is based
on the comparatively sudden occurrence and abatement of the forces, it consists in the spectrum of
numerous harmonics whose frequencies are integer multiples of the meshing frequency. The oscillations
depend on the load on the gear wheel, since the torque deforms the teeth elastically. Gear wheel oscillations
are thus load-dependent.

Consequences of wear

With increasing wear the tooth profiles deviate more and more from the ideal shape, since material is
removed by the sliding of the surfaces over one another. This happens more and more intensively the further
away the surface is from the center of the tooth flank, as the diagram above shows. The sliding motion itself
therefore increases and the torque varies more strongly, whereby the meshing oscillations and in particularly
the harmonics they contain are amplified. The analysis of the harmonics is thus the key to the evaluation of
the condition of the gearbox. Note that the sudden reduction in the harmonics in an already clearly damaged
gearbox must be taken as an alarm signal: The breakage of a tooth flank may be so advanced that the
elasticity of the toothing has increased. In this case the total failure of the gearbox can be expected soon.

The cepstrum

The cepstrum is the most important tool for the analysis of gearbox oscillations as well as harmonics and
modulations. This is an operation that highlights periodicities in the signal spectrum.

The power cepstrum for a signal x(t) is defined as:

Interpretation

While a Fourier analysis indicates periodicities in the time range of a signal, the cepstrum indicates
periodicities in the frequency range. An inverse Fourier transformation maps the result back into the time
domain. However, the associated value index does not represent the original time axis relating to t, but the
spectrum periods that have occurred. The parameter has the unit of time and is referred to quefrency, to
indicate that it is a combination of inversion and inverse transformation. There are similar differentiating
designations, for example, for entities and operations such as harmonic, filtering and phase analysis. The
longer the length N of the two Fourier transforms employed is, the more input values are referred to for the
calculation of the cepstrum, which reduces the influence of noise and (non-systematic) fluctuations. The time
resolution can only be enlarged if the sampling rate is increased.

As an example, the following diagram shows the power spectrum and power cepstrum of a so-called
harmonic sound complex. The time domain of the signal shows a repeated pulse every 2 ms. Each individual
pulse is made up of superimposed harmonics, which means the situation is similar (coarse model) to the
case of the gear unit damage described above. The diagram in the center shows the power spectrum. The
periodicity of the power spectrum is clearly visible; the maxima are 0.5 kHz apart. The bottom diagram shows
the magnitude the power cepstrum. The largest (global) maximum is at a quefrency of 0 ms, what has no
relevance in practice (it merely shows the average value of the power spectrum). Apart from this maximum,
the largest maximum can be seen at 2 ms, which precisely corresponds to the temporal repetition of the time
signal or the reciprocal value of the distance of the local maxima in the power spectrum 1/0.5 kHz = 2 ms.



Overview

TC3 Condition Monitoring 49Version: 1.4



Overview

TC3 Condition Monitoring50 Version: 1.4

Processing concept (calculation steps)

Calculating the power cepstrum

The calculation of the cepstrum is based, as follows from the definition, on the "normal" frequency analysis.
Accordingly, as described in section Analysis of data streams [} 16], initially the signal has to be split into
sections, followed by multiplication with a window function, also referred to as "windowing". The power
cepstrum is then calculated based on the calculation steps described about, i.e. Fourier transformation,
absolute value calculation, logarithmic calculation and further Fourier transformation. It is important here to
avoid exceeding value ranges because, similar to division by zero, the logarithm of zero is not defined.

The initial calculation result has a complex value. Typically, the magnitude or the square of the magnitude is
used for the further analysis.



Overview

TC3 Condition Monitoring 51Version: 1.4

A sample is available for download from here: Power cepstrum [} 220]

Calculation of quantiles

The short-term values of the cepstrum usually fluctuate quite strongly like those of the FFT from which they
are derived. Therefore the next recommended processing step is the calculation of quantiles for each period
obtained, i.e. each quefrency. For monitoring tasks, for example, the 95% quantile will often be determined.
This is the value that will not be exceeded by the measured values in 95% of all cases. This calculation takes
place as with the frequency analysis using the Quantiles [} 148] function block.

Threshold value monitoring

Further processing depends on the specific objective:

• For trend analysis, it is useful to save the values obtained and to display their development over long
periods.

• For automatic machine monitoring, a classification with configurable thresholds or limit values is useful.
This is done by the DiscreteClassification function block [} 89] sketched in here.

• For tasks such as machine protection with limited scope for individual analysis, the
WatchUpperThreshold function block [} 162] can be used, which automatically calculates the number
of the highest limit category. If, for example, the state ‘Everything OK’ is assigned to category 0, the
state ‘Warning’ to category 1 and the state ‘Alarm’ to category 2, then a warning can be sent by a text
message when Level 1 is the output and the plant can be switched off automatically if Level 2 is the
output.

2.3 Literature notes
Information - not recommendations - on secondary literature is provided below. The list is not all-embracing,
and only provides a small subset of the relevant literature.

Digitale Signalverarbeitung, Fourier-Analyse, Fensterung (Deutsch)
• A.V. Oppenheim, R.W. Schafer, J.R. Buck: Zeitdiskrete Signalverarbeitung. Pearson Studium, 2004.

ISBN 3-8273-7077-9
• K.-D. Kammeyer, K. Kroschel: Digitale Signalverarbeitung – Filterung und Spektralanalyse mit

MATLAB-Übungen. Teubner, 2002. ISBN 3-519-46122-6

Discrete-Time signal processing, Fourier-analysis, windowing (English)
• A.V. Oppenheim, R.W. Schafer, J.R. Buck: Discrete-Time Signal Processing. Pearson Education,

2009. ISBN 987-0131988422
• J.G. Proakis, D.K. Manolakis: Digital Signal Processing. Pearson Education, 2013.

ISBN 978-0131988422

Zustandsüberwachung (Deutsch)
• J. Kolerus, J. Wassermann: Zustandsüberwachung von Maschinen. Expert Verlag, 2008. 

ISBN: 978-3-8169-2597-2
• DIN ISO 10816, Mechanische Schwingungen – Bewertung der Schwingungen von Maschinen durch

Messung an nicht-rotierenden Teilen (vorher VDI-Richtlinie 2056). Die Norm besteht aus mehreren
Bestandteilen
◦ DIN ISO 10816-3 bezieht sich auf industrielle Maschinen mit einer Nennleistung über 15 kW und

Nenndrehzahlen zwischen 120 U/min und 15000 U/min bei Messung am Aufstellungsort.
◦ DIN ISO 10816-7 bezieht sich auf Kreiselpumpen für den industriellen Einsatz
◦ DIN ISO 10816-21 Windenergieanlagen mit horizontaler Drehachse und Getriebe beziehen

• DIN ISO 7919, Mechanische Schwingungen - Bewertung der Schwingungen von Maschinen durch
Messungen an rotierenden Wellen. Die Norm besteht aus mehreren Teilen
◦ DIN ISO 7919-3 bezieht sich auf Gekuppelte industrielle Maschinen



Overview

TC3 Condition Monitoring52 Version: 1.4

◦ DIN ISO 7919-2 bezieht sich auf Stationäre Dampfturbinen und Generatoren über 50 MW mit Nenn-
Betriebsdrehzahlen von 1500 min-1, 1800 min-1, 3000 min-1 und 3600 min-1

• DIN ISO 20816-1, Mechanische Schwingungen – Messung und Bewertung der Schwingungen von
Maschinen. Zusammenfassung von DIN ISO 7919-1 und DIN ISO 10816-1.

• DIN ISO 13373-1, Zustandsüberwachung und -diagnostik von Maschinen - Schwingungs-
Zustandsüberwachung - Teil 1: Allgemeine Anleitungen

• DIN ISO 13373-2, Zustandsüberwachung und -diagnostik von Maschinen - Schwingungs-
Zustandsüberwachung - Teil 2: Verarbeitung, Analyse und Darstellung von Schwingungsmesswerten

• DIN ISO 17359, Zustandsüberwachung und -diagnostik von Maschinen - Allgemeine Anleitungen

Condition Monitoring (English)
• R.B. Randall: Vibration-based Condition Monitoring. Wiley, 2011. ISBN: 978-0-470-7485-8
• ISO 10816, Mechanical vibration -- Evaluation of machine vibration by measurements on non-rotating

parts.
◦ ISO 10816-3 Industrial machines with nominal power above 15 kW and nominal speeds between

120 U/min and 15000 U/min when measured in situ.
◦ ISO 10816-7 Rotodynamic pumps for industrial applications, including measurements on rotating

shafts
◦ DIN ISO 10816-21 Horizontal axis wind turbines with gearbox

• ISO 7919, Mechanical vibration -- Evaluation of machine vibration by measurements on rotating shafts.
◦ ISO 7919-3 Coupled industrial machines
◦ ISO 7919-2 Land-based steam turbines and generators in excess of 50 MW with normal operating

speeds of 1 500 r/min, 1 800 r/min, 3 000 r/min and 3 600 r/min
• ISO 13373-1, Condition monitoring and diagnostics of machines - Vibration condition monitoring -Part

1: General procedures
• ISO 13373-2, Condition monitoring and diagnostics of machines - Vibration condition monitoring - Part

2: Processing, analysis and presentation of vibration data
• ISO 17359:2011, Condition monitoring and diagnostics of machines - General guidelines



Installation

TC3 Condition Monitoring 53Version: 1.4

3 Installation

3.1 System requirements
The following article describes the minimum requirements needed for engineering and/or runtime systems.
The Condition Monitoring setup is to install on engineering and runtime system.

Engineering enviroment

An engineering environment describes a computer which used to develop but NOT run PLC or other
application code. On an engineering computer, the following requirements are needed:

• TwinCAT3 XAE (engineering installation) build 4018 or higher
• Please note: For engineering purposes, a 7-Day trial license may be (repeatedly) used, as described in

our licensing article

Runtime environment

A runtime environment describes a computer which runs PLC programs. On a runtime computer, the
following requirements are needed:

• TwinCAT3 XAR (runtime installation) build 4018 or higher
• 32 bit and 64 bit systems are supported
• Licenses for TC1200 PLC and for TF360X Condition Monitoring
• Please note: For testing purposes, a 7-Day trial license may be used, as described in our licensing

article

Engineering and runtime on the same computer

In case you would like to run both the engineering and runtime environments on the same computer (for
example to test the PLC program before downloading it to the target runtime), the following requirements are
needed:

• TwinCAT3 XAE (engineering installation) build 4018 or higher
• Licenses for TC1200 PLC and for TF360X Condition Monitoring
• Please note: For testing purposes, a 7-Day trial license may be used, as described in our licensing

article

3.2 Installation
The following section describes how to install the TwinCAT 3 Function for Windows-based operating
systems.

ü The TwinCAT 3 Function setup file was downloaded from the Beckhoff website.
1. Run the setup file as administrator. To do this, select the command Run as administrator in the context

menu of the file.
ð The installation dialog opens.



Installation

TC3 Condition Monitoring54 Version: 1.4

2. Accept the end user licensing agreement and click Next.

3. Enter your user data.



Installation

TC3 Condition Monitoring 55Version: 1.4

4. If you want to install the full version of the TwinCAT 3 Function, select Complete as installation type. If
you want to install the TwinCAT 3 Function components separately, select Custom.

5. Select Next, then Install to start the installation.

ð A dialog box informs you that the TwinCAT system must be stopped to proceed with the installation.



Installation

TC3 Condition Monitoring56 Version: 1.4

6. Confirm the dialog with Yes.

7. Select Finish to exit the setup.

ð The TwinCAT 3 Function has been successfully installed and can be licensed (see Licensing [} 56]).

3.3 Licensing
The TwinCAT 3 Function can be activated as a full version or as a 7-day test version. Both license types can
be activated via the TwinCAT 3 development environment (XAE).

The licensing of a TwinCAT 3 Function is described below. The description is divided into the following
sections:

• Licensing a 7-day test version [} 56]

• Licensing a full version [} 58]

Further information on TwinCAT 3 licensing can be found in the “Licensing” documentation in the Beckhoff
Information System (TwinCAT 3 > Licensing).

Licensing a 7-day test version
1. Start the TwinCAT 3 development environment (XAE).
2. Open an existing TwinCAT 3 project or create a new project.

https://infosys.beckhoff.de/content/1033/tc3_licensing/index.html?id=4971678236866464095


Installation

TC3 Condition Monitoring 57Version: 1.4

3. If you want to activate the license for a remote device, set the desired target system. To do this, select
the target system from the Choose Target System drop-down list in the toolbar.
ð The licensing settings always refer to the selected target system. When the project is activated on

the target system, the corresponding TwinCAT 3 licenses are automatically copied to this system.
4. In the Solution Explorer, double-click License in the SYSTEM subtree.

ð The TwinCAT 3 license manager opens.
5. Open the Manage Licenses tab. In the Add License column, check the check box for the license you

want to add to your project (e.g. “TF6420: TC3 Database Server“).

6. Open the Order Information (Runtime) tab.
ð In the tabular overview of licenses, the previously selected license is displayed with the status

“missing”.



Installation

TC3 Condition Monitoring58 Version: 1.4

7. Click 7-Day Trial License... to activate the 7-day trial license.

ð A dialog box opens, prompting you to enter the security code displayed in the dialog.
8. Enter the code exactly as it appears, confirm it and acknowledge the subsequent dialog indicating

successful activation.
ð In the tabular overview of licenses, the license status now indicates the expiration date of the license.

9. Restart the TwinCAT system.
ð The 7-day trial version is enabled.

Licensing a full version
1. Start the TwinCAT 3 development environment (XAE).
2. Open an existing TwinCAT 3 project or create a new project.
3. If you want to activate the license for a remote device, set the desired target system. To do this, select

the target system from the Choose Target System drop-down list in the toolbar.
ð The licensing settings always refer to the selected target system. When the project is activated on

the target system, the corresponding TwinCAT 3 licenses are automatically copied to this system.
4. In the Solution Explorer, double-click License in the SYSTEM subtree.

ð The TwinCAT 3 license manager opens.



Installation

TC3 Condition Monitoring 59Version: 1.4

5. Open the Manage Licenses tab. In the Add License column, check the check box for the license you
want to add to your project (e.g. “TE1300: TC3 Scope View Professional”).

6. Open the Order Information tab.
ð In the tabular overview of licenses, the previously selected license is displayed with the status

“missing”.

A TwinCAT 3 license is generally linked to two indices describing the platform to be licensed:
System ID: Uniquely identifies the device
Platform level: Defines the performance of the device
The corresponding System Id and Platform fields cannot be changed.



Installation

TC3 Condition Monitoring60 Version: 1.4

7. Enter the order number (License Id) for the license to be activated and optionally a separate order
number (Customer Id), plus an optional comment for your own purposes (Comment). If you do not
know your Beckhoff order number, please contact your Beckhoff sales contact.

8. Click the Generate File... button to create a License Request File for the listed missing license.
ð A window opens, in which you can specify where the License Request File is to be stored. (We

recommend accepting the default settings.)
9. Select a location and click Save.

ð A prompt appears asking whether you want to send the License Request File to the Beckhoff license
server for verification:

• Click Yes to send the License Request File. A prerequisite is that an email program is installed on your
computer and that your computer is connected to the internet. When you click Yes, the system
automatically generates a draft email containing the License Request File with all the necessary
information.

• Click No if your computer does not have an email program installed on it or is not connected to the
internet. Copy the License Request File onto a data storage device (e.g. a USB stick) and send the file
from a computer with internet access and an email program to the Beckhoff license server
(tclicense@beckhoff.com) by email.

10. Send the License Request File.
ð The License Request File is sent to the Beckhoff license server. After receiving the email, the server

compares your license request with the specified order number and returns a License Response File
by email. The Beckhoff license server returns the License Response File to the same email address
from which the License Request File was sent. The License Response File differs from the License
Request File only by a signature that documents the validity of the license file content. You can view
the contents of the License Response File with an editor suitable for XML files (e.g. “XML Notepad”).
The contents of the License Response File must not be changed, otherwise the license file becomes
invalid.

11. Save the License Response File.



Installation

TC3 Condition Monitoring 61Version: 1.4

12. To import the license file and activate the license, click License Response File... in the Order
Information tab.

13. Select the License Response File in your file directory and confirm the dialog.

ð The License Response File is imported and the license it contains is activated. 
Existing demo licenses will be removed.

14. Restart the TwinCAT system.
ð The license becomes active when TwinCAT is restarted. The product can be used as a full version.

During the TwinCAT restart the license file is automatically copied to the directory ...\TwinCAT\3.1\Target
\License on the respective target system.



Technical introduction

TC3 Condition Monitoring62 Version: 1.4

4 Technical introduction

4.1 Memory Management
The Condition Monitoring library internally uses TcCOM objects provided by the installed drivers. These are
created dynamically using the TwinCAT AMS router memory.

Necessity for dynamic memory management

All memory requests and initializations are accomplished during the initialization phase. Since the number of
elements of the input data and the internal structures depend on the configuration of the respective function
blocks, the memory space for them is allocated dynamically as a matter of principle. This is done
automatically by using the PLC Condition Monitoring Library.

Since all memory assignments take place during the initialization and the initialization of function blocks may
therefore take up a relatively large quantity of memory, it can also fail at this point – but not later – due to a
lack of memory space.
The allocated memory is released again once the object is deleted.

TwinCAT router memory for dynamically created objects

The buffers reserved by the TwinCAT 3 Condition Monitoring Library are created during the initialization of
function blocks in the TwinCAT AMS router memory, so that they are available for execution under real-time
conditions. Certain functions, such as high-resolution histograms and quantiles as well as the calculation of
spectra with very high resolutions, require considerably more router memory than conventional control
programs. Therefore it may be necessary to increase the size of the router memory.

Adapting the router memory

The standard size is 32 MB (2 MB up to TwinCAT 3.1.4016). The current setting can be displayed with the
AMS Router Information dialog box.

To increase the router memory capacity, a value in MB is entered in the TwinCAT configuration under
System\ Real-Time\ Settings and the configuration is activated.



Technical introduction

TC3 Condition Monitoring 63Version: 1.4

Up to TwinCAT 3.1.4022.4, a reboot of the target device was required for adaptation of the router memory.

4.2 Task Setting

Applications with several real-time tasks

A Condition Monitoring analysis chain is made up of the data collection, usually several algorithms and the
provision of the results. The further processing of the results as well as the reactions of the program to these
depend on the application.

Since the scope of the input data, e.g. the length of input vectors, strongly depends on the respective
application, signal processing software requires arrays with different lengths and different element types.
Therefore the TwinCAT 3 Condition Monitoring Library uses a flexible data structure throughout for numerical
arrays. This allows numerical data to be saved, transferred and evaluated block by block. It can represent
both multi-dimensional and one-dimensional data.

The Condition Monitoring algorithms are very CPU-intensive depending on the configuration. The algorithms
are therefore preferentially outsourced to a separate task. In this case the analysis chain extends over
several tasks. The associated difficulties of synchronous data exchange and thread security are internally
encapsulated by the library function blocks in order to enable flexibly manipulable analysis chains.

Further information on data exchange can be found in section “Parallel processing” [} 66].

Tip: Of course, the program can also be implemented as an application of a single task. This is
recommended if the required algorithms can be processed fast enough, depending on the CPU and the task
cycle time.

Task cycle times

The analysis steps and the corresponding buffer sizes represent a condition for the task cycle time. The
calculation must be performed often enough to be able to process all input data.

Example: The data collection is stored in buffers, the size of which was declared as 1,600 elements. With an
oversampling rate of 10x, a buffer takes 160 cycles to fill. If the signal collection is triggered by a 1 ms task,
the task calculation must be triggered with a cycle time of less than 160 ms.

It is recommended to set the calculation cycle time to a lower value, in order to realize a faster response (at
least a factor of 0.5). On the other hand, the smallest possible calculation cycle time depends on the
complexity of the algorithms to be calculated and the performance of the CPU used.

Determination of the task cycle times
Calculation cycle time < 0.5 * signal collection cycle time * buffer size / oversampling rate

Most algorithms (spectrum, cepstrum,...) contain computationally intensive mathematical operations. They
should be called in a task context with sufficient cycle time. The required execution point also depends on
the hardware platform. The above equation represents an upper guide value for the calculation cycle time.
For example, a profiler is provided for each function block for estimating a lower guide value, which can be
activated during online monitoring. You can find this profiler in the instance of the function block under



Technical introduction

TC3 Condition Monitoring64 Version: 1.4

fbImplementation → fbExecutionTimeMonitoring. By manually setting
bMeasureMeasureMaxExecTime you activate the profiler. As usual, you do not want to access internal
variables of a function block programmatically.

The displayed values are maximum execution times. The task settings should provide a small reserve for
possible combinations of parameters and input values that could lead to longer execution points.

Exceptions to the above considerations are some statistical building blocks (quantiles, histograms,...). As a
rule, these function blocks initially only add data for several task cycles to the internal memory. Only the
subsequent calculation (collecting data after N cycles) takes time. The corresponding task cycle time can be
adapted to the simple call without calculation. While this leads to exceeding of the cycle time in the event of
calls with calculation, it ensures fast response times. This is a special case for PLC programming. Normally,
a task cycle time should never be exceeded.

Note the cycle time
The cycle time of tasks, which only call Condition Monitoring algorithms, can be adjusted in such a
way that the cycle time is rarely exceeded. Program blocks, which are called by this task, should not
contain other program code! And the priority of these slower tasks should, of course, be lower than
that of other tasks.

Floating point exceptions

These exceptions can be disabled separately for each task. They are enabled by default.



Technical introduction

TC3 Condition Monitoring 65Version: 1.4

Some algorithm calls can lead to a NaN (not a number) result. If NaNs are to be processed in the
application, the FP exceptions have to be disabled for this task. Then, you must verify that the whole
program code and all functions can handle NaNs.
Further information regarding the handling of NaN values can be found in the separate section “NaN
values” [} 65].

NOTE
Execution stop
Floating point exceptions are active by default. Comparisons with NaN (Not a Number) can cause such an
exception that leads to an execution stop and may possibly cause machine damage. It is urgently recom-
mended to check the result for NaN before it is processed. (see section “NaN values”)

4.3 NaN values
In some cases error handling by error codes [} 224] is not the best choice, in particular if operations return
undefined values on account of unusual, but in principle possible input data, or if values are to be excluded
from the processing.

The IEC 745 standard defines symbolic values of the category NaN (Not a Number) for these purposes. In
the following situations these are generated or taken into account in the TwinCAT 3 Condition Monitoring
library:

• Sufficient values are not yet present for a statistical evaluation.
• Certain values are to be excluded from an evaluation in statistical function blocks.
• Interruptions occur in the frequency analysis of a time series, so that gaps in the values have to be

accounted for.

The following points rank among the main features of NaN values:

• All arithmetic operations that use NaN as input data return NaN as the result.
• All relational operators =, !=, > < >= <= always return the value False if at least one of the operands is

NaN.
• The standard function isnan() or _isnan() or the PLC function LrealIsNaN() (Tc2_Utilities library)

returns the value True if the argument has the value NaN.
• The expression isnan(a) is equivalent to the expression !(a == a) or NOT(a = a).



Technical introduction

TC3 Condition Monitoring66 Version: 1.4

The fact that NaN values reproduce themselves when used in further calculations is advantageous in that
invalid values cannot be overlooked. The ability of a function block to create NaN values is noted in its
description.

NOTE
Malfunctions of software
NaN values may only be used in other PLC libraries, in particular as control values in functions for Motion
Control and for drive control, if they are expressly approved! Otherwise NaN values can lead to potentially
dangerous malfunctions of the software concerned!

NOTE
Floating point exceptions
If NaNs are to be used and processed in the application, the FP exceptions must be switched off. Other-
wise, comparisons with NaN can lead to an exception, which will cause a stop of the runtime and possible
machine damage.

Further explanations on the option to switch the FP exceptions off and on can be found in chapter Task
settings [} 63].

4.4 Parallel processing with Transfer Tray
The following section deals with thread-safe and multi-core capable data transmission, which is provided
by the TwinCAT 3 Condition Monitoring Library.

Asynchronous communication and parallel execution of computationally intensive steps

Condition Monitoring applications often require data sets of several megabytes in size, which increase the
demands on computing time and power. The maximum permissible computing time is based on the cycle
time, which must never be exceeded for drive controllers, for example. For this reason, multi-task software
architectures for TwinCAT 3 Condition Monitoring applications are recommended in the case of
computationally intensive algorithms. See Chapter "Task settings [} 63]".

Idea of the transfer tray

This requires thread-safe implementations of the algorithms. The TwinCAT 3 Condition Monitoring Library
offers a very efficient and easy-to-use communication mechanism that eliminates typical problems with
locking and unlocking data as far as possible. The library offers a very efficient mechanism for parallel
processing of data, e.g. with different data rates. This allows for error-free transfer of array data between
multiple tasks for exclusive synchronized access - using queues based on the transfer tray. This also allows
the use of multi-core CPUs without synchronization problems and prevents hard to diagnose errors such as
blockages and inconsistencies caused by not synchronized overrides of numerical data.

The library function blocks may not be declared as global instances in the list of global variables because
parallel write access to MultiArray buffers (see section MultiArray Handling [} 68]) and parallel execution of
the same function blocks are expressly prohibited.

Example of the necessity of cycle time transitions

In some circumstances, a sequential concept is not sufficient. This is always the case when the processing
of a data set takes more time than the cycle time of a control task allows.

For example, the control task has a cycle time of 1 millisecond and data oversampling of 20 samples per
cycle (equivalent to a sampling rate of 20 kHz). For signal processing, a frequency resolution of 0.16 Hz is
required, which may be necessary for the analysis of large roller bearings, for example, in order to
distinguish between deficiencies in the inner and outer raceway, which run at only slightly different speeds.

The relationship between FFT-length N, frequency resolution Δf and sampling rate fs is: N = fs /Δf (for
simplification, a rectangular window is assumed here). This results in an FFT length of 
N = 125000. In addition, the FFT length N' must be a power of two, resulting in log2 (125000) = 16.93, which
means that the signal of length N is filled with zeros to N' = 217 = 131072.



Technical introduction

TC3 Condition Monitoring 67Version: 1.4

The required computing time depends on the performance of the CPU, but the calculation in the control task
is definitely not possible. The required amount of input data corresponds to a signal segment of several
seconds, so that the calculation is therefore rarely necessary.

Solution concept with the transfer tray

The high-performance solution provided by the Condition Monitoring Library is shown in the diagram below.
The control task collects data in "packets" of 20 samples via the oversampling terminal (shown in blue in the
diagram). These are stored in a buffer whose size corresponds to the length of the input buffer of the
amplitude spectrum function block (125000 / 2 = 62500, shown in green in the diagram). Once the buffer is
full, i.e. after 3125 cycles of the control task, its object reference is transferred to a second task (processing
task) with the aid of an asynchronous communication mechanism (FIFO principle), which has a much longer
cycle time of 20 milliseconds. According to the rule of thumb described in Task Setting [} 63], a maximum
cycle time of 1562.5 ms is allowed for the calculating task. This requirement is clearly met with the value of
20 ms.

This communication mechanism uses hardware-secured, so-called atomic operations to guarantee that only
one of the tasks has access to the corresponding buffer (hereinafter also referred to as MultiArray) at the
same time. This is similar to a transfer tray at a bank counter, which ensures that either the customer or the
cashier (but not both simultaneously) can access its contents.

Response latency
The FIFO principle applies to queues. Therefore, and because of asynchronous communication, the
result is not immediately available. Responses with variable latency are possible.

The calculation result (the magnitude spectrum) is returned to the control task via a further queue with the
same communication mechanism, which can then further evaluate it. Of course, communication to another,
third task and the provision of the result in the computing task itself is also possible.

In general, compared to motion applications the computing task is not subject to hard real-time conditions
and can therefore be executed with a lower priority than the control task. The task management of the
TwinCAT 3 system ensures that the task with the highest priority is always executed first, so that these real-
time conditions can be fulfilled even with complex calculations.



Technical introduction

TC3 Condition Monitoring68 Version: 1.4

The presented concept can be used on both single-core and multi-core CPUs. Distribution over many cores
is possible without the central locks causing bottlenecks.

Timeout
The internal communication commands for the transfer tray may fail in rare cases, e.g. depending
on the properties of the hardware. If, for example, there is an empty buffer in the queue that cannot
be removed, because another task is currently accessing it. A synchronous timeout is specified and
may occur as a result of a timeout error. The program must therefore always be prepared for the
possible error state to the effect that a buffer required for the continuity of the signal data is not
available. Consequential errors such as data overflow and discontinuities of analyzed time series
must be processed in a consistent manner. As long as the input signal data of an analysis chain can
be collected without errors, discontinuities do not occur. If a single timeout occurred in a down-
stream algorithm function block, or if no result MultiArray buffer was available for the downstream
algorithm function block, neither input data nor result data are lost. They are transferred during the
next call.

How the transfer tray works

The transfer tray itself is displayed using an internal function block provided by the Tc3_CM library. This
function block is initialized with initial parameters that are defined in the global structure instance.

The typical use of queues is that buffers from exactly one task are added to the queue with a fixed data
stream identifier, and these buffers are removed from a specific other task for processing. These buffers are
then sent back via another queue with a different binding identifier and reused. However, it is also no
problem if several tasks have read or write access to the same queues, e.g. when analyzing statistical data.

The MultiArray buffers

So-called MultiArray buffers are used to communicate data via the transfer tray from one task to the next.
These are explained in the chapter "Using the MultiArray feature [} 68]".

4.5 MultiArray Handling
A MultiArray is a multidimensional data buffer that is used in the Condition Monitoring Library in
combination with the transfer tray. It enables an application to easily exchange multidimensional data
between several PLC tasks. During communication between the tasks, no memory is copied, only references
to the data buffers are transferred, making communication extremely efficient. Communication requires only
a very low overhead with execution times in the microsecond range.

The MultiArray communication ring

The filling (writing of content) and sending (transfer of access rights) of MultiArrays for input or result data
streams have the consequence that "free" MultiArrays are constantly required. For this reason, the evaluated
MultiArrays are returned as "empty" data containers to the task that filled them. This creates a continuous
cycle of MultiArrays, see the diagram in section Parallel processing with Transfer Tray [} 66].

Normally, at least three MultiArrays are required per circuit: The first MultiArray "belongs" to the control task
and is about to be filled with new data. The process task accesses the second MultiArray and processes it. A
third MultiArray must be kept in reserve, so that it is available if the control task has filled the current
MultiArray, but remaining oversampling data has to be written into a next MultiArray in exactly this cycle.
Therefore, the minimum number is three.

Number of MultiArrays
For safety, four MultiArrays per circuit are recommended as a worst-case requirement. If more than
one algorithm accesses the data of a MultiArray, it is recommended to provide an additional MultiAr-
ray for each further accessing algorithm.

The number of MultiArrays provided is set via the input parameters nResultBuffers of the function blocks
of the Condition Monitoring Library. The default value is 4.



Technical introduction

TC3 Condition Monitoring 69Version: 1.4

Number of MultiArrays in the communication ring
More than four MultiArrays are only required if the result buffers (= MultiArrays) are to be processed
directly by several algorithms. In other words, if more than two analysis modules in the communica-
tion ring participate for these results. It is recommended to increase the number of result buffers by
one with each additional analysis module. The number of MultiArray buffers used in an asynchro-
nous communication ring can be configured in each analysis function block.

These additional buffers are created and managed internally. They require a certain amount of additional
memory in the AMS router.

Basically, the dimension of a MultiArray can be configured separately in terms of length, size and even data
type. The parameters together define the shape of the MultiArray for its entire lifecycle.

Note that the internal structure of the MultiArray is automatically managed and does not require any
programming. The service life of the MultiArray is the same as that of the application, i.e. from PLC start to
PLC stop; the MultiArrays are transferred from one task to another using the so-called transfer tray.

The concept is very flexible. Changing and redistributing the calculation to other tasks and/or CPUs is simple
and uncomplicated.

Configuration of MultiArrays

MultiArrays are configured with the ST_MA_MultiArray_InitPars [} 184] structure. This is part of the
Tc3_MultiArray library, which is installed with the Condition Monitoring Setup.

Example configuration of a MultiArray:
cInitSource : ST_MA_MultiArray_InitPars:= ( eTypeCode := eMA_TypeCode_LREAL,
                         nDims := 2,
                         aDimSizes := [cChannels, cBufferLength]);

If the MultiArray is used with the FB_CMA_Source function block, then a configured MultiArray instance (or
several) is required by the source instance fbSource. The MultiArray described above has 2 dimensions
(nDims = 2, nDims = 1 is also allowed); the size of the dimensions is described with aDimSizes.
Accordingly, the described MultiArray is of dimension cChannels x cBufferLength with data type LREAL
for each element. 
Example of using MultiArrays with FB_CMA_Source:
fbSource : FB_CMA_Source := ( stInitPars := cInitSource,
                  nOwnId := eID_Source,
                  aDestIDs := [eID_Rms], 
                  nResultBuffers := 4);

MultiArrays are flexible in terms of data storage management. For example, in the above case, the rows and
columns are completely interchangeable. If the dimensions are correctly assigned/identified (as shown in the
example below), this has no effect on the results.

Advanced configuration options 

As you can see in the example below, FB_CMA_Source [} 158] (or FB_CMA_Sink [} 155],
FB_CMA_BufferConverting [} 81]) provides parameters such as nWorkDim, pStartIndex or
nElementsDim. These parameters can be used to:

• Describe/read out a certain segment of the MultiArray
• Write/read/copy from a specific location
• Copy a certain number of elements from a specific point onwards

A combination of these parameters not only guarantees memory optimization, but also guarantees selectivity
in multi-channel, multi-task applications. See the example below.

Application scenario 

This application scenario is only valid within the TwinCAT Condition Monitoring application area. As
mentioned above, the MultiArrays are managed automatically, but they must first be initialized. This is done
in the PLC declaration with the help of ST_MA_MultiArray_InitPars and is passed to the
FB_CMA_Source instance.



Technical introduction

TC3 Condition Monitoring70 Version: 1.4

Each algorithm function block transfers its results using the MultiArrays configured with stInitPars. Their
shapes are defined with the initialization parameters (see respective explanations of the function blocks),
with the exception of FB_CMA_Sink. It is also possible to copy only a part of the MultiArray into a PLC array
for further processing or evaluation. This is done with FB_CMA_BufferConverting.

The function blocks have methods with which PLC variables can be written or read in MultiArrays. For more
information on the methods and their parameters, see the descriptions of the function blocks.

Note:
• The FB_CMA_Sink function block does not require any initialization of a MultiArray. The shape of the

MultiArrays used by FB_CMA_Sink is specified internally.
• Each dimension of a MultiArray, called WorkDim, has an index beginning with 0.
• In the case of two-dimensional MultiArrays, the working dimension 0 is normally linked to the number of

channels in the Condition Monitoring Library (see "Example configuration of a MultiArray" in the text
above)

Examples for handling MultiArrays

For a better understanding of how to use a MultiArray in a Condition Monitoring application, we consider the
following case study.

Three signals from an acceleration sensor with an oversampling factor of 10 are recorded, e.g. with two
EL3632s. The input data is collected in a MultiArray with the length 1000 and transferred to a function block.
In this case it is the function block for calculating the moment coefficients [} 130].
FB_CMA_MomentCoefficients calculates different statistical parameters of the input data for each
channel, depending on the configuration. Our goal is now to configure the MultiArray at the output of the
FB_CMA_MomentCoefficient so that only a certain part of the result, for example the mean value and the
standard deviation, is output.

The input and output variables are declared and initialized as follows:
cInitSource : ST_CM_MultiArray_InitPars := (eTypeCode := eMA_TypeCode_LREAL,
                        nDims := 2,
                        aDimSizes := [3,1000]);

aBuffer  : ARRAY [1..3] OF ARRAY [1..cOverSamples] OF LREAL;
fbSource : FB_CMA_Source := (stInitPars := cInitSource,
                 nOwnID := eID_Source,
                 aDestIDs := [eID_MomentCoeffs]);
                    
// MultiArray indices begin with 0, not 1!                                  
// aStartIndex := [0,0],[0,1],[0,2],[1,0],[1,1],[1,2],[2,0],...               
aStartIndex : ARRAY [1..2] OF UDINT := [0, 1];    
                                   
// Select channels := 1: one, 2: one and two, 3: one, two and three and so on
// Select moments := 0: count, 1: mean, 2: standard deviation, 3: skew, 4: kurtosis
aMomentCoef : ARRAY [1..3, 1..2] OF LREAL;

As shown above, the fbSource gets a MultiArray with 2 dimensions and should pass the data from
aBuffer to the FB_CMA_MomentCoefficients after appropriate buffering. As a function of the
initialization parameters, you can either save the data:

• by saving the channels via the rows and the samplings via the columns,
• or by saving the samples via the rows and the channels via the columns.



Technical introduction

TC3 Condition Monitoring 71Version: 1.4

Because the MultiArray is two-dimensional, this is done by calling the Input2D() method.
fbSource.Input2D(pDataIn := ADR(aBuffer),
         nDataInSize := SIZEOF(aBuffer), 
         eElementType := eMA_TypeCode_LREAL,
         nWorkDim0 := 0, (* aBuffer stores channels across first dim*)
         nWorkDim1 := 1, (* aBuffer stores samples across second dim*)
         pStartIndex := 0,
         nOptionPars := 0 );

Let's go through this method call step by step:

• The local PLC variable aBuffer is passed as reference.
• The data type to be transferred is specified.
• The method assigns the first working dimension of the MultiArray to the first dimension of aBuffer

(cChannels) and the second working dimension to the sampled values (cOversamples).
Alternatively, the variable aBuffer : ARRAY [1.. cOversamples] OF ARRAY [1..
3] OF LREAL could be declared and the necessary transposition could be realized by
nWorkDim0 =1 and nWorkDim1 =0.

• pStartIndex=0 copies the entire aBuffer to the MultiArray, which is the default setting. How to
copy only parts of an array is shown below using FB_CMA_Sink .

All the above settings completely configure the MultiArray to store the channels along its first dimension
(rows) and the sampled values along its second dimension (columns) up to the length cBufferLength.

Similarly, a FB_CMA_Sink instance can write the contents of the MultiArray to the local PLC variable
aMomentCoef.
fbSink.Output2D(pDataOut := ADR(aMomentCoef),
           nDataOutSize := SIZEOF(aMomentCoef),
           eElementType := E_MA_ElementTypeCode.eMA_TypeCode_LREAL,
           nWorkDim0 := 0,        (* aMomentCoef stores channels across first dim *)
           nWorkDim1 := 1,        (* aMomentCoef stores moments across second dim *)
           nElementsDim0 := 3,    (* aMomentCoef stores all 3 channels *)
           nElementsDim1 := 2,    (* aMomentCoef stores mean and deviation*)
           pStartIndex := ADR(aStartIndex), 
           nOptionPars := 0);

Again, let's go through this method call step by step:

• The local PLC variable aMomentCoef (to which write access is now required) is passed as reference.
• The data type is specified.
• The first working dimension of the MultiArray is assigned to the first working dimension of the variable
aMomentCoef, i.e. to the channels. The second dimension is transferred analogously and corresponds
to the statistical parameters count, mean, deviation, skew, kurtosis.

• The parameters nElementsDim0 and nElementsDim1 specify how many elements of the MultiArray
are to be copied in WorkDim0 direction and WorkDim1 direction. In this case, 3 elements in WorkDim0
direction (all three channels) and 2 elements in WorkDim1 direction.



Technical introduction

TC3 Condition Monitoring72 Version: 1.4

• The parameter pStartIndex defines the first element in the 2x3 rectangle to be copied. The
parameter is a pointer to a 2D array (here aStartIndex).

In the configuration shown, the Output2D() method will only copy one segment of the MultiArray into the PLC
variable aMomentCoef. The segment to be copied is configured with the parameters nWorkDim0,
nWorkDim1, nElementsDim0, nElementsDim1 and pStartIndex as explained above.



PLC API

TC3 Condition Monitoring 73Version: 1.4

5 PLC API
The TwinCAT3 Condition Monitoring Library provides analysis options in a TwinCAT PLC application. Please
refer to our product description [} 9] and the technical introductions for an overview and important
background information on the product.

The PLC API sets consist of three PLC libraries. These libraries have to be integrated in a Condition
Monitoring PLC project:

• Tc3_CM
• Tc3_CM_Base
• Tc3_MultiArray

Condition Monitoring analysis

In addition to programming, which includes logging of the measured data, processing based on different
algorithms and evaluation of the results, each signal processing relies on an appropriate analysis chain. For
that reason the TwinCAT 3 Condition Monitoring Library supports you with function blocks that turn the
implementation of the planned analysis chain into virtually pure parameterization work.

Analysis chain as diagram

It makes sense to create a diagram (example see below) regarding the analysis steps before programming
the Condition Monitoring application!
It includes a representation of each PLC function block. Usually at least two tasks are used, one task for the
regular control program and another (slower and lower priority) task for the computationally intensive
operations of Condition Monitoring.

Each analysis function block uses a special way of communicating with each other. This internal
implementation also enables cross-communication across multiple tasks. Internally, one TransferTray object
and several MultiArrays are used (see chapter Parallel processing [} 66]). However, a function block or its
methods may only be called from a task context in the application!
The analysis function blocks can be placed in different task contexts. The sequence of the analysis steps is
assigned using transfer IDs (green values in the figure below). Each function block receives its own arbitrary
ID and the target ID(s) to which the results are to be sent. The transfer IDs are best defined as enumeration.

The diagram below shows four different data buffers: gray, orange, blue and red. The shape of all
corresponding buffers (PLC arrays, MultiArrays) and the algorithm parameters must match these buffer
sizes.



PLC API

TC3 Condition Monitoring74 Version: 1.4

Cyclic call
As long as the functionality of FB_CMA_Source is called and signal data is transferred to a target
function block, all other modules of the analysis chain must be called cyclically. See description of
the internal communication principle in chapter Parallel processing. If not all target blocks are to be
processed during a particular phase, their call is still necessary, but the PassInputs() method can be
used to pass only the input buffers without producing results.

Note consequential errors
A cyclically recurring error in an analysis function block can cause consequential errors in the analy-
sis chain.

5.1 Function blocks
In the list below, the available function blocks are sorted based on different criteria, to make them easier to
find.

Entire Condition Monitoring library

Signal processing Statistics Classification Buffer handling
FB_CMA_AnalyticSignal
[} 76]

FB_CMA_HistArray [} 115] FB_CMA_DiscreteClassific
ation [} 89]

FB_CMA_BufferConvertin
g [} 81]

FB_CMA_ArgSort [} 78] FB_CMA_MomentCoeffici
ents [} 130]

FB_CMA_WatchUpperThr
esholds [} 162]

FB_CMA_Sink [} 155]

FB_CMA_ComplexFFT
[} 86]

FB_CMA_Quantiles
[} 148]

FB_CMA_Source [} 158]



PLC API

TC3 Condition Monitoring 75Version: 1.4

FB_CMA_CrestFactor
[} 83]

FB_CMA_EmpiricalMean
[} 97]

FB_CMA_Downsampling
[} 92]

FB_CMA_EmpiricalStandar
dDeviation [} 105]

FB_CMA_Envelope [} 109] FB_CMA_EmpiricalSkew
[} 101]

FB_CMA_EnvelopeSpectru
m [} 112]

FB_CMA_EmpiricalExcess
[} 93]

FB_CMA_InstantaneousFr
equency [} 119]
FB_CMA_InstantaneousPh
ase [} 121]
FB_CMA_IntegratedRMS
[} 124]
FB_CMA_MagnitudeSpect
rum [} 127]
FB_CMA_MultiBandRMS
[} 135]
FB_CMA_PowerCepstrum
[} 138]
FB_CMA_PowerSpectrum
[} 142]
FB_CMA_RealFFT [} 145]
FB_CMA_RMS [} 152]

Further thematic structuring for signal processing

Algorithms for signal analysis in the:

time range Frequency range time/frequency range Further
FB_CMA_AnalyticSignal
[} 76]

FB_CMA_ComplexFFT
[} 86]

FB_CMA_InstantaneousFr
equency [} 119]

FB_CMA_ArgSort [} 78]

FB_CMA_CrestFactor
[} 83]

FB_CMA_EnvelopeSpectru
m [} 112]

FB_CMA_Downsampling
[} 92]

FB_CMA_Envelope [} 109] FB_CMA_IntegratedRMS
[} 124]

FB_CMA_InstantaneousPh
ase [} 121]

FB_CMA_MagnitudeSpect
rum [} 127]

FB_CMA_RMS [} 152] FB_CMA_MultiBandRMS
[} 135]

FB_CMA_PowerCepstrum
[} 138]

FB_CMA_PowerSpectrum
[} 142]
FB_CMA_RealFFT [} 145]



PLC API

TC3 Condition Monitoring76 Version: 1.4

5.1.1 FB_CMA_AnalyticSignal

Calculation of the analytical signal of a time series.

The analytical signal is the complex-valued complement of the incoming real signal, whereby the imaginary
part is phase-shifted by 90 degrees relative to the unchanged real part. The imaginary part is formed via the
Hilbert transform of the incoming real signal. In a time-continuous representation, the analytical signal
xanalytic(t) of the real signal x(t) is described by

The function block calculates the analytical signal via a discrete Hilbert transformation in the frequency
range. The result is a complex-valued vector of length nWindowLength/2.

The input vector is combined with a 50% overlapping preceding input vector based on the Welsch method. It
is then multiplied with a window function. Subsequently an FFT for real input values is applied. In the
frequency range the Hilbert transform is applied to the signal. It delivers a complex-valued result. The result
is then transformed back into the time range via an FFT. The time signal is added up overlapping using the
Overlap-Add method. By selecting suitable window functions a continuous output signal without step
changes can be achieved.

Memory properties

Since the Overlap-Add method is used, in each case the current input buffer together with the two last
transferred buffers is used for the calculation.

NaN occurrence

If the input vector contains one or more NaN values, the entire spectrum result is filled with NaN. 
This property can be used to mark results as undefined in case a gap in the input signal leads to jumps in the
time series. Refer here to the description of the input methods at the FB_CMA_Source [} 159].
If incoming NaN values cannot be excluded, the user program must handle these error values.

Inputs and outputs

The input and output buffers correspond to the following definition (Shape). The variable parameters are part
of the function block input stInitPars.

Multi-array in the Element type Dimensions Dimensional variables
input stream LREAL 1 nWindowLength/2
output stream LCOMPLEX 1 nWindowLength/2

Input parameters

The input parameters of this function block represent initialization parameters and must already be assigned
in the declaration of the FB instance! (Alternatively: Init() method)
They may only be assigned once. A change at runtime is not possible.
VAR_INPUT
    stInitPars       : ST_CM_AnalyticSignal_InitPars;      // init parameter
    nOwnID           : UDINT;                           // ID for this FB instance
    aDestIDs         : ARRAY[1..cCMA_MaxDest] OF UDINT; // IDs of destinations for output
    nResultBuffers   : UDINT := 4;                      // number of MultiArrays which should be ini
tialized for results (0 for no initialization)
    tTransferTimeout : LTIME := LTIME#500US;            // timeout checking off during access to int
er-task FIFOs
END_VAR

• stInitPars  : Function-block-specific structure with initialization parameters of the type
ST_CM_AnalyticSignal_InitPars [} 172]. The parameters must correlate to the above definition of the
input and output buffers.

• nOwnID  : Identifies the function block instance with a unique ID. This must always be greater than
zero. A proven approach is to define an enumeration for this purpose.



PLC API

TC3 Condition Monitoring 77Version: 1.4

• aDestIDs  : Defines the destinations to which the results are to be forwarded by specifying the IDs of
the destinations. The definition of the output buffer (as described above) must correlate to the definition
of the input buffer of each selected destination.

• nResultBuffers  : The function block initializes a Transfer Tray Stream with the specified number of
multi-array buffers. The default value is four.

• tTransferTimeout  : Setting of the synchronous timeout for internal multi-array forwardings. See
section Parallel processing [} 66].

Output parameters
VAR_OUTPUT
    bError       : BOOL;        // TRUE if an error occurs. Reset by next method call.
    hrErrorCode   : HRESULT;    // '< 0' = error; '> 0' = info; '0' = no error/info
    nCntResults   : ULINT;      // counts outgoing results (MultiArrays were calculated and sent to
transfer tray)
END_VAR

• bError  : The output is TRUE if an error occurs.
• hrErrorCode  : If an error occurs, a corresponding error code of the type HRESULT is output. Possible

values are described in the List of error codes [} 224].

Methods

Call() : 

The method is called in each cycle in order to calculate the analytical signal from the input signal.
The function block waits for input data if the method indicates neither new results nor an error. This is a
regular behavior in the process of the analysis chain.
METHOD Call : HRESULT
VAR_OUTPUT
    bNewResult   : BOOL;        // TRUE every time when outgoing MultiArray was calculated and sent
to transfer tray.
    bError       : BOOL;        // TRUE if an error occurs.
    hrErrorCode  : HRESULT;     // '< 0' = error; '> 0' = info; '0' = no error/info
END_VAR

• bError  : The output is TRUE if an error occurs.
• hrErrorCode  : If an error occurs, a corresponding error code of the type HRESULT is output. Possible

values are described in the List of error codes [} 224]. This output is identical to the return value of the
method.
Note: If a timeout occurs or no multi-array buffer is available for the result, then neither the input data
nor the result data are lost. They are forwarded on the next call.

Init() :

This method is not usually necessary in a Condition Monitoring application. It offers an alternative to the
function block initialization. The Init() method may only be called during the initialization phase of the PLC. It
cannot be used at runtime. You are referred to the use of an FB_init method or the attribute
‘call_after_init’ (see TwinCAT PLC reference). In addition, this facilitates the block encapsulation.

The input parameters of the function block instance may not be assigned in the declaration if the initialization
is to take place using the Init() method.
METHOD Init : HRESULT
VAR_INPUT
    stInitPars     : ST_CM_AnalyticSignal_InitPars;      // init parameter
    nOwnID         : UDINT;                           // ID for this FB instance
    aDestIDs       : ARRAY[1..cCMA_MaxDest] OF UDINT; // IDs of destinations for output
    nResultBuffers : UDINT := 4;                      // number of MultiArrays which should be initi
alized for results (0 for no initialization)
END_VAR

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 224].

• stInitPars  : Function-block-specific structure with initialization parameters of the type
ST_CM_AnalyticSignal_InitPars [} 172]. The parameters must correlate to the above definition of the
input and output buffers.



PLC API

TC3 Condition Monitoring78 Version: 1.4

• nOwnID  : Identifies the function block instance with a unique ID. This must always be greater than
zero. A proven approach is to define an enumeration for this purpose.

• aDestIDs  : Defines the destinations to which the results are to be forwarded by specifying the IDs of
the destinations. The definition of the output buffer (as described above) must correlate to the definition
of the input buffer of each selected destination.

• nResultBuffers  : The function block initializes a Transfer Tray Stream with the specified number of
multi-array buffers.

ResetData() :

The method deletes all data records that have already been added, see Memory property of the function
block. If the Call() method is called again after a ResetData(), the internal memory must be replenished in
order to calculate a valid result.
METHOD ResetData : HRESULT
VAR_INPUT
END_VAR

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 224].

PassInputs() :

As long as an FB_CMA_Source instance is called and thus signal data are transferred to a target block, all
further function blocks of the analysis chain have to be called cyclically, as explained in the API PLC reference
[} 73].
Sometimes it is useful not to be execute an algorithm for a certain time. For example, some algorithms
should be executed only after prior training or configuration. Although the function block still has to be called
cyclically, it is sufficient that the data arriving at the function block are relayed in the communication ring
[} 66]. This is done using the PassInputs() method in place of the Call() method. The algorithm itself is not
called, and accordingly no result is calculated and no output buffer is generated.
METHOD PassInputs : HRESULT
VAR_INPUT
END_VAR

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 224].

Similar function blocks

The function block FB_CMA_Envelope [} 109] calculates the envelope of a time series.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4016.12 PC or CX (x86, x64) Tc3_CM (v1.0.19), Tc3_CM_Base

5.1.2 FB_CMA_ArgSort

Sorts the incoming arguments

The incoming arguments are sorted optionally in ascending or descending order. A one-dimensional array
such as the output from a power spectrum is supplied as the input data stream. A two-dimensional array is
obtained as the output data: in the first dimension the amplitude and in second the index where this
amplitude is to be found in the input array. A scaling factor can be used instead of the index to display the
frequency directly. See the corresponding initialization parameters of type ST_CM_ArgSort_InitPars [} 173].

The function block calculates internally with “0”-based arrays. This must be taken into account in the
evaluation.



PLC API

TC3 Condition Monitoring 79Version: 1.4

Inputs and outputs

The input and output buffers correspond to the following definition (Shape). The variable parameters are part
of the function block input stInitPars.

Multi-array in the Element type Dimensions Dimensional variables
input stream LREAL 1 nInLength

output stream LREAL 2 nInLength x 2

  
Input parameters

The input parameters of this function block represent initialization parameters and must already be assigned
in the declaration of the FB instance! (alternatively: Init() method)
They may only be assigned once. A change at runtime is not possible.
VAR_INPUT
    stInitPars       : ST_CM_ArgSort_InitPars;  // init parameter
    nOwnID           : UDINT;                 // ID for this FB instance
    aDestIDs         : ARRAY[1..cCMA_MaxDest] OF UDINT; // IDs of destinations for output
    nResultBuffers   : UDINT := 4;            // number of MultiArrays which should be initialized f
or results (0 for no initialization)
    tTransferTimeout : LTIME := LTIME#500US;  // timeout checking off during access to inter-
task FIFOs
END_VAR

• stInitPars: Function-block-specific structure with initialization parameters of the type
ST_CM_ArgSort_InitPars [} 173]. The parameters must correlate to the above definition of the input and
output buffers.

• nOwnID: Identifies the function block instance with a unique ID. This must always be greater than zero.
A proven approach is to define an enumeration for this purpose.

• aDestIDs: Defines the destinations to which the results are to be forwarded by specifying the IDs of the
destinations. The definition of the output buffer (as described above) must correlate to the definition of
the input buffer of each selected destination.

• nResultBuffers: The function block initializes a Transfer Tray Stream with the specified number of
multi-array buffers. The default is four.

• tTransferTimeout: Setting of the synchronous timeout for internal multi-array forwardings. See section
Parallel processing [} 66].

Output parameters
VAR_OUTPUT
    bError      : BOOL;        // TRUE if an error occurs. Reset by next method call.
    hrErrorCode : HRESULT;     // '< 0' = error; '> 0' = info; '0' = no error/info
    nCntResults : ULINT;       // counts outgoing results (MultiArrays were calculated and sent to t
ransfer tray)
END_VAR

• bError  : The output is TRUE if an error occurs.
• hrErrorCode  : If an error occurs, a corresponding error code of the type HRESULT is output. Possible

values are described in the List of error codes [} 224].

Methods

Call(): 

The method is called in each cycle in order to generate sorted values from the input signal.
The function block waits for input data if the method indicates neither new results nor an error. This is a
regular behavior in the process of the analysis chain.
METHOD Call : HRESULT
VAR_OUTPUT
    bNewResult  : BOOL;         // TRUE every time when outgoing MultiArray was calculated and sent
to transfer tray.
    bError      : BOOL;         // TRUE if an error occurs.
    hrErrorCode : HRESULT;      // '< 0' = error; '> 0' = info; '0' = no error/info
END_VAR

• bError: The output is TRUE if an error occurs.



PLC API

TC3 Condition Monitoring80 Version: 1.4

• hrErrorCode: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 224]. This output is identical to the return value of the
method.
Note: If a timeout occurs or no multi-array buffer is available for the result, then neither the input data
nor the result data are lost. They are forwarded on the next call.

  
Init():

This method is not usually necessary in a Condition Monitoring application. It offers an alternative to the
function block initialization. The Init() method may only be called during the initialization phase of the PLC. It
cannot be used at runtime. You are referred to the use of an FB_init method or the attribute
‘call_after_init’ (see TwinCAT PLC reference). In addition, this facilitates the function block encapsulation.

The input parameters of the function block instance may not be assigned in the declaration if the initialization
is to take place using the Init() method.
METHOD Init : HRESULT
VAR_INPUT
    stInitPars     : ST_CM_ArgSort_InitPars;  // init parameter
    nOwnID         : UDINT;               // ID for this FB instance
    aDestIDs       : ARRAY[1..cCMA_MaxDest] OF UDINT;  // IDs of destinations for output
    nResultBuffers : UDINT := 4;  // number of MultiArrays which should be initialized for results (
0 for no initialization)
END_VAR

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 224].

• stInitPars: Function-block-specific structure with initialization parameters of the type
ST_CM_ArgSort_InitPars [} 173]. The parameters must correlate to the above definition of the input and
output buffers.

• nOwnID: Identifies the function block instance with a unique ID. This must always be greater than zero.
A proven approach is to define an enumeration for this purpose.

• aDestIDs: Defines the destinations to which the results are to be forwarded by specifying the IDs of the
destinations. The definition of the output buffer (as described above) must correlate to the definition of
the input buffer of each selected destination.

• nResultBuffers: The function block initializes a Transfer Tray Stream with the specified number of
multi-array buffers.

PassInputs() :

As long as an FB_CMA_Source instance is called and thus signal data are transferred to a target block, all
further function blocks of the analysis chain have to be called cyclically, as explained in the API PLC reference
[} 73].
Sometimes it is useful not to be execute an algorithm for a certain time. For example, some algorithms
should be executed only after prior training or configuration. Although the function block still has to be called
cyclically, it is sufficient that the data arriving at the function block are relayed in the communication ring
[} 66]. This is done using the PassInputs() method in place of the Call() method. The algorithm itself is not
called, and accordingly no result is calculated and no output buffer is generated.
METHOD PassInputs : HRESULT
VAR_INPUT
END_VAR

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 224].

Similar function blocks

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4018 PC or CX (x86, x64) Tc3_CM (v1.0.19), Tc3_CM_Base



PLC API

TC3 Condition Monitoring 81Version: 1.4

5.1.3 FB_CMA_BufferConverting

Copies data from one multi-array to another multi-array.

If the defined input buffer of an algorithm function block does not match the output buffer of the preceding
function block of the analysis chain, the transfer can be achieved with this functionality. A different number of
dimensions can be converted accordingly.

Another option is to use only a subset of the data for further processing, for example in order to take into
account only relevant frequency ranges of a spectrum.

Inputs and outputs

The input and output buffers correspond to the following definition (Shape). The variable parameters are part
of the function block input stInitPars.

Multi-array in the Element type Dimensions Dimensional variables
output stream eTypeCode nDims aDimSizes

Input parameters

The input parameters of this function block represent initialization parameters and must already be assigned
in the declaration of the FB instance! (alternatively: Init() method)
They may only be assigned once. A change at runtime is not possible.
VAR_INPUT
    stInitPars       : ST_MA_MultiArray_InitPars;       // init parameter
    nOwnID           : UDINT;                           // ID for this FB instance
    aDestIDs         : ARRAY[1..cCMA_MaxDest] OF UDINT; // IDs of destinations for output
    nResultBuffers   : UDINT := 4;                      // number of MultiArrays which should be ini
tialized for results (0 for no initialization)
    tTransferTimeout : LTIME := LTIME#500US;            // timeout checking off during access to int
er-task FIFOs
END_VAR

• stInitPars  : Function-block-specific structure with initialization parameters of the type
ST_MA_MultiArray_InitPars [} 184]. The parameters must correlate to the above definition of the input
and output buffers.

• nOwnID  : Identifies the function block instance with a unique ID. This must always be greater than
zero. A proven approach is to define an enumeration for this purpose.

• aDestIDs  : Defines the destinations to which the results are to be forwarded by specifying the IDs of
the destinations. The definition of the output buffer (as described above) must correlate to the definition
of the input buffer of each selected destination.

• nResultBuffers  : The function block initializes a Transfer Tray Stream with the specified number of
multi-array buffers. The default is four.

• tTransferTimeout  : Setting of the synchronous timeout for internal multi-array forwardings. See
section Parallel processing [} 66].

Output parameters
VAR_OUTPUT
    bError        : BOOL;        // TRUE if an error occurs. Reset by next method call.
    hrErrorCode   : HRESULT;     // '< 0' = error; '> 0' = info; '0' = no error/info
    nCntResults   : ULINT;       // counts outgoing results (MultiArrays were calculated and sent to
 transfer tray)
END_VAR

• bError  : The output is TRUE if an error occurs.
• hrErrorCode  : If an error occurs, a corresponding error code of the type HRESULT is output. Possible

values are described in the List of error codes [} 224].

Methods

Copy1D() : 



PLC API

TC3 Condition Monitoring82 Version: 1.4

Copies one-dimensional data from one multi-array to another multi-array.
METHOD Copy1D :   HRESULT
VAR_INPUT
    nWorkDimIn     : UDINT;                // It designates the dimension in the input MultiArray be
ing processed.
    nWorkDimOut    : UDINT;                // It designates the dimension in the output MultiArray b
eing processed.
    nElements      : UDINT;                // optional: default:0-
>full copy; It designates the number of elements to be copied out of the MultiArray.
    pStartIndexIn  : POINTER TO UDINT;    (* optional: default:0-
>internally handled as [0,0,..]; It designates the index of the first element to be copied out of th
e MultiArray.
                         If allocated it must point to a onedimensional array of UDINT with so many
elements as dimensions of the MultiArray. *)
    pStartIndexOut : POINTER TO UDINT;    (* optional: default:0-
>internally handled as [0,0,..]; It designates the index of the first MultiArray element to be copie
d.
                         If allocated it must point to a onedimensional array of UDINT with so many
elements as dimensions of the MultiArray. *)
    nOptionPars    : DWORD;               // option mask 
END_VAR
VAR_OUTPUT
    bNewResult     : BOOL;                // TRUE every time when outgoing MultiArray was calculated
 and sent to transfer tray.
    bError         : BOOL;                // TRUE if an error occurs.
    hrErrorCode   : HRESULT;              // '< 0' = error; '> 0' = info; '0' = no error/info
END_VAR

• nWorkDimIn : If the input MultiArray is multi-dimensional, you can select the dimension whose data
you want to copy. The first dimension would be 0 (0-based).

• nWorkDimOut : If the output MultiArray is multi-dimensional, you can select the dimension to which
you want to copy data. The first dimension would be 0 (0-based).

• nElements : To copy the complete data of a MultiArray dimension, this parameter can be set to 0. The
total number is determined internally in this case. Alternatively, you can specify the number of elements
to be copied.

• bError : The output is TRUE if an error occurs.
• hrErrorCode : If an error occurs, a corresponding error code of the type HRESULT is output. Possible

values are described in the List of error codes [} 224]. This output is identical to the return value of the
method.
Note: If a timeout occurs or no multi-array buffer is available for the result, then neither the input data
nor the result data are lost. They are forwarded on the next call.

Init() :

This method is not usually necessary in a Condition Monitoring application. It offers an alternative to the
function block initialization. The Init() method may only be called during the initialization phase of the PLC. It
cannot be used at runtime. You are referred to the use of an FB_init method or the attribute
‘call_after_init’ (see TwinCAT PLC reference). In addition, this facilitates the block encapsulation.

The input parameters of the function block instance may not be assigned in the declaration if the initialization
is to take place using the Init() method.
METHOD Init : HRESULT
VAR_INPUT
    stInitPars     : ST_MA_MultiArray_InitPars;       // init parameter
    nOwnID         : UDINT;                           // ID for this FB instance
    aDestIDs       : ARRAY[1..cCMA_MaxDest] OF UDINT; // IDs of destinations for output
    nResultBuffers : UDINT := 4;                      // number of MultiArrays which should be initi
alized for results (0 for no initialization)
END_VAR

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 224].

• stInitPars  : Function-block-specific structure with initialization parameters of the type
ST_MA_MultiArray_InitPars [} 184]. The parameters must correlate to the above definition of the input
and output buffers.

• nOwnID  : Identifies the function block instance with a unique ID. This must always be greater than
zero. A proven approach is to define an enumeration for this purpose.



PLC API

TC3 Condition Monitoring 83Version: 1.4

• aDestIDs  : Defines the destinations to which the results are to be forwarded by specifying the IDs of
the destinations. The definition of the output buffer (as described above) must correlate to the definition
of the input buffer of each selected destination.

• nResultBuffers  : The function block initializes a Transfer Tray Stream with the specified number of
multi-array buffers.

PassInputs() :

As long as an FB_CMA_Source instance is called and thus signal data are transferred to a target block, all
further function blocks of the analysis chain have to be called cyclically, as explained in the API PLC reference
[} 73].
Sometimes it is useful not to be execute an algorithm for a certain time. For example, some algorithms
should be executed only after prior training or configuration. Although the function block still has to be called
cyclically, it is sufficient that the data arriving at the function block are relayed in the communication ring
[} 66]. This is done using the PassInputs() method in place of the Call() method. The algorithm itself is not
called, and accordingly no result is calculated and no output buffer is generated.
METHOD PassInputs : HRESULT
VAR_INPUT
END_VAR

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 224].

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4013 PC or CX (x86, x64) Tc3_CM, Tc3_CM_Base,

Tc3_MultiArray

5.1.4 FB_CMA_CrestFactor

Calculates the crest factor for each channel for multi-channel time series.

This is defined as the ratio between the peak value of a signal and the RMS value.

The crest factor is calculated in the logarithmic unit decibel. A sine wave, for example, has a crest factor of
3.01 dB (=1.414).

The crest factor allows conclusions regarding the condition of roller bearings. In general the crest factor
increases at the start of damage to a roller bearing and can decrease again as the damage progresses.

The function block can process several independent input signal channels. The result is a one-dimensional
array, with the index corresponding to the channel number. To avoid value range errors, each value is
compared with a minimum value before the logarithm is applied. If the value is smaller, it is replaced with the
minimum value.

Since the crest factor is defined by the ratio between peak value and RMS value, this means that the result
is strongly influenced by the individual maxima, which can lead to unexpected results.

Memory properties

The function block stores a number of time values corresponding to nBufferLength
(ST_CM_CrestFactor_InitPars [} 173]). In a call with smaller input buffer size, fewer values can be transferred.
In this case the buffer content is shifted, and the signal length is filled with the corresponding number of
newly transferred values.

Sample implementation



PLC API

TC3 Condition Monitoring84 Version: 1.4

A sample implementation is available under the following link: Crest factor [} 215].

Inputs and outputs

The input and output buffers correspond to the following definition (Shape). The variable parameters are part
of the function block input stInitPars.

Multi-array in the Element type Dimensions Dimensional variables
input stream LREAL 2 nChannels x not

specified*
output stream LREAL 1 nChannels

*: The length of the second dimension can be selected as desired and thus adapted to the application or the
output buffer of the preceding algorithm.

Input parameters

The input parameters of this function block represent initialization parameters and must already be assigned
in the declaration of the FB instance! (alternatively: Init() method)
They may only be assigned once. A change at runtime is not possible.
VAR_INPUT
    stInitPars       : ST_CM_CrestFactor_InitPars;      // init parameter
    nOwnID           : UDINT;                           // ID for this FB instance
    aDestIDs         : ARRAY[1..cCMA_MaxDest] OF UDINT; // IDs of destinations for output
    nResultBuffers   : UDINT := 4;                      // number of MultiArrays which should be ini
tialized for results (0 for no initialization)
    tTransferTimeout : LTIME := LTIME#500US;            // timeout checking off during access to int
er-task FIFOs
END_VAR

• stInitPars  : Function-block-specific structure with initialization parameters of the type
ST_CM_CrestFactor_InitPars [} 173]. The parameters must correlate to the above definition of the input
and output buffers.

• nOwnID  : Identifies the function block instance with a unique ID. This must always be greater than
zero. A proven approach is to define an enumeration for this purpose.

• aDestIDs  : Defines the destinations to which the results are to be forwarded by specifying the IDs of
the destinations. The definition of the output buffer (as described above) must correlate to the definition
of the input buffer of each selected destination.

• nResultBuffers  : The function block initializes a Transfer Tray Stream with the specified number of
multi-array buffers. The default is four.

• tTransferTimeout  : Setting of the synchronous timeout for internal multi-array forwardings. See
section Parallel processing [} 66].

Output parameters
VAR_OUTPUT
    bError       : BOOL;        // TRUE if an error occurs. Reset by next method call.
    hrErrorCode   : HRESULT;    // '< 0' = error; '> 0' = info; '0' = no error/info
    nCntResults   : ULINT;      // counts outgoing results (MultiArrays were calculated and sent to
transfer tray)
END_VAR

• bError  : The output is TRUE if an error occurs.
• hrErrorCode  : If an error occurs, a corresponding error code of the type HRESULT is output. Possible

values are described in the List of error codes [} 224].

Methods

Call() : 

The method is called in each cycle in order to calculate the crest factor from the input signal.
The function block waits for input data if the method indicates neither new results nor an error. This is a
regular behavior in the process of the analysis chain.



PLC API

TC3 Condition Monitoring 85Version: 1.4

METHOD Call : HRESULT
VAR_OUTPUT
    bNewResult   : BOOL;        // TRUE every time when outgoing MultiArray was calculated and sent
to transfer tray.
    bError       : BOOL;        // TRUE if an error occurs.
    hrErrorCode  : HRESULT;     // '< 0' = error; '> 0' = info; '0' = no error/info
END_VAR

• bError  : The output is TRUE if an error occurs.
• hrErrorCode  : If an error occurs, a corresponding error code of the type HRESULT is output. Possible

values are described in the List of error codes [} 224]. This output is identical to the return value of the
method.
Note: If a timeout occurs or no multi-array buffer is available for the result, then neither the input data
nor the result data are lost. They are forwarded on the next call.

  
Init() :

This method is not usually necessary in a Condition Monitoring application. It offers an alternative to the
function block initialization. The Init() method may only be called during the initialization phase of the PLC. It
cannot be used at runtime. You are referred to the use of an FB_init method or the attribute
‘call_after_init’ (see TwinCAT PLC reference). In addition, this facilitates the function block encapsulation.

The input parameters of the function block instance may not be assigned in the declaration if the initialization
is to take place using the Init() method.
METHOD Init : HRESULT
VAR_INPUT
    stInitPars     : ST_CM_CrestFactor_InitPars;      // init parameter
    nOwnID         : UDINT;                           // ID for this FB instance
    aDestIDs       : ARRAY[1..cCMA_MaxDest] OF UDINT; // IDs of destinations for output
    nResultBuffers : UDINT := 4;                      // number of MultiArrays which should be initi
alized for results (0 for no initialization)
END_VAR

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 224].

• stInitPars  : Function-block-specific structure with initialization parameters of the type
ST_CM_CrestFactor_InitPars [} 173]. The parameters must correlate to the above definition of the input
and output buffers.

• nOwnID  : Identifies the function block instance with a unique ID. This must always be greater than
zero. A proven approach is to define an enumeration for this purpose.

• aDestIDs  : Defines the destinations to which the results are to be forwarded by specifying the IDs of
the destinations. The definition of the output buffer (as described above) must correlate to the definition
of the input buffer of each selected destination.

• nResultBuffers  : The function block initializes a Transfer Tray Stream with the specified number of
multi-array buffers.

PassInputs() :

As long as an FB_CMA_Source instance is called and thus signal data are transferred to a target block, all
further function blocks of the analysis chain have to be called cyclically, as explained in the API PLC reference
[} 73].
Sometimes it is useful not to be execute an algorithm for a certain time. For example, some algorithms
should be executed only after prior training or configuration. Although the function block still has to be called
cyclically, it is sufficient that the data arriving at the function block are relayed in the communication ring
[} 66]. This is done using the PassInputs() method in place of the Call() method. The algorithm itself is not
called, and accordingly no result is calculated and no output buffer is generated.
METHOD PassInputs : HRESULT
VAR_INPUT
END_VAR

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 224].



PLC API

TC3 Condition Monitoring86 Version: 1.4

Similar function blocks

The FB_CMA_HistArray [} 115] function block calculates the histograms of input value distributions.

The FB_CMA_Quantiles [} 148] block calculates the quantiles of an empirical distribution, which enable the
frequency of outliers to be assessed.

The FB_CMA_MomentCoefficients [} 130] block provides the kurtosis as an alternative measure for the
peakiness of a signal that is less sensitive to outliers.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4013 PC or CX (x86, x64) Tc3_CM, Tc3_CM_Base

5.1.5 FB_CMA_ComplexFFT

Calculation of the fast Fourier transformation (FFT) for complex-valued input signals.

The FB_CMA_ComplexFFT function block calculates the Fourier transform of the complex-valued input
signal x[n] at the function block. A high-performance FFT algorithm is used for this purpose. Both the original
transformation and the inverse transformation can be calculated. The input stInitPars is used for the
setting (see inputs and outputs).

Definition of the Fourier forward transformation in DFT notation:

Definition of the Fourier inverse transformation in DFT notation:

The highest frequency of an input signal component should not exceed half the sampling rate of the input
signal, in order to avoid aliasing effects.

The FFT is defined as transform of a cyclically continuous signal. This can result in step changes, if the
cyclically continuous signal is not exactly continuous, i.e. not the same at the start and finish. The function
blocks FB_CMA_PowerSpectrum [} 142] and FB_CMA_MagnitudeSpectrum [} 127] can be used to avoid
these issues by using overlapping sections, which are multiplied with a window function, as the basis for the
analysis.

Scaling

For a quantitative evaluation of the spectrum the calculated spectrum should be weighted with 1/
nFFT_Length for the off-set, i.e. the first array element of the outputs, and with 2/nFFT_Length for all
other outputs elements.

During the forward transformation and the inverse transformation the function block scales such that during
consecutively transformations and inverse transformations the original input signal is calculated again
directly at the output.

Memory properties

The function block result is only determined by the current input values, i.e. no past values are taken into
account.



PLC API

TC3 Condition Monitoring 87Version: 1.4

NaN occurrence

If one or several elements at the input are NaN (not a number), the total output signal for the real and the
imaginary part is NaN.

Sample implementation

A sample implementation is available under the following link: FFT with complex-value input signal [} 190].

Inputs and outputs

The input and output buffers correspond to the following definition (Shape). The variable parameters are part
of the function block input stInitPars.

Multi-array in the Element type Dimensions Dimensional variables
input stream LCOMPLEX 1 nFFT_Length

output stream LCOMPLEX 1 nFFT_Length

Input parameters

The input parameters of this function block represent initialization parameters and must already be assigned
in the declaration of the FB instance! (alternatively: Init() method)
They may only be assigned once. A change at runtime is not possible.
VAR_INPUT
    stInitPars       : ST_CM_ComplexFFT_InitPars;       // init parameter
    nOwnID           : UDINT;                           // ID for this FB instance
    aDestIDs         : ARRAY[1..cCMA_MaxDest] OF UDINT; // IDs of destinations for output
    nResultBuffers   : UDINT := 4;                      // number of MultiArrays which should be ini
tialized for results (0 for no initialization)
    tTransferTimeout : LTIME := LTIME#500US;            // timeout checking off during access to int
er-task FIFOs
END_VAR

• stInitPars  : Function-block-specific structure with initialization parameters of type
ST_CM_ComplexFFT_InitPars [} 174]. The parameters must correlate to the above definition of the input
and output buffers.

• nOwnID  : Identifies the function block instance with a unique ID. This must always be greater than
zero. A proven approach is to define an enumeration for this purpose.

• aDestIDs  : Defines the destinations to which the results are to be forwarded by specifying the IDs of
the destinations. The definition of the output buffer (as described above) must correlate to the definition
of the input buffer of each selected destination.

• nResultBuffers  : The function block initializes a Transfer Tray Stream with the specified number of
multi-array buffers. The default is four.

• tTransferTimeout  : Setting of the synchronous timeout for internal multi-array forwardings. See
section Parallel processing [} 66].

Output parameters
VAR_OUTPUT
    bError        : BOOL;         // TRUE if an error occurs. Reset by next method call.
    hrErrorCode   : HRESULT;      // '< 0' = error; '> 0' = info; '0' = no error/info
    nCntResults   : ULINT;        // counts outgoing results (MultiArrays were calculated and sent t
o transfer tray)
END_VAR

• bError  : The output is TRUE if an error occurs.
• hrErrorCode  : If an error occurs, a corresponding error code of the type HRESULT is output. Possible

values are described in the List of error codes [} 224].

Methods

Call() : 



PLC API

TC3 Condition Monitoring88 Version: 1.4

The method is called in each cycle in order to calculate the FFT from the input signal.
The function block waits for input data if the method indicates neither new results nor an error. This is a
regular behavior in the process of the analysis chain.
METHOD Call : HRESULT
VAR_OUTPUT
    bNewResult  : BOOL;       // TRUE every time when outgoing MultiArray was calculated and sent to
 transfer tray.
    bError      : BOOL;       // TRUE if an error occurs.
    hrErrorCode : HRESULT;    // '< 0' = error; '> 0' = info; '0' = no error/info
END_VAR

• bError  : The output is TRUE if an error occurs.
• hrErrorCode  : If an error occurs, a corresponding error code of the type HRESULT is output. Possible

values are described in the List of error codes [} 224]. This output is identical to the return value of the
method.
Note: If a timeout occurs or no multi-array buffer is available for the result, then neither the input data
nor the result data are lost. They are forwarded on the next call.

  
Init() :

This method is not usually necessary in a Condition Monitoring application. It offers an alternative to the
function block initialization. The Init() method may only be called during the initialization phase of the PLC. It
cannot be used at runtime. You are referred to the use of an FB_init method or the attribute
‘call_after_init’ (see TwinCAT PLC reference). In addition, this facilitates the function block encapsulation.

The input parameters of the function block instance may not be assigned in the declaration if the initialization
is to take place using the Init() method.
METHOD Init : HRESULT
VAR_INPUT
    stInitPars     : ST_CM_ComplexFFT_InitPars;       // init parameter
    nOwnID    : UDINT;                                // ID for this FB instance
    aDestIDs       : ARRAY[1..cCMA_MaxDest] OF UDINT; // IDs of destinations for output
    nResultBuffers : UDINT := 4;                      // number of MultiArrays which should be initi
alized for results (0 for no initialization)
END_VAR

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 224].

• stInitPars  : Function-block-specific structure with initialization parameters of type
ST_CM_ComplexFFT_InitPars [} 174]. The parameters must correlate to the above definition of the input
and output buffers.

• nOwnID  : Identifies the function block instance with a unique ID. This must always be greater than
zero. A proven approach is to define an enumeration for this purpose.

• aDestIDs  : Defines the destinations to which the results are to be forwarded by specifying the IDs of
the destinations. The definition of the output buffer (as described above) must correlate to the definition
of the input buffer of each selected destination.

• nResultBuffers  : The function block initializes a Transfer Tray Stream with the specified number of
multi-array buffers.

PassInputs() :

As long as an FB_CMA_Source instance is called and thus signal data are transferred to a target block, all
further function blocks of the analysis chain have to be called cyclically, as explained in the API PLC reference
[} 73].
Sometimes it is useful not to be execute an algorithm for a certain time. For example, some algorithms
should be executed only after prior training or configuration. Although the function block still has to be called
cyclically, it is sufficient that the data arriving at the function block are relayed in the communication ring
[} 66]. This is done using the PassInputs() method in place of the Call() method. The algorithm itself is not
called, and accordingly no result is calculated and no output buffer is generated.
METHOD PassInputs : HRESULT
VAR_INPUT
END_VAR



PLC API

TC3 Condition Monitoring 89Version: 1.4

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 224].

Similar function blocks

The function block FB_CMA_RealFFT [} 145] calculates the Fourier transformation of a real-valued signal.

The function block FB_CMA_PowerSpectrum [} 142] calculates the power spectrum of a continuous time
signal.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4018 PC or CX (x86, x64) Tc3_CM, Tc3_CM_Base

5.1.6 FB_CMA_DiscreteClassification

Classification of multi-channel data based on configurable threshold values

The function block assigns the individual channels of a multi-channel signal to a fixed number of discrete
categories based on configurable threshold values. The number of channels and the number of categories
are specified during instantiation. The function block can be configured at runtime by specifying the threshold
value for each channel and each threshold value category.

During the operation phase an input vector is adopted for each time step, and the number of applicable
category is calculated for each channel. The return value is a one-dimensional array, which for each input
channel contains a signed integer value, i.e. the index of the allocated category.

If the input value is less than the threshold value for the first category, the value -1 is returned for this
channel. If an input value is greater than or equal the threshold value for a category, the zero-based index for
this category is returned. If several threshold values are configured in the same way, the value with the
largest index is used.

Configuration

The function block must be configured based on parameters such as the number of classification classes.
The classification threshold values for each channel can be assigned individually. These threshold values
must be monotonically increasing (but not strictly monotonically). Accordingly, no threshold value must be
smaller than the previous value.

Memory properties

The function block only takes into account the values stored during configuration and training. The values
transferred during classification have no influence on later calls.

NaN occurrence

If the input value is NaN, the result is -2. No NaN values are expected at the output.

Sample implementation

A sample implementation is available under the following link: Threshold value consideration for averaged
magnitude spectra [} 214] and Condition Monitoring with frequency analysis [} 209].

Inputs and outputs

The input and output buffers correspond to the following definition (Shape). The variable parameters are part
of the function block input stInitPars.

Multi-array in the Element type Dimensions Dimensional variables
input stream LREAL 1 nChannels

output stream DINT (32bit) 1 nChannels



PLC API

TC3 Condition Monitoring90 Version: 1.4

Input parameters

The input parameters of this function block represent initialization parameters and must already be assigned
in the declaration of the FB instance! (alternatively: Init() method)
They may only be assigned once. A change at runtime is not possible.
VAR_INPUT
    stInitPars       : ST_CM_DiscreteClassification_InitPars;  // init parameter
    nOwnID           : UDINT;                                  // ID for this FB instance
    aDestIDs         : ARRAY[1..cCMA_MaxDest] OF UDINT;        // IDs of destinations for output
    nResultBuffers   : UDINT := 4;                             // number of MultiArrays which should
 be initialized for results (0 for no initialization)
    tTransferTimeout : LTIME := LTIME#500US;                   // timeout checking off during access
 to inter-task FIFOs
END_VAR

• stInitPars  : Function-block-specific structure with initialization parameters of the type
ST_CM_DiscreteClassification_InitPars [} 174]. The parameters must correlate to the above definition of
the input and output buffers.

• nOwnID  : Identifies the function block instance with a unique ID. This must always be greater than
zero. A proven approach is to define an enumeration for this purpose.

• aDestIDs  : Defines the destinations to which the results are to be forwarded by specifying the IDs of
the destinations. The definition of the output buffer (as described above) must correlate to the definition
of the input buffer of each selected destination.

• nResultBuffers  : The function block initializes a Transfer Tray Stream with the specified number of
multi-array buffers. The default is four.

• tTransferTimeout  : Setting of the synchronous timeout for internal multi-array forwardings. See
section Parallel processing [} 66].

Output parameters
VAR_OUTPUT
    bError        : BOOL;        // TRUE if an error occurs. Reset by next method call.
    hrErrorCode   : HRESULT;     // '< 0' = error; '> 0' = info; '0' = no error/info
    nCntResults   : ULINT;       // counts outgoing results (MultiArrays were calculated and sent to
 transfer tray)
END_VAR

• bError  : The output is TRUE if an error occurs.
• hrErrorCode  : If an error occurs, a corresponding error code of the type HRESULT is output. Possible

values are described in the List of error codes [} 224].

Methods

Call() : 

The method is called in each cycle in order to calculate the classification result from the input signal.
The function block waits for input data if the method indicates neither new results nor an error. This is a
regular behavior in the process of the analysis chain.
METHOD Call : HRESULT
VAR_OUTPUT
    bNewResult   : BOOL;         // TRUE every time when outgoing MultiArray was calculated and sent
 to transfer tray.
    bError       : BOOL;         // TRUE if an error occurs.
    hrErrorCode  : HRESULT;     // '< 0' = error; '> 0' = info; '0' = no error/info
END_VAR

• bError  : The output is TRUE if an error occurs.
• hrErrorCode  : If an error occurs, a corresponding error code of the type HRESULT is output. Possible

values are described in the List of error codes [} 224]. This output is identical to the return value of the
method.
Note: If a timeout occurs or no multi-array buffer is available for the result, then neither the input data
nor the result data are lost. They are forwarded on the next call.

  
Configure() :



PLC API

TC3 Condition Monitoring 91Version: 1.4

The classification arguments must be configured at the beginning with the call of this method. The
corresponding PLC array must be defined as follows. The Configure() method can also be used for a new
configuration with a different set of arguments.

Element type Dimensions Dimensional variables
Argument LREAL 2 nChannels x

nMaxClasses

METHOD Configure : HRESULT
VAR_INPUT
    pArg      : POINTER TO LREAL; // pointer to 2-dimensional array (LREAL) of arguments
    nArgSize  : UDINT;            // size of arguments buffer in bytes 
END_VAR

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 224].

  
Init() :

This method is not usually necessary in a Condition Monitoring application. It offers an alternative to the
function block initialization. The Init() method may only be called during the initialization phase of the PLC. It
cannot be used at runtime. You are referred to the use of an FB_init method or the attribute
‘call_after_init’ (see TwinCAT PLC reference). In addition, this facilitates the function block encapsulation.

The input parameters of the function block instance may not be assigned in the declaration if the initialization
is to take place using the Init() method.
METHOD Init : HRESULT
VAR_INPUT
    stInitPars    : ST_CM_DiscreteClassification_InitPars;   // init parameter
    nOwnID        : UDINT;                                   // ID for this FB instance
    aDestIDs       : ARRAY[1..cCMA_MaxDest] OF UDINT;        // IDs of destinations for output
    nResultBuffers : UDINT := 4;                             // number of MultiArrays which should b
e initialized for results (0 for no initialization)
END_VAR

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 224].

• stInitPars  : Function-block-specific structure with initialization parameters of the type
ST_CM_DiscreteClassification_InitPars [} 174]. The parameters must correlate to the above definition of
the input and output buffers.

• nOwnID  : Identifies the function block instance with a unique ID. This must always be greater than
zero. A proven approach is to define an enumeration for this purpose.

• aDestIDs  : Defines the destinations to which the results are to be forwarded by specifying the IDs of
the destinations. The definition of the output buffer (as described above) must correlate to the definition
of the input buffer of each selected destination.

• nResultBuffers  : The function block initializes a Transfer Tray Stream with the specified number of
multi-array buffers.

PassInputs() :

As long as an FB_CMA_Source instance is called and thus signal data are transferred to a target block, all
further function blocks of the analysis chain have to be called cyclically, as explained in the API PLC reference
[} 73].
Sometimes it is useful not to be execute an algorithm for a certain time. For example, some algorithms
should be executed only after prior training or configuration. Although the function block still has to be called
cyclically, it is sufficient that the data arriving at the function block are relayed in the communication ring
[} 66]. This is done using the PassInputs() method in place of the Call() method. The algorithm itself is not
called, and accordingly no result is calculated and no output buffer is generated.
METHOD PassInputs : HRESULT
VAR_INPUT
END_VAR

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 224].



PLC API

TC3 Condition Monitoring92 Version: 1.4

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4013 PC or CX (x86, x64) Tc3_CM, Tc3_CM_Base

5.1.7 FB_CMA_Downsampling

Downsampling of signal data through copying of the signal data from one PLC buffer to another PLC
buffer (array).

A signal that is present as a buffer (e.g. an oversampling array), can be scanned with a rate that is reduced
by an individual factor. Downsampling is a way of analyzing lower frequencies without having to increase the
FFT length to maintain a high resolution.

Usually, a downsampling block is inserted in the Condition Monitoring analysis chain before an
FB_CMA_Source [} 158].

Inputs and outputs

Input parameters 
VAR_INPUT
    nDivider   : UDINT := 1;  // given input signal is sampled down by the specified divider. (1 = n
o downsampling)
    nChannels  : UDINT;      // number of channels in data buffer (=1:onedimensional dataset, >1:two
dimensional dataset )
END_VAR

• nDivider  : Specifies the downsampling factor as an integer divisor. For example, a sample rate of 10
kHz can be converted to a sample rate of 2 kHz with nDivider=5.

• nChannels  : For downsampling a multi-channel data set, the number of channels is specified at input
nChannels.

Output parameters 
VAR_OUTPUT
    bError       : BOOL;       // TRUE if an error occurs. Reset by next method call.
    hrErrorCode  : HRESULT;    // '< 0' = error; '> 0' = info; '0' = no error/info
    nCntResults  : ULINT;      // counts outgoing results
END_VAR

• bError  : The output is TRUE if an error occurs.
• hrErrorCode  : If an error occurs, a corresponding error code of the type HRESULT is output. Possible

values are described in the List of error codes [} 224].

Methods

Call() : 

Writes data from the input data buffer into the output data buffer. The output data buffer is full when
bNewResult is set.

METHOD Call : HRESULT
VAR_INPUT
    pDataIn       : POINTER TO BYTE;  // address of data buffer (e.g. oversampling data)
    nDataInSize   : UDINT;            // size of data buffer in bytes
    pDataOut      : POINTER TO BYTE;  // address of result buffer
    nDataOutSize  : UDINT;            // size of data buffer in bytes
    nElementSize  : UDINT;            // Size of element type in bytes
END_VAR
VAR_OUTPUT
    bNewResult    : BOOL;             // TRUE every time when outgoing data buffer was calculated.
    bError        : BOOL;             // TRUE if an error occurs.
    hrErrorCode   : HRESULT;          // '< 0' = error; '> 0' = info; '0' = no error/info
END_VAR



PLC API

TC3 Condition Monitoring 93Version: 1.4

• nDataInSize  : Specifies the size of the PLC input buffer and must meet the following condition:
nChannels * nElementSize * number of elements per channel

• pDataOut  : The assigned output buffer must remain unchanged until the output bNewResult is set.
Usually, input and output buffers are always maintained.

• nDataOutSize  : Specifies the size of the PLC output buffer and must meet the following condition:
nDataOutSize = n * nDataInSize
If the quotient is divisible by the parameter nDivider without remainder, the following condition can be
used as an alternative: nDataOutSize = n * (nDataInSize/nDivider)

• nElementSize  : Specifies the size of an element in bytes. For an array of LREAL elements the size is
8, for example.

• bError  : The output is TRUE if an error occurs.
• hrErrorCode  : If an error occurs, a corresponding error code of the type HRESULT is output. Possible

values are described in the List of error codes [} 224]. This output is identical to the return value of the
method.

Notice: If an errors occur, no copy action was performed.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4013 PC or CX (x86, x64) Tc3_CM

5.1.8 FB_CMA_EmpiricalExcess

Calculates the excess for single- and multi-channel real-valued time series.

The function block treats the input signal as a time series, if necessary with several independent channels.
For each channel, the empirical excess is calculated according to equation,

where s is the empirical standard deviation. The excess is the value of the empirical kurtosis reduced by the
value 3, where 3 corresponds to the kurtosis of a normal distribution. This results in the interpretation of the
excess:

excess > 0: Distribution more acute than normal distribution; indicates frequent peaks in the sample

excess < 0: Flattened distribution compared to normal distribution

The excess offers, for example, the possibility of assessing shocks in the vibration signal as they occur when
rolling over local damage in the roller bearing.

A single sample per channel (see Inputs and Outputs, first table) can be added in each cycle, and several
samples per channel can be added to the sample quantity in one cycle (see Inputs and Outputs, second
table).

Memory properties 

The sample quantity N, which is used to calculate the current result, automatically increases with each new
incoming data record, i.e. the function block uses all input values since its instantiation. Resetting of the
sample quantity to zero (deleting the internal memory of the FB) is provided by a ResetData() method or, if
the CallEx() method is used, by the variable bResetData.

Further comments

Four values must be available for calculating an initial result. Furthermore, the standard deviation must not
be zero. Results may become inaccurate if the input values are many orders of magnitude apart.



PLC API

TC3 Condition Monitoring94 Version: 1.4

NaN occurrence

If the number of input values is insufficient for calculating a result for a particular channel or the variance is
zero, the value NaN (not a number) according to IEC 754 is returned for this channel. The presence of this
error value can be checked with the function LrealIsNaN().
The reason may be that so far not enough input data were transferred or that only NaNs were transferred as
input values for individual channels.
A variance of zero may occur if the time series of the values is constant, for example if no sensor data were
transferred due to a broken wire or switching errors.

If a set of input values contains the special constant NaN, no value is added to the statistics for this channel
for this time step, i.e. it is treated as indicator for missing values.

Error values
If the situations described above, which lead to NaN values, cannot be ruled out or safely ne-
glected, the application program must be able to handle these error values.

Sample implementation

A sample implementation is available under the following link: Statistical methods [} 206]

Inputs and outputs

The input and output buffers correspond to the following definition (Shape). The variable parameters are part
of the function block input stInitPars.

Multi-array in the Element type Dimensions Dimensional variables
input stream LREAL 1 nChannels

output stream LREAL 1 nChannels

If several data sets are to be added with each call, the following alternative usage is available with this
function block:

Multi-array in the Element type Dimensions Dimensional variables
input stream LREAL 2 nChannels x not

specified*
output stream LREAL 1 nChannels

*: The length of the second dimension can be selected as desired and thus adapted to the application or the
output buffer of the preceding algorithm.

Input parameters

The input parameters of this function block represent initialization parameters and must already be assigned
in the declaration of the FB instance! (Alternatively: Init() method)
They may only be assigned once. A change at runtime is not possible.
VAR_INPUT
    stInitPars       : ST_CM_EmpiricalMoments_InitPars; // init parameter
    nOwnID           : UDINT;                             // ID for this FB instance
    aDestIDs: ARRAY[1..cCMA_MaxDest] OF UDINT;            // IDs of destinations for output
    nResultBuffers   : UDINT := 4;                        // number of MultiArrays which should be i
nitialized for results (0 for no initialization)
    tTransferTimeout : LTIME := LTIME#500US;             // timeout checking off during access to in
ter-task FIFOs
END_VAR

• stInitPars  : Function block-specific structure with initialization parameters of type
ST_CM_EmpiricalMoments_InitPars [} 174]. The parameters must correlate to the above definition of the
input and output buffers.

• nOwnID  : Identifies the function block instance with a unique ID. This must always be greater than
zero. A proven approach is to define an enumeration for this purpose.



PLC API

TC3 Condition Monitoring 95Version: 1.4

• aDestIDs  : Defines the destinations to which the results are to be forwarded by specifying the IDs of
the destinations. The definition of the output buffer (as described above) must correlate to the definition
of the input buffer of each selected destination.

• nResultBuffers  : The function block initializes a Transfer Tray Stream with the specified number of
multi-array buffers. The default value is four.

• tTransferTimeout  : Setting of the synchronous timeout for internal multi-array forwardings. See
section Parallel processing [} 66].

Output parameters
VAR_OUTPUT
    bError     : BOOL;         // TRUE if an error occurs. Reset by next method call.
    hrErrorCode : HRESULT;     // '< 0' = error; '> 0' = info; '0' = no error/info
    nCntResults : ULINT;       // counts outgoing results (MultiArrays were calculated and sent to t
ransfer tray)
END_VAR

• bError  : The output is TRUE if an error occurs.
• hrErrorCode  : If an error occurs, a corresponding error code of the type HRESULT is output. Possible

values are described in the List of error codes [} 224].

Methods

Call() : 

The method is called in each cycle to calculate and output the current value of the excess from the input
signal and the current internal memory of the FB. An alternative method is CallEx().
The function block waits for input data if the method indicates neither new results nor an error. This is a
regular behavior in the process of the analysis chain.
METHOD Call : HRESULT
VAR_OUTPUT
    bNewResult  : BOOL;        // TRUE every time when outgoing MultiArray was calculated and sent t
o transfer tray.
    bError      : BOOL;        // TRUE if an error occurs.
    hrErrorCode : HRESULT;     // '< 0' = error; '> 0' = info; '0' = no error/info
END_VAR

• bError  : The output is TRUE if an error occurs.
• hrErrorCode  : If an error occurs, a corresponding error code of the type HRESULT is output. Possible

values are described in the List of error codes [} 224]. This output is identical to the return value of the
method.
Note: If a timeout occurs or no multi-array buffer is available for the result, then neither the input data
nor the result data are lost. They are forwarded on the next call.

CallEx() :

The method is called in each cycle to update the internal memory from the input signal. A result is output
only every nAppendData cycles. An alternative method is Call().

The function block waits for input data if the method indicates neither new results nor an error. This is a
regular behavior in the process of the analysis chain.
METHOD CallEx : HRESULT
VAR_INPUT
    nAppendData  : UDINT;      // count of data buffers which are appended until calculation (1= cal
culate always)
    bResetData   : BOOL;       // automatic reset of dataset buffer after each calculation
END_VAR
VAR_OUTPUT
    bNewResult   : BOOL;        // TRUE every time when outgoing MultiArray was calculated and sent
to transfer tray.
    bError       : BOOL;        // TRUE if an error occurs.
    hrErrorCode  : HRESULT;     // '< 0' = error; '> 0' = info; '0' = no error/info
END_VAR

• nAppendData  : Defines how many input data buffers are to be collected before a calculation is carried
out, because several data blocks are preferably added in order to achieve a precise result.

• bResetData : If set, the internal data buffer is completely deleted after calculation.



PLC API

TC3 Condition Monitoring96 Version: 1.4

• bError  : The output is TRUE if an error occurs.
• hrErrorCode  : If an error occurs, a corresponding error code of the type HRESULT is output. Possible

values are described in the List of error codes [} 224]. This output is identical to the return value of the
method.
Note: If a timeout occurs or no multi-array buffer is available for the result, then neither the input data
nor the result data are lost. They are forwarded on the next call.

ResetData() :

This method deletes all the data sets already added. Alternatively, the automatic reset can be used via the
variable bResetData in the method CallEx().

METHOD ResetData : HRESULT
VAR_INPUT
END_VAR

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 224].

Init() :

This method is not usually necessary in a Condition Monitoring application. It offers an alternative to the
function block initialization. The Init() method may only be called during the initialization phase of the PLC. It
cannot be used at runtime. You are referred to the use of an FB_init method or the attribute
‘call_after_init’ (see TwinCAT PLC reference). In addition, this facilitates the block encapsulation.

The input parameters of the function block instance may not be assigned in the declaration if the initialization
is to take place using the Init() method.
METHOD Init : HRESULT
VAR_INPUT
    stInitPars    : ST_CM_EmpiricalMoments_InitPars;  // init parameter
    nOwnID        : UDINT;                              // ID for this FB instance
    aDestIDs      : ARRAY[1..cCMA_MaxDest] OF UDINT;    // IDs of destinations for output
    nResultBuffers: UDINT := 4;                         // number of MultiArrays which should be ini
tialized for results (0 for no initialization)
END_VAR

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 224].

• stInitPars  : Function block-specific structure with initialization parameters of type
ST_CM_EmpiricalMoments_InitPars [} 174]. The parameters must correlate to the above definition of the
input and output buffers.

• nOwnID  : Identifies the function block instance with a unique ID. This must always be greater than
zero. A proven approach is to define an enumeration for this purpose.

• aDestIDs  : Defines the destinations to which the results are to be forwarded by specifying the IDs of
the destinations. The definition of the output buffer (as described above) must correlate to the definition
of the input buffer of each selected destination.

• nResultBuffers  : The function block initializes a Transfer Tray Stream with the specified number of
multi-array buffers.

PassInputs() :

As long as an FB_CMA_Source instance is called and thus signal data are transferred to a target block, all
further function blocks of the analysis chain have to be called cyclically, as explained in the API PLC reference
[} 73].
Sometimes it is useful not to be execute an algorithm for a certain time. For example, some algorithms
should be executed only after prior training or configuration. Although the function block still has to be called
cyclically, it is sufficient that the data arriving at the function block are relayed in the communication ring
[} 66]. This is done using the PassInputs() method in place of the Call() method. The algorithm itself is not
called, and accordingly no result is calculated and no output buffer is generated.



PLC API

TC3 Condition Monitoring 97Version: 1.4

METHOD PassInputs : HRESULT
VAR_INPUT
END_VAR

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 224].

Similar function blocks

The function block FB_CMA_EmpiricalMean [} 97] calculates the empirical average of input values.

The function block FB_CMA_EmpiricalStandardDeviation [} 105] calculates the empirical standard deviation of
input values.

The function block FB_CMA_EmpiricalSkew [} 101] calculates the empirical skew of input values.

The function block FB_CMA_MomentCoefficients [} 130] calculates the empirical mean value, i.e. standard
deviation, skew and excess, depending on the parameterization.

The FB_CMA_HistArray [} 115] function block calculates the histograms of input value distributions.

The FB_CMA_Quantiles [} 148] block calculates the quantiles of an empirical distribution, which enable the
frequency of outliers to be assessed.

As an alternative to the kurtosis the FB_CMA_CrestFactor [} 83] block calculates a different measure for
peakiness (Crest Factor) of a signal, although this is more sensitive to outliers.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4022 PC or CX (x86, x64) Tc3_CM (>= 1.0.22), 

Tc3_CM_Base (>= 1.1.10)

5.1.9 FB_CMA_EmpiricalMean

Calculates the mean value for single- and multi-channel real-valued time series.

The function block treats the input signal as a time series, if necessary with several independent channels.
For each channel, the empirical (arithmetic) mean value according to equation

is calculated. A single sample per channel (see Inputs and Outputs, first table) can be added in each cycle,
and several samples per channel can be added to the sample quantity in one cycle (see Inputs and Outputs,
second table).

Memory properties 

The sample quantity N, which is used to calculate the current mean value, automatically increases with each
new incoming data record, i.e. the function block uses all input values since its instantiation. Resetting of the
sample quantity to zero (deleting the internal memory of the FB) is provided by a ResetData() method or, if
the CallEx() method is used, by the variable bResetData.

NaN occurrence

If a set of input values contains the special constant NaN, no value is added to the statistics for this channel
for this time step, i.e. it is treated as indicator for missing values.



PLC API

TC3 Condition Monitoring98 Version: 1.4

Error values
If the situations described above, which lead to NaN values, cannot be ruled out or safely ne-
glected, the application program must be able to handle these error values.

Sample implementation

A sample implementation is available under the following link: Statistical methods [} 206]

Inputs and outputs

The input and output buffers correspond to the following definition (Shape). The variable parameters are part
of the function block input stInitPars.

Multi-array in the Element type Dimensions Dimensional variables
input stream LREAL 1 nChannels

output stream LREAL 1 nChannels

If several data sets are to be added with each call, the following alternative usage is available with this
function block:

Multi-array in the Element type Dimensions Dimensional variables
input stream LREAL 2 nChannels x not

specified*
output stream LREAL 1 nChannels

*: The length of the second dimension can be selected as desired and thus adapted to the application or the
output buffer of the preceding algorithm.

Input parameters

The input parameters of this function block represent initialization parameters and must already be assigned
in the declaration of the FB instance! (Alternatively: Init() method)
They may only be assigned once. A change at runtime is not possible.
VAR_INPUT
    stInitPars       : ST_CM_EmpiricalMoments_InitPars; // init parameter
    nOwnID           : UDINT;                             // ID for this FB instance
    aDestIDs: ARRAY[1..cCMA_MaxDest] OF UDINT;            // IDs of destinations for output
    nResultBuffers   : UDINT := 4;                        // number of MultiArrays which should be i
nitialized for results (0 for no initialization)
    tTransferTimeout : LTIME := LTIME#500US;             // timeout checking off during access to in
ter-task FIFOs
END_VAR

• stInitPars  : Function block-specific structure with initialization parameters of type
ST_CM_EmpiricalMoments_InitPars [} 174]. The parameters must correlate to the above definition of the
input and output buffers.

• nOwnID  : Identifies the function block instance with a unique ID. This must always be greater than
zero. A proven approach is to define an enumeration for this purpose.

• aDestIDs  : Defines the destinations to which the results are to be forwarded by specifying the IDs of
the destinations. The definition of the output buffer (as described above) must correlate to the definition
of the input buffer of each selected destination.

• nResultBuffers  : The function block initializes a Transfer Tray Stream with the specified number of
multi-array buffers. The default value is four.

• tTransferTimeout  : Setting of the synchronous timeout for internal multi-array forwardings. See
section Parallel processing [} 66].

Output parameters
VAR_OUTPUT
    bError     : BOOL;         // TRUE if an error occurs. Reset by next method call.
    hrErrorCode : HRESULT;     // '< 0' = error; '> 0' = info; '0' = no error/info



PLC API

TC3 Condition Monitoring 99Version: 1.4

    nCntResults : ULINT;       // counts outgoing results (MultiArrays were calculated and sent to t
ransfer tray)
END_VAR

• bError  : The output is TRUE if an error occurs.
• hrErrorCode  : If an error occurs, a corresponding error code of the type HRESULT is output. Possible

values are described in the List of error codes [} 224].

Methods

Call() : 

The method is called in each cycle to calculate and output the current mean value from the input signal and
the current internal memory of the FB. An alternative method is CallEx().
The function block waits for input data if the method indicates neither new results nor an error. This is a
regular behavior in the process of the analysis chain.
METHOD Call : HRESULT
VAR_OUTPUT
    bNewResult  : BOOL;        // TRUE every time when outgoing MultiArray was calculated and sent t
o transfer tray.
    bError      : BOOL;        // TRUE if an error occurs.
    hrErrorCode : HRESULT;     // '< 0' = error; '> 0' = info; '0' = no error/info
END_VAR

• bError  : The output is TRUE if an error occurs.
• hrErrorCode  : If an error occurs, a corresponding error code of the type HRESULT is output. Possible

values are described in the List of error codes [} 224]. This output is identical to the return value of the
method.
Note: If a timeout occurs or no multi-array buffer is available for the result, then neither the input data
nor the result data are lost. They are forwarded on the next call.

CallEx() :

The method is called in each cycle to update the internal memory from the input signal. A result is output
only every nAppendData cycles. An alternative method is Call().

The function block waits for input data if the method indicates neither new results nor an error. This is a
regular behavior in the process of the analysis chain.
METHOD CallEx : HRESULT
VAR_INPUT
    nAppendData  : UDINT;      // count of data buffers which are appended until calculation (1= cal
culate always)
    bResetData   : BOOL;       // automatic reset of dataset buffer after each calculation
END_VAR
VAR_OUTPUT
    bNewResult   : BOOL;        // TRUE every time when outgoing MultiArray was calculated and sent
to transfer tray.
    bError       : BOOL;        // TRUE if an error occurs.
    hrErrorCode  : HRESULT;     // '< 0' = error; '> 0' = info; '0' = no error/info
END_VAR

• nAppendData  : Defines how many input data buffers are to be collected before a calculation is carried
out, because several data blocks are preferably added in order to achieve a precise result.

• bResetData : If set, the internal data buffer is completely deleted after calculation.
• bError  : The output is TRUE if an error occurs.
• hrErrorCode  : If an error occurs, a corresponding error code of the type HRESULT is output. Possible

values are described in the List of error codes [} 224]. This output is identical to the return value of the
method.
Note: If a timeout occurs or no multi-array buffer is available for the result, then neither the input data
nor the result data are lost. They are forwarded on the next call.

ResetData() :

This method deletes all the data sets already added. Alternatively, the automatic reset can be used via the
variable bResetData in the method CallEx().



PLC API

TC3 Condition Monitoring100 Version: 1.4

METHOD ResetData : HRESULT
VAR_INPUT
END_VAR

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 224].

Init() :

This method is not usually necessary in a Condition Monitoring application. It offers an alternative to the
function block initialization. The Init() method may only be called during the initialization phase of the PLC. It
cannot be used at runtime. You are referred to the use of an FB_init method or the attribute
‘call_after_init’ (see TwinCAT PLC reference). In addition, this facilitates the block encapsulation.

The input parameters of the function block instance may not be assigned in the declaration if the initialization
is to take place using the Init() method.
METHOD Init : HRESULT
VAR_INPUT
    stInitPars    : ST_CM_EmpiricalMoments_InitPars;  // init parameter
    nOwnID        : UDINT;                              // ID for this FB instance
    aDestIDs      : ARRAY[1..cCMA_MaxDest] OF UDINT;    // IDs of destinations for output
    nResultBuffers: UDINT := 4;                         // number of MultiArrays which should be ini
tialized for results (0 for no initialization)
END_VAR

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 224].

• stInitPars  : Function block-specific structure with initialization parameters of type
ST_CM_EmpiricalMoments_InitPars [} 174]. The parameters must correlate to the above definition of the
input and output buffers.

• nOwnID  : Identifies the function block instance with a unique ID. This must always be greater than
zero. A proven approach is to define an enumeration for this purpose.

• aDestIDs  : Defines the destinations to which the results are to be forwarded by specifying the IDs of
the destinations. The definition of the output buffer (as described above) must correlate to the definition
of the input buffer of each selected destination.

• nResultBuffers  : The function block initializes a Transfer Tray Stream with the specified number of
multi-array buffers.

PassInputs() :

As long as an FB_CMA_Source instance is called and thus signal data are transferred to a target block, all
further function blocks of the analysis chain have to be called cyclically, as explained in the API PLC reference
[} 73].
Sometimes it is useful not to be execute an algorithm for a certain time. For example, some algorithms
should be executed only after prior training or configuration. Although the function block still has to be called
cyclically, it is sufficient that the data arriving at the function block are relayed in the communication ring
[} 66]. This is done using the PassInputs() method in place of the Call() method. The algorithm itself is not
called, and accordingly no result is calculated and no output buffer is generated.
METHOD PassInputs : HRESULT
VAR_INPUT
END_VAR

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 224].

Similar function blocks

The function block FB_CMA_EmpiricalStandardDeviation [} 105] calculates the empirical standard deviation of
input values.

The function block FB_CMA_EmpiricalSkew [} 101] calculates the empirical skew of input values.

The function block FB_CMA_EmpiricalExcess [} 93] calculates the empirical excess of input values.



PLC API

TC3 Condition Monitoring 101Version: 1.4

The function block FB_CMA_MomentCoefficients [} 130] calculates the empirical mean value, i.e. standard
deviation, skew and excess, depending on the parameterization.

The FB_CMA_HistArray [} 115] function block calculates the histograms of input value distributions.

The FB_CMA_Quantiles [} 148] block calculates the quantiles of an empirical distribution, which enable the
frequency of outliers to be assessed.

As an alternative to the kurtosis the FB_CMA_CrestFactor [} 83] block calculates a different measure for
peakiness (Crest Factor) of a signal, although this is more sensitive to outliers.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4022 PC or CX (x86, x64) Tc3_CM (>= 1.0.22), 

Tc3_CM_Base (>= 1.1.10)

5.1.10 FB_CMA_EmpiricalSkew

Calculates the empirical skew for single- and multi-channel real-valued time series.

The function block treats the input signal as a time series, if necessary with several independent channels.
For each channel, the empirical skew according to equation

where s is the empirical standard deviation. The skew quantifies the asymmetry of a sample. It offers a
possibility to assess impacts (e.g. by rolling over local damage in the roller bearing) in a vibration signal. The
calculated skew is a more robust criterion than the kurtosis/excess, although local damage does not
necessarily lead to asymmetrical signal distributions.

A single sample per channel (see Inputs and Outputs, first table) can be added in each cycle, and several
samples per channel can be added to the sample quantity in one cycle (see Inputs and Outputs, second
table).

Memory properties 

The sample quantity N, which is used to calculate the current result, automatically increases with each new
incoming data record, i.e. the function block uses all input values since its instantiation. Resetting of the
sample quantity to zero (deleting the internal memory of the FB) is provided by a ResetData() method or, if
the CallEx() method is used, by the variable bResetData.

Further comments

Three values must be available for calculating an initial result. Furthermore, the standard deviation must not
be zero. Results may become inaccurate if the input values are many orders of magnitude apart.

NaN occurrence

If the number of input values is insufficient for calculating a result for a particular channel or the variance is
zero, the value NaN (not a number) according to IEC 754 is returned for this channel. The presence of this
error value can be checked with the function LrealIsNaN().
The reason may be that so far not enough input data were transferred or that only NaNs were transferred as
input values for individual channels.
A variance of zero may occur if the time series of the values is constant, for example if no sensor data were
transferred due to a broken wire or switching errors.

If a set of input values contains the special constant NaN, no value is added to the statistics for this channel
for this time step, i.e. it is treated as indicator for missing values.



PLC API

TC3 Condition Monitoring102 Version: 1.4

Error values
If the situations described above, which lead to NaN values, cannot be ruled out or safely ne-
glected, the application program must be able to handle these error values.

Sample implementation

A sample implementation is available under the following link: Statistical methods [} 206]

Inputs and outputs

The input and output buffers correspond to the following definition (Shape). The variable parameters are part
of the function block input stInitPars.

Multi-array in the Element type Dimensions Dimensional variables
input stream LREAL 1 nChannels

output stream LREAL 1 nChannels

If several data sets are to be added with each call, the following alternative usage is available with this
function block:

Multi-array in the Element type Dimensions Dimensional variables
input stream LREAL 2 nChannels x not

specified*
output stream LREAL 1 nChannels

*: The length of the second dimension can be selected as desired and thus adapted to the application or the
output buffer of the preceding algorithm.

Input parameters

The input parameters of this function block represent initialization parameters and must already be assigned
in the declaration of the FB instance! (Alternatively: Init() method)
They may only be assigned once. A change at runtime is not possible.
VAR_INPUT
    stInitPars       : ST_CM_EmpiricalMoments_InitPars; // init parameter
    nOwnID           : UDINT;                             // ID for this FB instance
    aDestIDs: ARRAY[1..cCMA_MaxDest] OF UDINT;            // IDs of destinations for output
    nResultBuffers   : UDINT := 4;                        // number of MultiArrays which should be i
nitialized for results (0 for no initialization)
    tTransferTimeout : LTIME := LTIME#500US;             // timeout checking off during access to in
ter-task FIFOs
END_VAR

• stInitPars  : Function block-specific structure with initialization parameters of type
ST_CM_EmpiricalMoments_InitPars [} 174]. The parameters must correlate to the above definition of the
input and output buffers.

• nOwnID  : Identifies the function block instance with a unique ID. This must always be greater than
zero. A proven approach is to define an enumeration for this purpose.

• aDestIDs  : Defines the destinations to which the results are to be forwarded by specifying the IDs of
the destinations. The definition of the output buffer (as described above) must correlate to the definition
of the input buffer of each selected destination.

• nResultBuffers  : The function block initializes a Transfer Tray Stream with the specified number of
multi-array buffers. The default value is four.

• tTransferTimeout  : Setting of the synchronous timeout for internal multi-array forwardings. See
section Parallel processing [} 66].

Output parameters
VAR_OUTPUT
    bError     : BOOL;         // TRUE if an error occurs. Reset by next method call.
    hrErrorCode : HRESULT;     // '< 0' = error; '> 0' = info; '0' = no error/info



PLC API

TC3 Condition Monitoring 103Version: 1.4

    nCntResults : ULINT;       // counts outgoing results (MultiArrays were calculated and sent to t
ransfer tray)
END_VAR

• bError  : The output is TRUE if an error occurs.
• hrErrorCode  : If an error occurs, a corresponding error code of the type HRESULT is output. Possible

values are described in the List of error codes [} 224].

Methods

Call() : 

The method is called in each cycle to calculate and output the current value of the skew from the input signal
and the current internal memory of the FB. An alternative method is CallEx().
The function block waits for input data if the method indicates neither new results nor an error. This is a
regular behavior in the process of the analysis chain.
METHOD Call : HRESULT
VAR_OUTPUT
    bNewResult  : BOOL;        // TRUE every time when outgoing MultiArray was calculated and sent t
o transfer tray.
    bError      : BOOL;        // TRUE if an error occurs.
    hrErrorCode : HRESULT;     // '< 0' = error; '> 0' = info; '0' = no error/info
END_VAR

• bError  : The output is TRUE if an error occurs.
• hrErrorCode  : If an error occurs, a corresponding error code of the type HRESULT is output. Possible

values are described in the List of error codes [} 224]. This output is identical to the return value of the
method.
Note: If a timeout occurs or no multi-array buffer is available for the result, then neither the input data
nor the result data are lost. They are forwarded on the next call.

CallEx() :

The method is called in each cycle to update the internal memory from the input signal. A result is output
only every nAppendData cycles. An alternative method is Call().

The function block waits for input data if the method indicates neither new results nor an error. This is a
regular behavior in the process of the analysis chain.
METHOD CallEx : HRESULT
VAR_INPUT
    nAppendData  : UDINT;      // count of data buffers which are appended until calculation (1= cal
culate always)
    bResetData   : BOOL;       // automatic reset of dataset buffer after each calculation
END_VAR
VAR_OUTPUT
    bNewResult   : BOOL;        // TRUE every time when outgoing MultiArray was calculated and sent
to transfer tray.
    bError       : BOOL;        // TRUE if an error occurs.
    hrErrorCode  : HRESULT;     // '< 0' = error; '> 0' = info; '0' = no error/info
END_VAR

• nAppendData  : Defines how many input data buffers are to be collected before a calculation is carried
out, because several data blocks are preferably added in order to achieve a precise result.

• bResetData : If set, the internal data buffer is completely deleted after calculation.
• bError  : The output is TRUE if an error occurs.
• hrErrorCode  : If an error occurs, a corresponding error code of the type HRESULT is output. Possible

values are described in the List of error codes [} 224]. This output is identical to the return value of the
method.
Note: If a timeout occurs or no multi-array buffer is available for the result, then neither the input data
nor the result data are lost. They are forwarded on the next call.

ResetData() :

This method deletes all the data sets already added. Alternatively, the automatic reset can be used via the
variable bResetData in the method CallEx().



PLC API

TC3 Condition Monitoring104 Version: 1.4

METHOD ResetData : HRESULT
VAR_INPUT
END_VAR

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 224].

Init() :

This method is not usually necessary in a Condition Monitoring application. It offers an alternative to the
function block initialization. The Init() method may only be called during the initialization phase of the PLC. It
cannot be used at runtime. You are referred to the use of an FB_init method or the attribute
‘call_after_init’ (see TwinCAT PLC reference). In addition, this facilitates the block encapsulation.

The input parameters of the function block instance may not be assigned in the declaration if the initialization
is to take place using the Init() method.
METHOD Init : HRESULT
VAR_INPUT
    stInitPars    : ST_CM_EmpiricalMoments_InitPars;  // init parameter
    nOwnID        : UDINT;                              // ID for this FB instance
    aDestIDs      : ARRAY[1..cCMA_MaxDest] OF UDINT;    // IDs of destinations for output
    nResultBuffers: UDINT := 4;                         // number of MultiArrays which should be ini
tialized for results (0 for no initialization)
END_VAR

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 224].

• stInitPars  : Function block-specific structure with initialization parameters of type
ST_CM_EmpiricalMoments_InitPars [} 174]. The parameters must correlate to the above definition of the
input and output buffers.

• nOwnID  : Identifies the function block instance with a unique ID. This must always be greater than
zero. A proven approach is to define an enumeration for this purpose.

• aDestIDs  : Defines the destinations to which the results are to be forwarded by specifying the IDs of
the destinations. The definition of the output buffer (as described above) must correlate to the definition
of the input buffer of each selected destination.

• nResultBuffers  : The function block initializes a Transfer Tray Stream with the specified number of
multi-array buffers.

PassInputs() :

As long as an FB_CMA_Source instance is called and thus signal data are transferred to a target block, all
further function blocks of the analysis chain have to be called cyclically, as explained in the API PLC reference
[} 73].
Sometimes it is useful not to be execute an algorithm for a certain time. For example, some algorithms
should be executed only after prior training or configuration. Although the function block still has to be called
cyclically, it is sufficient that the data arriving at the function block are relayed in the communication ring
[} 66]. This is done using the PassInputs() method in place of the Call() method. The algorithm itself is not
called, and accordingly no result is calculated and no output buffer is generated.
METHOD PassInputs : HRESULT
VAR_INPUT
END_VAR

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 224].

Similar function blocks

The function block FB_CMA_EmpiricalMean [} 97] calculates the empirical average of input values.

The function block FB_CMA_EmpiricalStandardDeviation [} 105] calculates the empirical standard deviation of
input values.

The function block FB_CMA_EmpiricalExcess [} 93] calculates the empirical excess of input values.



PLC API

TC3 Condition Monitoring 105Version: 1.4

The function block FB_CMA_MomentCoefficients [} 130] calculates the empirical mean, i.e. standard
deviation, skew and excess, depending on the parameterization.

The FB_CMA_HistArray [} 115] function block calculates the histograms of input value distributions.

The FB_CMA_Quantiles [} 148] block calculates the quantiles of an empirical distribution, which enable the
frequency of outliers to be assessed.

As an alternative to the kurtosis the FB_CMA_CrestFactor [} 83] block calculates a different measure for
peakiness (Crest Factor) of a signal, although this is more sensitive to outliers.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4022 PC or CX (x86, x64) Tc3_CM (>= 1.0.22), 

Tc3_CM_Base (>= 1.1.10)

5.1.11 FB_CMA_EmpiricalStandardDeviation

Calculates the empirical standard deviation for single- and multi-channel real-valued time series.

The function block treats the input signal as a time series, if necessary with several independent channels.
For each channel, the empirical standard deviation according to equation

is calculated. The Bessel's correction is always applied, in contrast to FB_CMA_MomentCoefficients [} 130]. A
single sample per channel (see Inputs and Outputs, first table) can be added in each cycle, and several
samples per channel can be added to the sample quantity in one cycle (see Inputs and Outputs, second
table).

Memory properties 

The sample quantity N, which is used to calculate the current result, automatically increases with each new
incoming data record, i.e. the function block uses all input values since its instantiation. Resetting of the
sample quantity to zero (deleting the internal memory of the FB) is provided by a ResetData() method or, if
the CallEx() method is used, by the variable bResetData.

Further comments

Two values must be available for calculating an initial result. Results may become inaccurate if the input
values are many orders of magnitude apart.

NaN occurrence

If the number of input values is insufficient for calculating a result for a particular channel or the variance is
zero, the value NaN (not a number) according to IEC 754 is returned for this channel. The presence of this
error value can be checked with the function LrealIsNaN().
The reason may be that so far not enough input data were transferred or that only NaNs were transferred as
input values for individual channels.
A variance of zero may occur if the time series of the values is constant, for example if no sensor data were
transferred due to a broken wire or switching errors.

If a set of input values contains the special constant NaN, no value is added to the statistics for this channel
for this time step, i.e. it is treated as indicator for missing values.



PLC API

TC3 Condition Monitoring106 Version: 1.4

Error values
If the situations described above, which lead to NaN values, cannot be ruled out or safely ne-
glected, the application program must be able to handle these error values

Sample implementation

A sample implementation is available under the following link: Statistical methods [} 206]

Inputs and outputs

The input and output buffers correspond to the following definition (Shape). The variable parameters are part
of the function block input stInitPars.

Multi-array in the Element type Dimensions Dimensional variables
input stream LREAL 1 nChannels

output stream LREAL 1 nChannels

If several data sets are to be added with each call, the following alternative usage is available with this
function block:

Multi-array in the Element type Dimensions Dimensional variables
input stream LREAL 2 nChannels x not

specified*
output stream LREAL 1 nChannels

*: The length of the second dimension can be selected as desired and thus adapted to the application or the
output buffer of the preceding algorithm.

Input parameters

The input parameters of this function block represent initialization parameters and must already be assigned
in the declaration of the FB instance! (Alternatively: Init() method)
They may only be assigned once. A change at runtime is not possible.
VAR_INPUT
    stInitPars       : ST_CM_EmpiricalMoments_InitPars; // init parameter
    nOwnID           : UDINT;                             // ID for this FB instance
    aDestIDs: ARRAY[1..cCMA_MaxDest] OF UDINT;            // IDs of destinations for output
    nResultBuffers   : UDINT := 4;                        // number of MultiArrays which should be i
nitialized for results (0 for no initialization)
    tTransferTimeout : LTIME := LTIME#500US;             // timeout checking off during access to in
ter-task FIFOs
END_VAR

• stInitPars  : Function block-specific structure with initialization parameters of type
ST_CM_EmpiricalMoments_InitPars [} 174]. The parameters must correlate to the above definition of the
input and output buffers.

• nOwnID  : Identifies the function block instance with a unique ID. This must always be greater than
zero. A proven approach is to define an enumeration for this purpose.

• aDestIDs  : Defines the destinations to which the results are to be forwarded by specifying the IDs of
the destinations. The definition of the output buffer (as described above) must correlate to the definition
of the input buffer of each selected destination.

• nResultBuffers  : The function block initializes a Transfer Tray Stream with the specified number of
multi-array buffers. The default value is four.

• tTransferTimeout  : Setting of the synchronous timeout for internal multi-array forwardings. See
section Parallel processing [} 66].

Output parameters
VAR_OUTPUT
    bError     : BOOL;         // TRUE if an error occurs. Reset by next method call.
    hrErrorCode : HRESULT;     // '< 0' = error; '> 0' = info; '0' = no error/info



PLC API

TC3 Condition Monitoring 107Version: 1.4

    nCntResults : ULINT;       // counts outgoing results (MultiArrays were calculated and sent to t
ransfer tray)
END_VAR

• bError  : The output is TRUE if an error occurs.
• hrErrorCode  : If an error occurs, a corresponding error code of the type HRESULT is output. Possible

values are described in the List of error codes [} 224].

Methods

Call() : 

The method is called in each cycle to calculate and output the current value of the standard deviation from
the input signal and the current internal memory of the FB. An alternative method is CallEx().
The function block waits for input data if the method indicates neither new results nor an error. This is a
regular behavior in the process of the analysis chain.
METHOD Call : HRESULT
VAR_OUTPUT
    bNewResult  : BOOL;        // TRUE every time when outgoing MultiArray was calculated and sent t
o transfer tray.
    bError      : BOOL;        // TRUE if an error occurs.
    hrErrorCode : HRESULT;     // '< 0' = error; '> 0' = info; '0' = no error/info
END_VAR

• bError  : The output is TRUE if an error occurs.
• hrErrorCode  : If an error occurs, a corresponding error code of the type HRESULT is output. Possible

values are described in the List of error codes [} 224]. This output is identical to the return value of the
method.
Note: If a timeout occurs or no multi-array buffer is available for the result, then neither the input data
nor the result data are lost. They are forwarded on the next call.

CallEx() :

The method is called in each cycle to update the internal memory from the input signal. A result is output
only every nAppendData cycles. An alternative method is Call().

The function block waits for input data if the method indicates neither new results nor an error. This is a
regular behavior in the process of the analysis chain.
METHOD CallEx : HRESULT
VAR_INPUT
    nAppendData  : UDINT;      // count of data buffers which are appended until calculation (1= cal
culate always)
    bResetData   : BOOL;       // automatic reset of dataset buffer after each calculation
END_VAR
VAR_OUTPUT
    bNewResult   : BOOL;        // TRUE every time when outgoing MultiArray was calculated and sent
to transfer tray.
    bError       : BOOL;        // TRUE if an error occurs.
    hrErrorCode  : HRESULT;     // '< 0' = error; '> 0' = info; '0' = no error/info
END_VAR

• nAppendData  : Defines how many input data buffers are to be collected before a calculation is carried
out, because several data blocks are preferably added in order to achieve a precise result.

• bResetData : If set, the internal data buffer is completely deleted after calculation.
• bError  : The output is TRUE if an error occurs.
• hrErrorCode  : If an error occurs, a corresponding error code of the type HRESULT is output. Possible

values are described in the List of error codes [} 224]. This output is identical to the return value of the
method.
Note: If a timeout occurs or no multi-array buffer is available for the result, then neither the input data
nor the result data are lost. They are forwarded on the next call.

ResetData() :

This method deletes all the data sets already added. Alternatively, the automatic reset can be used via the
variable bResetData in the method CallEx().



PLC API

TC3 Condition Monitoring108 Version: 1.4

METHOD ResetData : HRESULT
VAR_INPUT
END_VAR

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 224].

Init() :

This method is not usually necessary in a Condition Monitoring application. It offers an alternative to the
function block initialization. The Init() method may only be called during the initialization phase of the PLC. It
cannot be used at runtime. You are referred to the use of an FB_init method or the attribute
‘call_after_init’ (see TwinCAT PLC reference). In addition, this facilitates the block encapsulation.

The input parameters of the function block instance may not be assigned in the declaration if the initialization
is to take place using the Init() method.
METHOD Init : HRESULT
VAR_INPUT
    stInitPars    : ST_CM_EmpiricalMoments_InitPars;  // init parameter
    nOwnID        : UDINT;                              // ID for this FB instance
    aDestIDs      : ARRAY[1..cCMA_MaxDest] OF UDINT;    // IDs of destinations for output
    nResultBuffers: UDINT := 4;                         // number of MultiArrays which should be ini
tialized for results (0 for no initialization)
END_VAR

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 224].

• stInitPars  : Function block-specific structure with initialization parameters of type
ST_CM_EmpiricalMoments_InitPars [} 174]. The parameters must correlate to the above definition of the
input and output buffers.

• nOwnID  : Identifies the function block instance with a unique ID. This must always be greater than
zero. A proven approach is to define an enumeration for this purpose.

• aDestIDs  : Defines the destinations to which the results are to be forwarded by specifying the IDs of
the destinations. The definition of the output buffer (as described above) must correlate to the definition
of the input buffer of each selected destination.

• nResultBuffers  : The function block initializes a Transfer Tray Stream with the specified number of
multi-array buffers.

PassInputs() :

As long as an FB_CMA_Source instance is called and thus signal data are transferred to a target block, all
further function blocks of the analysis chain have to be called cyclically, as explained in the API PLC reference
[} 73].
Sometimes it is useful not to be execute an algorithm for a certain time. For example, some algorithms
should be executed only after prior training or configuration. Although the function block still has to be called
cyclically, it is sufficient that the data arriving at the function block are relayed in the communication ring
[} 66]. This is done using the PassInputs() method in place of the Call() method. The algorithm itself is not
called, and accordingly no result is calculated and no output buffer is generated.
METHOD PassInputs : HRESULT
VAR_INPUT
END_VAR

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 224].

Similar function blocks

The function block FB_CMA_EmpiricalMean [} 97] calculates the empirical average of input values.

The function block FB_CMA_EmpiricalSkew [} 101] calculates the empirical skew of input values.

The function block FB_CMA_EmpiricalExcess [} 93] calculates the empirical excess of input values.



PLC API

TC3 Condition Monitoring 109Version: 1.4

The function block FB_CMA_MomentCoefficients [} 130] calculates the empirical mean value, i.e. standard
deviation, skew and excess, depending on the parameterization.

The FB_CMA_HistArray [} 115] function block calculates the histograms of input value distributions.

The FB_CMA_Quantiles [} 148] block calculates the quantiles of an empirical distribution, which enable the
frequency of outliers to be assessed.

As an alternative to the kurtosis the FB_CMA_CrestFactor [} 83] block calculates a different measure for
peakiness (Crest Factor) of a signal, although this is more sensitive to outliers.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4022 PC or CX (x86, x64) Tc3_CM (>= 1.0.22), 

Tc3_CM_Base (>= 1.1.10)

5.1.12 FB_CMA_Envelope

Calculates the envelope of a time signal.

The envelope is defined mathematically as the absolute value of the analytical signal, see
FB_CMA_AnalyticSignal [} 76]. In the time-continuous display, the envelope xenv(t) of the signal x(t) is defined
as:

The envelope can be interpreted as amplitude-modulated component of the signal x(t), for example

The phase-modulated component φ(t) can also be calculated, see FB_CMA_InstantaneousPhase [} 121]. The
envelope can be used for efficient evaluation of rise or decay processes.

The discrete calculation of the envelope with the function block takes place efficiently in the frequency range.

The input vector is first overlapped with the immediately preceding buffer and multiplied with a window
function. Subsequently an FFT for real input values is applied. Within the frequency range the Hilbert
transform is applied to the signal, and the result is transformed back to the time range. The absolute value of
the resulting complex values is calculated. The time signal is added up overlapping using the Overlap-Add
method. By selecting suitable window functions a continuous output signal without step changes can be
achieved.

The envelope only provides valid results for mean-free signals. If a signal with a mean value is to be
analyzed, the signal average must be subtracted beforehand and added back to the result of the function
block with the previously subtracted value.

Memory properties

Since the Overlap-Add method is used, in each case the current input buffer together with the two last
transferred buffers is used for the calculation.

Inputs and outputs

The input and output buffers correspond to the following definition (Shape). The variable parameters are part
of the function block input stInitPars.



PLC API

TC3 Condition Monitoring110 Version: 1.4

Multi-array in the Element type Dimensions Dimensional variables
input stream LREAL 1 nWindowLength/2
output stream LREAL 1 nWindowLength/2

Input parameters

The input parameters of this function block represent initialization parameters and must already be assigned
in the declaration of the FB instance! (Alternatively: Init() method) It can only be assigned once. It cannot be
changed at runtime.
VAR_INPUT
    stInitPars    : ST_CM_Envelope_InitPars;         // init parameter
    nOwnID        : UDINT;                           // ID for this FB instance
    aDestIDs      : ARRAY[1..cCMA_MaxDest] OF UDINT; // IDs of destinations for output
    nResultBuffers: UDINT := 4;                      // number of MultiArrays which should be initia
lized for results (0 for no initialization)
    tTransferTimeout : LTIME := LTIME#500US;         // timeout checking off during access to inter-
task FIFOs
END_VAR

• stInitPars  : Function-block-specific structure with initialization parameters of the type
ST_CM_Envelope_InitPars [} 175]. The parameters must correlate to the above definition of the input
and output buffers.

• nOwnID  : Identifies the function block instance with a unique ID. This must always be greater than
zero. A proven approach is to define an enumeration for this purpose.

• aDestIDs  : Defines the destinations to which the results are to be forwarded by specifying the IDs of
the destinations. The definition of the output buffer (as described above) must correlate to the definition
of the input buffer of each selected destination.

• nResultBuffers  : The function block initializes a Transfer Tray Stream with the specified number of
multi-array buffers. The default value is four.

• tTransferTimeout  : Setting of the synchronous timeout for internal multi-array forwardings. See
section Parallel processing [} 66].

Output parameters
VAR_OUTPUT
    bError        : BOOL;       // TRUE if an error occurs. Reset by next method call.
    hrErrorCode   : HRESULT;    // '< 0' = error; '> 0' = info; '0' = no error/info
    nCntResults   : ULINT;      // counts outgoing results (MultiArrays were calculated and sent to
transfer tray)
END_VAR

• bError  : The output is TRUE if an error occurs.
• hrErrorCode  : If an error occurs, a corresponding error code of the type HRESULT is output. Possible

values are described in the List of error codes [} 224].

Methods

Call() : 

The method is called in each cycle in order to calculate the envelope from the input signal.
The function block waits for input data if the method indicates neither new results nor an error. This is a
regular behavior in the process of the analysis chain.
METHOD Call : HRESULT
VAR_OUTPUT
    bNewResult   : BOOL;       // TRUE every time when outgoing MultiArray was calculated and sent t
o transfer tray.
    bError       : BOOL;       // TRUE if an error occurs.
    hrErrorCode  : HRESULT;    // '< 0' = error; '> 0' = info; '0' = no error/info
END_VAR

• bError  : The output is TRUE if an error occurs.



PLC API

TC3 Condition Monitoring 111Version: 1.4

• hrErrorCode  : If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 224]. This output is identical to the return value of the
method.
Note: If a timeout occurs or no multi-array buffer is available for the result, then neither the input data
nor the result data are lost. They are forwarded on the next call.

Init() :

This method is not usually necessary in a Condition Monitoring application. It offers an alternative to the
function block initialization. The Init() method may only be called during the initialization phase of the PLC. It
cannot be used at runtime. You are referred to the use of an FB_init method or the attribute
‘call_after_init’ (see TwinCAT PLC reference). In addition, this facilitates the block encapsulation.

The input parameters of the function block instance may not be assigned in the declaration if the initialization
is to take place using the Init() method.
METHOD Init : HRESULT
VAR_INPUT
    stInitPars     : ST_CM_Envelope_InitPars;          // init parameter
    nOwnID         : UDINT;                            // ID for this FB instance
    aDestIDs       : ARRAY[1..cCMA_MaxDest] OF UDINT;  // IDs of destinations for output
    nResultBuffers : UDINT := 4;                       // number of MultiArrays which should be init
ialized for results (0 for no initialization)
END_VAR

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 224].

• stInitPars  : Function-block-specific structure with initialization parameters of the type
ST_CM_Envelope_InitPars [} 175]. The parameters must correlate to the above definition of the input
and output buffers.

• nOwnID  : Identifies the function block instance with a unique ID. This must always be greater than
zero. A proven approach is to define an enumeration for this purpose.

• aDestIDs  : Defines the destinations to which the results are to be forwarded by specifying the IDs of
the destinations. The definition of the output buffer (as described above) must correlate to the definition
of the input buffer of each selected destination.

• nResultBuffers  : The function block initializes a Transfer Tray Stream with the specified number of
multi-array buffers.

PassInputs() :

As long as an FB_CMA_Source instance is called and thus signal data are transferred to a target block, all
further function blocks of the analysis chain have to be called cyclically, as explained in the API PLC reference
[} 73].
Sometimes it is useful not to be execute an algorithm for a certain time. For example, some algorithms
should be executed only after prior training or configuration. Although the function block still has to be called
cyclically, it is sufficient that the data arriving at the function block are relayed in the communication ring
[} 66]. This is done using the PassInputs() method in place of the Call() method. The algorithm itself is not
called, and accordingly no result is calculated and no output buffer is generated.
METHOD PassInputs : HRESULT
VAR_INPUT
END_VAR

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 224].

ResetData() :

The method deletes all data records that have already been added, see Memory property of the function
block. If the Call() method is called again after a ResetData(), the internal memory must be replenished in
order to calculate a valid result.
METHOD ResetData : HRESULT
VAR_INPUT
END_VAR



PLC API

TC3 Condition Monitoring112 Version: 1.4

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 224].

Similar function blocks

The FB_CMA_AnalyticSignal [} 76] block calculates the analytical signal of a time series.

Requirements

Development environment Target system type PLC libraries to include
TwinCAT v3.1.4013 PC or CX (x86, x64) Tc3_CM, Tc3_CM_Base

5.1.13 FB_CMA_EnvelopeSpectrum

Calculates the envelope spectrum of a time signal.

The envelope spectrum is a combined function block of FB_CMA_Envelope [} 109] and
FB_CMA_PowerSpectrum [} 142]. 
Accordingly, the signal envelope of a time signal is calculated first, followed by the power spectrum. 
The function block is very important for frequency-resolved analysis of roller bearing damage, see Bearing
monitoring [} 39].

Memory properties 

Since the Overlap-Add and the Welch methods are used, in each case the current input buffer together with
the three last transferred buffers is used for the calculation.

Sample implementation

A sample implementation is available under the following link: Envelope spectrum [} 218].

NaN occurrence

If the input vector contains one or more NaN values, the entire spectrum result is filled with NaN. 
This property can be used to mark results as undefined in case a gap in the input signal leads to jumps in the
time series. Refer here to the description of the input methods at the FB_CMA_Source [} 159].
If incoming NaN values cannot be excluded, the user program must handle these error values.

Inputs and outputs

The input and output buffers correspond to the following definition (Shape). The variable parameters are part
of the function block input stInitPars.

Multi-array in the Element type Dimensions Dimensional variables
input stream LREAL 1 nWindowLength/2
output stream LREAL 1 nFFT_length_Spectru

m/2 +1

Input parameters

The input parameters of this function block represent initialization parameters and must already be assigned
in the declaration of the FB instance! (Alternatively: Init() method)
They may only be assigned once. A change at runtime is not possible.
VAR_INPUT
    stInitPars       : ST_CM_EnvelopeSpectrum_InitPars;    // init parameter
    nOwnID           : UDINT;                              // ID for this FB instance
    aDestIDs         : ARRAY[1..cCMA_MaxDest] OF UDINT;    // IDs of destinations for output
    nResultBuffers   : UDINT := 4;                         // number of MultiArrays which should be
initialized for results (0 for no initialization)



PLC API

TC3 Condition Monitoring 113Version: 1.4

    tTransferTimeout : LTIME := LTIME#500US;               // timeout checking off during access to
inter-task FIFOs
END_VAR

• stInitPars  : Function-block-specific structure with initialization parameters of the type
ST_CM_EnvelopeSpectrum_InitPars [} 175]. The parameters must correlate to the above definition of
the input and output buffers.

• nOwnID  : Identifies the function block instance with a unique ID. This must always be greater than
zero. A proven approach is to define an enumeration for this purpose.

• aDestIDs  : Defines the destinations to which the results are to be forwarded by specifying the IDs of
the destinations. The definition of the output buffer (as described above) must correlate to the definition
of the input buffer of each selected destination.

• nResultBuffers  : The function block initializes a Transfer Tray Stream with the specified number of
multi-array buffers. The default value is four.

• tTransferTimeout  : Setting of the synchronous timeout for internal multi-array forwardings. See
section Parallel processing [} 66].

Output parameters
VAR_OUTPUT
    bError        : BOOL;        // TRUE if an error occurs. Reset by next method call.
    hrErrorCode   : HRESULT;     // '< 0' = error; '> 0' = info; '0' = no error/info
    nCntResults   : ULINT;       // counts outgoing results (MultiArrays were calculated and sent to
 transfer tray)
END_VAR

• bError  : The output is TRUE if an error occurs.
• hrErrorCode  : If an error occurs, a corresponding error code of the type HRESULT is output. Possible

values are described in the List of error codes [} 224].

Methods

Call() : 

The method is called in each cycle in order to calculate the envelope spectrum from the input signal.
The function block waits for input data if the method indicates neither new results nor an error. This is a
regular behavior in the process of the analysis chain.
METHOD Call : HRESULT
VAR_OUTPUT
    bNewResult    : BOOL;       // TRUE every time when outgoing MultiArray was calculated and sent
to transfer tray.
    bError        : BOOL;       // TRUE if an error occurs.
    hrErrorCode   : HRESULT;    // '< 0' = error; '> 0' = info; '0' = no error/info
END_VAR

• bError  : The output is TRUE if an error occurs.
• hrErrorCode  : If an error occurs, a corresponding error code of the type HRESULT is output. Possible

values are described in the List of error codes [} 224]. This output is identical to the return value of the
method.
Note: If a timeout occurs or no multi-array buffer is available for the result, then neither the input data
nor the result data are lost. They are forwarded on the next call.

Init() :

This method is not usually necessary in a Condition Monitoring application. It offers an alternative to the
function block initialization. The Init() method may only be called during the initialization phase of the PLC. It
cannot be used at runtime. You are referred to the use of an FB_init method or the attribute
‘call_after_init’ (see TwinCAT PLC reference). In addition, this facilitates the block encapsulation.

The input parameters of the function block instance may not be assigned in the declaration if the initialization
is to take place using the Init() method.
METHOD Init : HRESULT
VAR_INPUT
    stInitPars     : ST_CM_EnvelopeSpectrum_InitPars;  // init parameter
    nOwnID    : UDINT;                                 // ID for this FB instance
    aDestIDs       : ARRAY[1..cCMA_MaxDest] OF UDINT;  // IDs of destinations for output



PLC API

TC3 Condition Monitoring114 Version: 1.4

    nResultBuffers : UDINT := 4;                       // number of MultiArrays which should be init
ialized for results (0 for no initialization)
END_VAR

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 224].

• stInitPars  : Function-block-specific structure with initialization parameters of the type
ST_CM_EnvelopeSpectrum_InitPars [} 175]. The parameters must correlate to the above definition of
the input and output buffers.

• nOwnID  : Identifies the function block instance with a unique ID. This must always be greater than
zero. A proven approach is to define an enumeration for this purpose.

• aDestIDs  : Defines the destinations to which the results are to be forwarded by specifying the IDs of
the destinations. The definition of the output buffer (as described above) must correlate to the definition
of the input buffer of each selected destination.

• nResultBuffers  : The function block initializes a Transfer Tray Stream with the specified number of
multi-array buffers.

PassInputs() :

As long as an FB_CMA_Source instance is called and thus signal data are transferred to a target block, all
further function blocks of the analysis chain have to be called cyclically, as explained in the API PLC reference
[} 73].
Sometimes it is useful not to be execute an algorithm for a certain time. For example, some algorithms
should be executed only after prior training or configuration. Although the function block still has to be called
cyclically, it is sufficient that the data arriving at the function block are relayed in the communication ring
[} 66]. This is done using the PassInputs() method in place of the Call() method. The algorithm itself is not
called, and accordingly no result is calculated and no output buffer is generated.
METHOD PassInputs : HRESULT
VAR_INPUT
END_VAR

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 224].

ResetData() :

The method deletes all data records that have already been added, see Memory property of the function
block. If the Call() method is called again after a ResetData(), the internal memory must be replenished in
order to calculate a valid result.
METHOD ResetData : HRESULT
VAR_INPUT
END_VAR

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 224].

Similar function blocks

The function block FB_CMA_Envelope [} 109] calculates the envelope of a time series.

The FB_CMA_PowerSpectrum [} 142] block calculates the power spectrum by means of squaring of the
values in the last step.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4013 PC or CX (x86, x64) Tc3_CM, Tc3_CM_Base



PLC API

TC3 Condition Monitoring 115Version: 1.4

5.1.14 FB_CMA_HistArray

Calculates the frequency distribution for single- and multi-channel real-valued time series.

The function block FB_CMA_HistArray calculates the frequency distribution (in the graphical representation
referred to as histogram) of single- and multi-channel real-valued input data. Each channel is considered
independently. For each individual channel the frequency distribution of the cyclic incoming data buffer is
calculated; both individual values and arrays are permitted as input buffer.

The lower and upper limit values and the number of classes (also referred to as bins) are transferred for
parameterization. The individual class limits are then distributed in identical intervals across the defined
range, cf. Histograms [} 25]. Values below the lower limit and values above the upper limit are counted in
two additional bins.

The return value is a two-dimensional array with unsigned 64-bit integer values. The first index is the channel
number, the second index is the number of the respective histogram bin. The counts for elements with
values below the lower limit value or above the upper limit value are contained in the first and last bin
respectively.

If a histogram counter exceeds a value of 2 to the power of 64, approx. 18E19, in the current implementation
the counter overruns without generating an error message. With a counting step of 100 microseconds, this
would happen after 59 million years at the earliest.

Configuration

The initialization parameters specify the limits for counting samples in the regular histogram bins. They can
be individually adjusted for each channel with the Configure() method.

NaN occurrence

If a set of input values contains the special constant NaN, no value is added to the statistics for this channel
for this time step, i.e. it is treated as indicator for missing values.

Memory properties

The function block takes into account all input values since the instantiation or since the last call of the
ResetData() method, if it was called since the start.
Sample implementation

A sample implementation is available under the following link: Histogram [} 204].

Inputs and outputs

The input and output buffers correspond to the following definition (Shape). The variable parameters are part
of the function block input stInitPars.

Multi-array in the Element type Dimensions Dimensional variables
input stream LREAL 1 nChannels

output stream ULINT 2 nChannels  x  (nBins
+2)

If several data sets are to be added with each call, the following alternative usage is available with this
function block:

Multi-array in the Element type Dimensions Dimensional variables
input stream LREAL 2 nChannels  x  not

specified*
output stream ULINT 2 nChannels  x  (nBins

+2)

*: The length of the second dimension can be selected as desired and thus adapted to the application or the
output buffer of the preceding algorithm.



PLC API

TC3 Condition Monitoring116 Version: 1.4

  
Input parameters

The input parameters of this function block represent initialization parameters and must already be assigned
in the declaration of the FB instance! (alternatively: Init() method)
They may only be assigned once. A change at runtime is not possible.
VAR_INPUT
    stInitPars       : ST_CM_HistArray_InitPars;         // init parameter
    nOwnID           : UDINT;                 // ID for this FB instance
    aDestIDs         : ARRAY[1..cCMA_MaxDest] OF UDINT;  // IDs of destinations for output
    nResultBuffers   : UDINT := 4;            // number of MultiArrays which should be initialized f
or results (0 for no initialization)
    tTransferTimeout : LTIME := LTIME#500US;  // timeout checking off during access to inter-
task FIFOs
END_VAR

• stInitPars  : Function-block-specific structure with initialization parameters of the type
ST_CM_HistArray_InitPars [} 176]. The parameters must correlate to the above definition of the input
and output buffers.

• nOwnID  : Identifies the function block instance with a unique ID. This must always be greater than
zero. A proven approach is to define an enumeration for this purpose.

• aDestIDs  : Defines the destinations to which the results are to be forwarded by specifying the IDs of
the destinations. The definition of the output buffer (as described above) must correlate to the definition
of the input buffer of each selected destination.

• nResultBuffers  : The function block initializes a Transfer Tray Stream with the specified number of
multi-array buffers. The default is four.

• tTransferTimeout  : Setting of the synchronous timeout for internal multi-array forwardings. See
section Parallel processing [} 66].

Output parameters
VAR_OUTPUT
    bError      : BOOL;        // TRUE if an error occurs. Reset by next method call.
    hrErrorCode : HRESULT;     // '< 0' = error; '> 0' = info; '0' = no error/info
    nCntResults : ULINT;       // counts outgoing results (MultiArrays were calculated and sent to t
ransfer tray)
END_VAR

• bError  : The output is TRUE if an error occurs.
• hrErrorCode  : If an error occurs, a corresponding error code of the type HRESULT is output. Possible

values are described in the List of error codes [} 224].

Methods

Call() : 

The method is called in each cycle in order to calculate the histogram from the input signal. An alternative
method is CallEx().
The function block waits for input data if the method indicates neither new results nor an error. This is a
regular behavior in the process of the analysis chain.
METHOD Call : HRESULT
VAR_OUTPUT
    bNewResult  : BOOL;         // TRUE every time when outgoing MultiArray was calculated and sent
to transfer tray.
    bError      : BOOL;         // TRUE if an error occurs.
    hrErrorCode : HRESULT;      // '< 0' = error; '> 0' = info; '0' = no error/info
END_VAR

• bError  : The output is TRUE if an error occurs.
• hrErrorCode  : If an error occurs, a corresponding error code of the type HRESULT is output. Possible

values are described in the List of error codes [} 224]. This output is identical to the return value of the
method.
Note: If a timeout occurs or no multi-array buffer is available for the result, then neither the input data
nor the result data are lost. They are forwarded on the next call.

CallEx() :



PLC API

TC3 Condition Monitoring 117Version: 1.4

The method is called in each cycle in order to calculate the histogram from the input signal. An alternative
method is Call().
The histogram evaluation is generally significantly more computationally demanding than the registration of
new input values. Therefore a use of the method Callex() can considerably shorten the runtime, depending
on the configured parameters, by only calculating statistic results when they are required.

The function block waits for input data if the method indicates neither new results nor an error. This is a
regular behavior in the process of the analysis chain.
METHOD CallEx : HRESULT
VAR_INPUT
    nAppendData  : UDINT;      // count of data buffers which are appended until calculation (1= cal
culate always)
    bResetData   : BOOL;       // automatic reset of dataset buffer after each calculation
END_VAR
VAR_OUTPUT
    bNewResult   : BOOL;        // TRUE every time when outgoing MultiArray was calculated and sent
to transfer tray.
    bError       : BOOL;        // TRUE if an error occurs.
    hrErrorCode  : HRESULT;     // '< 0' = error; '> 0' = info; '0' = no error/info
END_VAR

• nAppendData  : Defines how many input data buffers are to be collected before a calculation is carried
out, because several data blocks are preferably added in order to achieve a precise result.

• bResetData : If set, the internal data buffer is completely deleted after calculation.
• bError  : The output is TRUE if an error occurs.
• hrErrorCode  : If an error occurs, a corresponding error code of the type HRESULT is output. Possible

values are described in the List of error codes [} 224]. This output is identical to the return value of the
method.
Note: If a timeout occurs or no multi-array buffer is available for the result, then neither the input data
nor the result data are lost. They are forwarded on the next call.

Configure() :

By calling this method, the histogram arguments can be reconfigured. This allows fine adjustment of the
fMinBinned and fMaxBinned parameters during runtime. The corresponding PLC array must be defined as
follows.

Element type Dimensions Dimensional variables
Argument LREAL 2 nChannels  x  2

METHOD Configure : HRESULT
VAR_INPUT
    pArg      : POINTER TO LREAL;  // pointer to 2-dimensional array (LREAL) of arguments
    nArgSize  : UDINT;             // size of arguments buffer in bytes 
END_VAR

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 224].

ResetData() :

This method deletes all the data sets already added. Alternatively the automatic reset in the method CallEx()
can be used.

METHOD ResetData : HRESULT
VAR_INPUT
END_VAR

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 224].

Init() :



PLC API

TC3 Condition Monitoring118 Version: 1.4

This method is not usually necessary in a Condition Monitoring application. It offers an alternative to the
function block initialization. The Init() method may only be called during the initialization phase of the PLC. It
cannot be used at runtime. You are referred to the use of an FB_init method or the attribute
‘call_after_init’ (see TwinCAT PLC reference). In addition, this facilitates the function block encapsulation.

The input parameters of the function block instance may not be assigned in the declaration if the initialization
is to take place using the Init() method.
METHOD Init : HRESULT
VAR_INPUT
    stInitPars     : ST_CM_HistArray_InitPars;         // init parameter
    nOwnID         : UDINT;       // ID for this FB instance
    aDestIDs       : ARRAY[1..cCMA_MaxDest] OF UDINT;  // IDs of destinations for output
    nResultBuffers : UDINT := 4;  // number of MultiArrays which should be initialized for results (
0 for no initialization)
END_VAR

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 224].

• stInitPars  : Function-block-specific structure with initialization parameters of the type
ST_CM_HistArray_InitPars [} 176]. The parameters must correlate to the above definition of the input
and output buffers.

• nOwnID  : Identifies the function block instance with a unique ID. This must always be greater than
zero. A proven approach is to define an enumeration for this purpose.

• aDestIDs  : Defines the destinations to which the results are to be forwarded by specifying the IDs of
the destinations. The definition of the output buffer (as described above) must correlate to the definition
of the input buffer of each selected destination.

• nResultBuffers  : The function block initializes a Transfer Tray Stream with the specified number of
multi-array buffers.

PassInputs() :

As long as an FB_CMA_Source instance is called and thus signal data are transferred to a target block, all
further function blocks of the analysis chain have to be called cyclically, as explained in the API PLC reference
[} 73].
Sometimes it is useful not to be execute an algorithm for a certain time. For example, some algorithms
should be executed only after prior training or configuration. Although the function block still has to be called
cyclically, it is sufficient that the data arriving at the function block are relayed in the communication ring
[} 66]. This is done using the PassInputs() method in place of the Call() method. The algorithm itself is not
called, and accordingly no result is calculated and no output buffer is generated.
METHOD PassInputs : HRESULT
VAR_INPUT
END_VAR

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 224].

Similar function blocks

The FB_CMA_Quantiles [} 148] function block calculates the quantiles of input value distributions.
The FB_CMA_MomentCoefficients [} 130] function block calculates the statistical moment coefficients:
average value, standard deviation, skew and kurtosis.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4016.12 PC or CX (x86, x64) Tc3_CM (v1.0.19), Tc3_CM_Base



PLC API

TC3 Condition Monitoring 119Version: 1.4

5.1.15 FB_CMA_InstantaneousFrequency

Calculation of the instantaneous frequency of a time signal

The instantaneous frequency in the mathematical sense is defined as temporal derivative of the
instantaneous phase, see FB_CMA_InstantaneousPhase [} 121]. In the time-continuous display, the
instantaneous frequency ω(t) of the signal x(t) is defined as:

The instantaneous frequency can be interpreted as frequency-modulated component of the signal x(t), for
example

In this way the signal x(t) can be transformed into the amplitude- and frequency-modulated representation
through calculation of the instantaneous frequency and the envelope [} 109] .

The function blocks instantaneous phase and instantaneous frequency only provide valid results for signals
without mean values. If a signal with a mean value is to be analyzed, the signal average must be subtracted
beforehand.

The instantaneous frequency is well suited for analyzing torsional vibrations of a crankshaft. Torsional
vibrations can be caused by a fluctuating torque, for example, and result in a frequency modulation on an
otherwise uniform speed.

Memory properties

Since the Overlap-Add method is used, in each case the current input buffer together with the two last
transferred buffers is used for the calculation.

NaN occurrence

If one or several elements at the input are NaN (Not a Number), the total output signal is NaN.

Inputs and outputs

The input and output buffers correspond to the following definition (Shape). The variable parameters are part
of the function block input stInitPars.

Multi-array in the Element type Dimensions Dimensional variables
input stream LREAL 1 nWindowLength/2

output stream LREAL 1 nWindowLength/2

Input parameters

The input parameters of this function block represent initialization parameters and must already be assigned
in the declaration of the FB instance! (Alternatively: Init() method)
They may only be assigned once. A change at runtime is not possible.
VAR_INPUT
    stInitPars       : ST_CM_InstantaneousFrequency_InitPars;   // init parameter
    nOwnID           : UDINT;                           // ID for this FB instance
    aDestIDs         : ARRAY[1..cCMA_MaxDest] OF UDINT; // IDs of destinations for output
    nResultBuffers   : UDINT := 4;                      // number of MultiArrays which should be ini
tialized for results (0 for no initialization)
    tTransferTimeout : LTIME := LTIME#500US;            // timeout checking off during access to int
er-task FIFOs
END_VAR



PLC API

TC3 Condition Monitoring120 Version: 1.4

• stInitPars  : Function block-specific structure with initialization parameters of type
ST_CM_InstantaneousFrequency_InitPars [} 177]. The parameters must correlate to the above definition
of the input and output buffers.

• nOwnID  : Identifies the function block instance with a unique ID. This must always be greater than
zero. A proven approach is to define an enumeration for this purpose.

• aDestIDs  : Defines the destinations to which the results are to be forwarded by specifying the IDs of
the destinations. The definition of the output buffer (as described above) must correlate to the definition
of the input buffer of each selected destination.

• nResultBuffers  : The function block initializes a Transfer Tray Stream with the specified number of
multi-array buffers. The default value is four.

• tTransferTimeout  : Setting of the synchronous timeout for internal multi-array forwardings. See
section Parallel processing [} 66].

Output parameters
VAR_OUTPUT
    bError        : BOOL;         // TRUE if an error occurs. Reset by next method call.
    hrErrorCode   : HRESULT;      // '< 0' = error; '> 0' = info; '0' = no error/info
    nCntResults   : ULINT;        // counts outgoing results (MultiArrays were calculated and sent t
o transfer tray)
END_VAR

• bError  : The output is TRUE if an error occurs.
• hrErrorCode  : If an error occurs, a corresponding error code of the type HRESULT is output. Possible

values are described in the List of error codes [} 224].

Methods

Call() : 

The method is called in each cycle in order to calculate the instantaneous frequency from the input signal.
The function block waits for input data if the method indicates neither new results nor an error. This is a
regular behavior in the process of the analysis chain.
METHOD Call : HRESULT
VAR_OUTPUT
    bNewResult  : BOOL;       // TRUE every time when outgoing MultiArray was calculated and sent to
 transfer tray.
    bError      : BOOL;       // TRUE if an error occurs.
    hrErrorCode : HRESULT;    // '< 0' = error; '> 0' = info; '0' = no error/info
END_VAR

• bError  : The output is TRUE if an error occurs.
• hrErrorCode  : If an error occurs, a corresponding error code of the type HRESULT is output. Possible

values are described in the List of error codes [} 224]. This output is identical to the return value of the
method.
Note: If a timeout occurs or no multi-array buffer is available for the result, then neither the input data
nor the result data are lost. They are forwarded on the next call.

Init() :

This method is not usually necessary in a Condition Monitoring application. It offers an alternative to the
function block initialization. The Init() method may only be called during the initialization phase of the PLC. It
cannot be used at runtime. You are referred to the use of an FB_init method or the attribute
‘call_after_init’ (see TwinCAT PLC reference). In addition, this facilitates the block encapsulation.

The input parameters of the function block instance may not be assigned in the declaration if the initialization
is to take place using the Init() method.
METHOD Init : HRESULT
VAR_INPUT
    stInitPars     : ST_CM_InstantaneousFrequency_InitPars;       // init parameter
    nOwnID    : UDINT;                                // ID for this FB instance
    aDestIDs       : ARRAY[1..cCMA_MaxDest] OF UDINT; // IDs of destinations for output
    nResultBuffers : UDINT := 4;                      // number of MultiArrays which should be initi
alized for results (0 for no initialization)
END_VAR



PLC API

TC3 Condition Monitoring 121Version: 1.4

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 224].

• stInitPars  : Function block-specific structure with initialization parameters of type
ST_CM_InstantaneousFrequency_InitPars [} 177]. The parameters must correlate to the above definition
of the input and output buffers.

• nOwnID  : Identifies the function block instance with a unique ID. This must always be greater than
zero. A proven approach is to define an enumeration for this purpose.

• aDestIDs  : Defines the destinations to which the results are to be forwarded by specifying the IDs of
the destinations. The definition of the output buffer (as described above) must correlate to the definition
of the input buffer of each selected destination.

• nResultBuffers  : The function block initializes a Transfer Tray Stream with the specified number of
multi-array buffers.

PassInputs() :

As long as an FB_CMA_Source instance is called and thus signal data are transferred to a target block, all
further function blocks of the analysis chain have to be called cyclically, as explained in the API PLC reference
[} 73].
Sometimes it is useful not to be execute an algorithm for a certain time. For example, some algorithms
should be executed only after prior training or configuration. Although the function block still has to be called
cyclically, it is sufficient that the data arriving at the function block are relayed in the communication ring
[} 66]. This is done using the PassInputs() method in place of the Call() method. The algorithm itself is not
called, and accordingly no result is calculated and no output buffer is generated.
METHOD PassInputs : HRESULT
VAR_INPUT
END_VAR

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 224].

ResetData() :

The method deletes all data records that have already been added, see Memory property of the function
block. If the Call() method is called again after a ResetData(), the internal memory must be replenished in
order to calculate a valid result.
METHOD ResetData : HRESULT
VAR_INPUT
END_VAR

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 224].

Similar function blocks

The function block FB_CMA_InstantaneousPhase [} 121].

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4018 PC or CX (x86, x64) Tc3_CM, Tc3_CM_Base

5.1.16 FB_CMA_InstantaneousPhase

Calculation of the instantaneous phase of a time signal

The instantaneous phase φ(t) of a signal x(t) is defined via the phase of the analytical signal, see
FB_CMA_AnalyticSignal [} 76]:



PLC API

TC3 Condition Monitoring122 Version: 1.4

The instantaneous phase can be interpreted as phase-modulated component of the signal x(t):

The amplitude-modulated component (envelope) of the signal can also be determined, see
FB_CMA_Envelope [} 109].

The function blocks instantaneous phase and instantaneous frequency only provide valid results for signals
without mean values. If a signal with a mean value is to be analyzed, the signal average must be subtracted
beforehand.

Memory properties

Since the Overlap-Add method is used, in each case the current input buffer together with the two last
transferred buffers is used for the calculation.

NaN occurrence

If one or several elements at the input are NaN (Not a Number), the total output signal is NaN.

Inputs and outputs

The input and output buffers correspond to the following definition (Shape). The variable parameters are part
of the function block input stInitPars.

Multi-array in the Element type Dimensions Dimensional variables
input stream LREAL 1 nWindowLength/2

output stream LREAL 1 nWindowLength/2

Input parameters

The input parameters of this function block represent initialization parameters and must already be assigned
in the declaration of the FB instance! (Alternatively: Init() method)
They may only be assigned once. A change at runtime is not possible.
VAR_INPUT
    stInitPars       : ST_CM_InstantaneousPhase_InitPars;   // init parameter
    nOwnID           : UDINT;                           // ID for this FB instance
    aDestIDs         : ARRAY[1..cCMA_MaxDest] OF UDINT; // IDs of destinations for output
    nResultBuffers   : UDINT := 4;                      // number of MultiArrays which should be ini
tialized for results (0 for no initialization)
    tTransferTimeout : LTIME := LTIME#500US;            // timeout checking off during access to int
er-task FIFOs
END_VAR

• stInitPars  : Function block-specific structure with initialization parameters of type
ST_CM_InstantaneousPhase_InitPars [} 177]. The parameters must correlate to the above definition of
the input and output buffers.

• nOwnID  : Identifies the function block instance with a unique ID. This must always be greater than
zero. A proven approach is to define an enumeration for this purpose.

• aDestIDs  : Defines the destinations to which the results are to be forwarded by specifying the IDs of
the destinations. The definition of the output buffer (as described above) must correlate to the definition
of the input buffer of each selected destination.

• nResultBuffers  : The function block initializes a Transfer Tray Stream with the specified number of
multi-array buffers. The default value is four.

• tTransferTimeout  : Setting of the synchronous timeout for internal multi-array forwardings. See
section Parallel processing [} 66].

Output parameters



PLC API

TC3 Condition Monitoring 123Version: 1.4

VAR_OUTPUT
    bError        : BOOL;         // TRUE if an error occurs. Reset by next method call.
    hrErrorCode   : HRESULT;      // '< 0' = error; '> 0' = info; '0' = no error/info
    nCntResults   : ULINT;        // counts outgoing results (MultiArrays were calculated and sent t
o transfer tray)
END_VAR

• bError  : The output is TRUE if an error occurs.
• hrErrorCode  : If an error occurs, a corresponding error code of the type HRESULT is output. Possible

values are described in the List of error codes [} 224].

Methods

Call() : 

The method is called in each cycle in order to calculate the phase angle from the input signal.
The function block waits for input data if the method indicates neither new results nor an error. This is a
regular behavior in the process of the analysis chain.
METHOD Call : HRESULT
VAR_OUTPUT
    bNewResult  : BOOL;       // TRUE every time when outgoing MultiArray was calculated and sent to
 transfer tray.
    bError      : BOOL;       // TRUE if an error occurs.
    hrErrorCode : HRESULT;    // '< 0' = error; '> 0' = info; '0' = no error/info
END_VAR

• bError  : The output is TRUE if an error occurs.
• hrErrorCode  : If an error occurs, a corresponding error code of the type HRESULT is output. Possible

values are described in the List of error codes [} 224]. This output is identical to the return value of the
method.
Note: If a timeout occurs or no multi-array buffer is available for the result, then neither the input data
nor the result data are lost. They are forwarded on the next call.

Init() :

This method is not usually necessary in a Condition Monitoring application. It offers an alternative to the
function block initialization. The Init() method may only be called during the initialization phase of the PLC. It
cannot be used at runtime. You are referred to the use of an FB_init method or the attribute
‘call_after_init’ (see TwinCAT PLC reference). In addition, this facilitates the block encapsulation.

The input parameters of the function block instance may not be assigned in the declaration if the initialization
is to take place using the Init() method.
METHOD Init : HRESULT
VAR_INPUT
    stInitPars     : ST_CM_InstantaneousPhase_InitPars;       // init parameter
    nOwnID    : UDINT;                                // ID for this FB instance
    aDestIDs       : ARRAY[1..cCMA_MaxDest] OF UDINT; // IDs of destinations for output
    nResultBuffers : UDINT := 4;                      // number of MultiArrays which should be initi
alized for results (0 for no initialization)
END_VAR

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 224].

• stInitPars  : Function block-specific structure with initialization parameters of type
ST_CM_InstantaneousPhase_InitPars [} 177]. The parameters must correlate to the above definition of
the input and output buffers.

• nOwnID  : Identifies the function block instance with a unique ID. This must always be greater than
zero. A proven approach is to define an enumeration for this purpose.

• aDestIDs  : Defines the destinations to which the results are to be forwarded by specifying the IDs of
the destinations. The definition of the output buffer (as described above) must correlate to the definition
of the input buffer of each selected destination.

• nResultBuffers  : The function block initializes a Transfer Tray Stream with the specified number of
multi-array buffers.

PassInputs() :



PLC API

TC3 Condition Monitoring124 Version: 1.4

As long as an FB_CMA_Source instance is called and thus signal data are transferred to a target block, all
further function blocks of the analysis chain have to be called cyclically, as explained in the API PLC reference
[} 73].
Sometimes it is useful not to be execute an algorithm for a certain time. For example, some algorithms
should be executed only after prior training or configuration. Although the function block still has to be called
cyclically, it is sufficient that the data arriving at the function block are relayed in the communication ring
[} 66]. This is done using the PassInputs() method in place of the Call() method. The algorithm itself is not
called, and accordingly no result is calculated and no output buffer is generated.
METHOD PassInputs : HRESULT
VAR_INPUT
END_VAR

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 224].

ResetData() :

The method deletes all data records that have already been added, see Memory property of the function
block. If the Call() method is called again after a ResetData(), the internal memory must be replenished in
order to calculate a valid result.
METHOD ResetData : HRESULT
VAR_INPUT
END_VAR

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 224].

Similar function blocks

The function block FB_CMA_InstantaneousFrequency [} 119].

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4018 PC or CX (x86, x64) Tc3_CM, Tc3_CM_Base

5.1.17 FB_CMA_IntegratedRMS

Calculates (optionally integrated) RMS values for single- and multi-channel real-valued time series.

Calculates the RMS value for single- and multi-channel time series; both the frequency range used and the
integration order of the time series can be defined. For an acceleration signal this results in effective values
for the vibration acceleration, vibration velocity and the vibration amplitude, each in a defined frequency
range.

The block treats the input signal as a signal with several independent channels. For each channel the values
for three different integration orders within the frequency range are integrated over a defined frequency
interval, and the effective values are then calculated. The block is suitable for vibration assessment
according to DIN ISO 10816 and DIN ISO 7919 or DIN ISO 20816, see Vibration assessment [} 31].

The sampling rate and the limits of the integrated intervals can be parameterized. In order to obtain
reproducible scaling, the input signals and the frequencies must be transferred scaled in SI units, i.e. 1 m/
(sec)² for acceleration values and 1/sec = 1 Hz for frequencies. The maximum order of the integration can be
configured between zero and two.

The number of integrated RMS values to be calculated is to be specified by means of (nOrder + 1). The
result is forwarded as an array of these values with the corresponding indices.

In many cases the underlying short-term power spectrum is not a good statistical estimator for the spectrum
of a signal, so that the values can fluctuate despite averaging over frequencies. It is therefore advisable to
use a sufficiently large window length. In many cases it may additionally be advisable to reduce the
fluctuation by calculating the geometric mean over several consecutive values.



PLC API

TC3 Condition Monitoring 125Version: 1.4

Memory characteristics 

Since the Welch method is used, in each case the current input buffer together with the last transferred
buffer is used for the calculation.
The frequency analysis takes step changes in the time series into account. In order to achieve a correct
result, the last two input buffers should therefore be consecutive without step changes.

NaN occurrence

If the input vector contains one or more NaN values, the entire spectrum result is filled with NaN. 
This property can be used to mark results as undefined in case a gap in the input signal leads to jumps in the
time series. Refer here to the description of the input methods at the FB_CMA_Source [} 159].
If incoming NaN values cannot be excluded, the user program must handle these error values.

Inputs and outputs

The input and output buffers correspond to the following definition (Shape). The variable parameters are part
of the function block input stInitPars.

Multi-array in the Element type Dimensions Dimensional variables
input stream LREAL 2 nChannels x

nWindowLength/2
output stream LREAL 2 nChannels x (nOrder

+1)

Input parameters

The input parameters of this function block represent initialization parameters and must already be assigned
in the declaration of the FB instance! (Alternatively: Init() method)
They may only be assigned once. A change at runtime is not possible.
VAR_INPUT
    stInitPars       : ST_CM_IntegratedRMS_InitPars;   // init parameter
    nOwnID       : UDINT;                              // ID for this FB instance
    aDestIDs         : ARRAY[1..cCMA_MaxDest] OF UDINT;// IDs of destinations for output
    nResultBuffers   : UDINT := 4;                     // number of MultiArrays which should be init
ialized for results (0 for no initialization)
    tTransferTimeout : LTIME := LTIME#500US;           // timeout checking off during access to inte
r-task FIFOs
END_VAR

• stInitPars  : Function-block-specific structure with initialization parameters of the type
ST_CM_IntegratedRMS_InitPars [} 178]. The parameters must correlate to the above definition of the
input and output buffers.

• nOwnID  : Identifies the function block instance with a unique ID. This must always be greater than
zero. A proven approach is to define an enumeration for this purpose.

• aDestIDs  : Defines the destinations to which the results are to be forwarded by specifying the IDs of
the destinations. The definition of the output buffer (as described above) must correlate to the definition
of the input buffer of each selected destination.

• nResultBuffers  : The function block initializes a Transfer Tray Stream with the specified number of
multi-array buffers. The default value is four.

• tTransferTimeout  : Setting of the synchronous timeout for internal multi-array forwardings. See
section Parallel processing [} 66].

Output parameters
VAR_OUTPUT
    bError       : BOOL;       // TRUE if an error occurs. Reset by next method call.
    hrErrorCode  : HRESULT;    // '< 0' = error; '> 0' = info; '0' = no error/info
    nCntResults  : ULINT;      // counts outgoing results (MultiArrays were calculated and sent to t
ransfer tray)
END_VAR

• bError  : The output is TRUE if an error occurs.



PLC API

TC3 Condition Monitoring126 Version: 1.4

• hrErrorCode  : If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 224].

Methods

Call() : 

The method is called in each cycle in order to calculate the integrated RMS values from the input signal.
The function block waits for input data if the method indicates neither new results nor an error. This is a
regular behavior in the process of the analysis chain.
METHOD Call : HRESULT
VAR_OUTPUT
    bNewResult    : BOOL;      // TRUE every time when outgoing MultiArray was calculated and sent t
o transfer tray.
    bError        : BOOL;      // TRUE if an error occurs.
    hrErrorCode   : HRESULT;   // '< 0' = error; '> 0' = info; '0' = no error/info
END_VAR

• bError  : The output is TRUE if an error occurs.
• hrErrorCode  : If an error occurs, a corresponding error code of the type HRESULT is output. Possible

values are described in the List of error codes [} 224]. This output is identical to the return value of the
method.
Note: If a timeout occurs or no multi-array buffer is available for the result, then neither the input data
nor the result data are lost. They are forwarded on the next call.

Init() :

This method is not usually necessary in a Condition Monitoring application. It offers an alternative to the
function block initialization. The Init() method may only be called during the initialization phase of the PLC. It
cannot be used at runtime. You are referred to the use of an FB_init method or the attribute
‘call_after_init’ (see TwinCAT PLC reference). In addition, this facilitates the block encapsulation.

The input parameters of the function block instance may not be assigned in the declaration if the initialization
is to take place using the Init() method.
METHOD Init : HRESULT
VAR_INPUT
    stInitPars      : ST_CM_IntegratedRMS_InitPars;     // init parameter
    nOwnID          : UDINT;                            // ID for this FB instance
    aDestIDs        : ARRAY[1..cCMA_MaxDest] OF UDINT;  // IDs of destinations for output
    nResultBuffers  : UDINT := 4;                       // number of MultiArrays which should be ini
tialized for results (0 for no initialization)
END_VAR

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 224].

• stInitPars  : Function-block-specific structure with initialization parameters of the type
ST_CM_IntegratedRMS_InitPars [} 178]. The parameters must correlate to the above definition of the
input and output buffers.

• nOwnID  : Identifies the function block instance with a unique ID. This must always be greater than
zero. A proven approach is to define an enumeration for this purpose.

• aDestIDs  : Defines the destinations to which the results are to be forwarded by specifying the IDs of
the destinations. The definition of the output buffer (as described above) must correlate to the definition
of the input buffer of each selected destination.

• nResultBuffers  : The function block initializes a Transfer Tray Stream with the specified number of
multi-array buffers.

PassInputs() :

As long as an FB_CMA_Source instance is called and thus signal data are transferred to a target block, all
further function blocks of the analysis chain have to be called cyclically, as explained in the API PLC reference
[} 73].
Sometimes it is useful not to be execute an algorithm for a certain time. For example, some algorithms
should be executed only after prior training or configuration. Although the function block still has to be called



PLC API

TC3 Condition Monitoring 127Version: 1.4

cyclically, it is sufficient that the data arriving at the function block are relayed in the communication ring
[} 66]. This is done using the PassInputs() method in place of the Call() method. The algorithm itself is not
called, and accordingly no result is calculated and no output buffer is generated.
METHOD PassInputs : HRESULT
VAR_INPUT
END_VAR

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 224].

ResetData() :

The method deletes all data records that have already been added, see Memory property of the function
block. If the Call() method is called again after a ResetData(), the internal memory must be replenished in
order to calculate a valid result.
METHOD ResetData : HRESULT
VAR_INPUT
END_VAR

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 224].

Similar function blocks

The FB_CMA_MagnitudeSpectrum [} 127] function block calculates the magnitude spectrum without squaring
of the values in the last step.

The FB_CMA_PowerCepstrum [} 138] function block calculates a transformation that emphasizes harmonics.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4013 PC or CX (x86, x64) Tc3_CM, Tc3_CM_Base

5.1.18 FB_CMA_MagnitudeSpectrum

Calculates the magnitude spectrum (also referred to as amplitude spectrum) of a real-valued input
signal.

The function block FB_CMA_MagnitudeSpectrum calculates the magnitude spectrum from a real-valued
input signal. The function block performs several functions, see Analysis of data streams [} 16] and
Frequency analysis [} 35]:

The input data buffer is first overlapped with the immediately preceding buffer and multiplied with a window
function. If the value of parameter nFFT_Length is greater than the parameter nWindowLength, the
windowed time signal is filled with the same number of zeros at the beginning and the end, in order to reach
the required FFT input length (zero padding). Subsequently a FFT for real values is applied, and the absolute
value of the resulting complex values is calculated. If the parameter bTransformToDecibel is TRUE, the
values are transformed to decibel values. These decibel values are the same for magnitude and power
spectra, i.e. the influence of squaring is taken into account in the calculation of the decibel value by a factor
of two for the magnitude spectrum. In addition, the magnitude spectrum can be scaled via the parameter
eScalingType, see Scaling of spectra [} 22].

The block FB_CMA_MagnitudeSpectrum behaves similar to FB_CMA_PowerSpectrum [} 142]. The difference
is squaring of the results in FB_CMA_PowerSpectrum [} 142].

In many cases the short-term spectrum is not a good statistical estimator for the spectrum of a signal. In
many cases it is advisable to reduce the fluctuation of the estimated values through averaging over several
frequencies or over consecutive spectra.

Scale



PLC API

TC3 Condition Monitoring128 Version: 1.4

The scaling of the result values, e.g. the acceleration spectral densities matches the definition of the FFT by
default. This means that the influence of the window length and the window function can be eliminated.
For mathematical scaling of absolute measurements tabulated parameters can be used, which are described
in section "Scaling factors".

Memory characteristics 

Since the Welch method is used, in each case the current input buffer together with the last transferred
buffer is used for the calculation.
The frequency analysis takes step changes in the time series into account. In order to achieve a correct
result, the last two input buffers should therefore be consecutive without step changes.

NaN occurrence

If the input vector contains one or more NaN values, the entire spectrum result is filled with NaN. 
This property can be used to mark results as undefined in case a gap in the input signal leads to jumps in the
time series. Refer here to the description of the input methods at the FB_CMA_Source [} 159].
If incoming NaN values cannot be excluded, the user program must handle these error values.

Sample implementation

A sample implementation is available under the following link: Magnitude spectrum: [} 192].

Inputs and outputs

The input and output buffers correspond to the following definition (Shape). The variable parameters are part
of the function block input stInitPars.

Multi-array in the Element type Dimensions Dimensional variables
input stream LREAL 1 nWindowLength/2
output stream LREAL 1 nFFT_Length/2 +1

Input parameters

The input parameters of this function block represent initialization parameters and must already be assigned
in the declaration of the FB instance! (Alternatively: Init() method)
They may only be assigned once. A change at runtime is not possible.
VAR_INPUT
    stInitPars       : ST_CM_MagnitudeSpectrum_InitPars;  // init parameter
    nOwnID           : UDINT;                             // ID for this FB instance
    aDestIDs: ARRAY[1..cCMA_MaxDest] OF UDINT;            // IDs of destinations for output
    nResultBuffers   : UDINT := 4;                        // number of MultiArrays which should be i
nitialized for results (0 for no initialization)
    tTransferTimeout : LTIME := LTIME#500US;              // timeout checking off during access to i
nter-task FIFOs
END_VAR

• stInitPars  : Function-block-specific structure with initialization parameters of the type
ST_CM_MagnitudeSpectrum_InitPars [} 179]. The parameters must correlate to the above definition of
the input and output buffers.

• nOwnID  : Identifies the function block instance with a unique ID. This must always be greater than
zero. A proven approach is to define an enumeration for this purpose.

• aDestIDs  : Defines the destinations to which the results are to be forwarded by specifying the IDs of
the destinations. The definition of the output buffer (as described above) must correlate to the definition
of the input buffer of each selected destination.

• nResultBuffers  : The function block initializes a Transfer Tray Stream with the specified number of
multi-array buffers. The default value is four.

• tTransferTimeout  : Setting of the synchronous timeout for internal multi-array forwardings. See
section Parallel processing [} 66].

Output parameters



PLC API

TC3 Condition Monitoring 129Version: 1.4

VAR_OUTPUT
    bError       : BOOL;         // TRUE if an error occurs. Reset by next method call.
    hrErrorCode  : HRESULT;      // '< 0' = error; '> 0' = info; '0' = no error/info
    nCntResults  : ULINT;        // counts outgoing results (MultiArrays were calculated and sent to
 transfer tray)
END_VAR

• bError  : The output is TRUE if an error occurs.
• hrErrorCode  : If an error occurs, a corresponding error code of the type HRESULT is output. Possible

values are described in the List of error codes [} 224].

Methods

Call() : 

The method is called in each cycle in order to calculate the magnitude spectrum from the input signal.
The function block waits for input data if the method indicates neither new results nor an error. This is a
regular behavior in the process of the analysis chain.
METHOD Call : HRESULT
VAR_OUTPUT
    bNewResult   : BOOL;         // TRUE every time when outgoing MultiArray was calculated and sent
 to transfer tray.
    bError       : BOOL;         // TRUE if an error occurs.
    hrErrorCode  : HRESULT;      // '< 0' = error; '> 0' = info; '0' = no error/info
END_VAR

• bError  : The output is TRUE if an error occurs.
• hrErrorCode  : If an error occurs, a corresponding error code of the type HRESULT is output. Possible

values are described in the List of error codes [} 224]. This output is identical to the return value of the
method.
Note: If a timeout occurs or no multi-array buffer is available for the result, then neither the input data
nor the result data are lost. They are forwarded on the next call.

Init() :

This method is not usually necessary in a Condition Monitoring application. It offers an alternative to the
function block initialization. The Init() method may only be called during the initialization phase of the PLC. It
cannot be used at runtime. You are referred to the use of an FB_init method or the attribute
‘call_after_init’ (see TwinCAT PLC reference). In addition, this facilitates the block encapsulation.

The input parameters of the function block instance may not be assigned in the declaration if the initialization
is to take place using the Init() method.
METHOD Init : HRESULT
VAR_INPUT
    stInitPars     : ST_CM_MagnitudeSpectrum_InitPars; // init parameter
    nOwnID         : UDINT;                            // ID for this FB instance
    aDestIDs       : ARRAY[1..cCMA_MaxDest] OF UDINT;  // IDs of destinations for output
    nResultBuffers : UDINT := 4;                       // number of MultiArrays which should be init
ialized for results (0 for no initialization)
END_VAR

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 224].

• stInitPars  : Function-block-specific structure with initialization parameters of the type
ST_CM_MagnitudeSpectrum_InitPars [} 179]. The parameters must correlate to the above definition of
the input and output buffers.

• nOwnID  : Identifies the function block instance with a unique ID. This must always be greater than
zero. A proven approach is to define an enumeration for this purpose.

• aDestIDs  : Defines the destinations to which the results are to be forwarded by specifying the IDs of
the destinations. The definition of the output buffer (as described above) must correlate to the definition
of the input buffer of each selected destination.

• nResultBuffers  : The function block initializes a Transfer Tray Stream with the specified number of
multi-array buffers.

PassInputs() :



PLC API

TC3 Condition Monitoring130 Version: 1.4

As long as an FB_CMA_Source instance is called and thus signal data are transferred to a target block, all
further function blocks of the analysis chain have to be called cyclically, as explained in the API PLC reference
[} 73].
Sometimes it is useful not to be execute an algorithm for a certain time. For example, some algorithms
should be executed only after prior training or configuration. Although the function block still has to be called
cyclically, it is sufficient that the data arriving at the function block are relayed in the communication ring
[} 66]. This is done using the PassInputs() method in place of the Call() method. The algorithm itself is not
called, and accordingly no result is calculated and no output buffer is generated.
METHOD PassInputs : HRESULT
VAR_INPUT
END_VAR

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 224].

ResetData() :

The method deletes all data records that have already been added, see Memory property of the function
block. If the Call() method is called again after a ResetData(), the internal memory must be replenished in
order to calculate a valid result.
METHOD ResetData : HRESULT
VAR_INPUT
END_VAR

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 224].

Similar function blocks

The FB_CM_PowerSpectrum [} 142] block calculates the power spectrum by means of squaring of the values
in the last step.

The FB_CMA_PowerCepstrum [} 138] function block calculates a transformation that emphasizes harmonics.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4013 PC or CX (x86, x64) Tc3_CM, Tc3_CM_Base

5.1.19 FB_CMA_MomentCoefficients

Calculates the average value, the empirical standard deviation, the skew and the excess for single-
and multi-channel real-valued time series.

The function block treats the input signal as a time series, if necessary with several independent channels.
For each channel the moment coefficients are calculated, optionally up to the fourth order. The maximum
order of the moments to be calculated can be configured via the parameter nOrder. A specific enumeration
for application of the moment coefficients is also available: E_CM_MCoefOrder [} 165]. The result is
forwarded as an array of these coefficients with corresponding indices.

By default no Bessel's correction is applied for the calculation of the empirical standard deviation, the skew
and the excess. In the initialization parameters the correction can optionally be switched on, see
bPopulationEstimates. The parameter should be set to TRUE, in order to obtain results that meet
expectations. The influence of Bessel's correction becomes smaller with increasing sample size. The relative
deviation between the corrected and the non-corrected empirical standard deviation can be determined
unambiguously. The following table provides clues:

Sample size N Relative deviation / %
10 -5.13
100 -0.501
1000 -0.05001



PLC API

TC3 Condition Monitoring 131Version: 1.4

10000 -0.0050001

Output from the function block: The sample size N (for all nOrder), the arithmetic mean value (nOrder =
1), the empirical standard deviation (nOrder = 2), the skew (nOrder = 3), the excess (nOrder = 4).

Definition of empirically calculated moments

The arithmetic mean value

The empirical standard deviation, without Bessel's correction

The empirical standard deviation, with Bessel's correction

The empirical skew (without Bessel's correction v‘ and with correction v))

The empirical excess (without Bessel's correction E‘ and with correction E)

The excess E is therefore the difference between the kurtosis K and the value 3; this corresponds to the
kurtosis of the normal distribution. It describes the evaluation of the calculated kurtosis in terms of a normal
distribution.

A single sample per channel (see Inputs and Outputs, first table) can be added in each cycle, and several
samples per channel can be added to the sample quantity in one cycle (see Inputs and Outputs, second
table).

Further comments

The calculation of the standard deviation and higher moments requires a minimum number of sample values.
If Bessel's correction is inactive, the mean value and the standard deviation are calculated for a sample size
of 1. Two values are required for calculating the skew and the excess. If Bessel's correction is active, the
minimum sample size required corresponds to the order (mean value - 1, standard deviation - 2, skew - 3,
excess - 4). In addition, for calculating skew and excess the variance cannot be null.

Results for higher moments may become imprecise, if the input values differ by many orders of magnitude.

Memory properties 



PLC API

TC3 Condition Monitoring132 Version: 1.4

The sample quantity N, which is used to calculate the current result, automatically increases with each new
incoming data record, i.e. the function block uses all input values since its instantiation. Resetting of the
sample quantity to zero (deleting the internal memory of the FB) is provided by a ResetData() method or, if
the CallEx() method is used, by the variable bResetData.

NaN occurrence

If the number of input values is insufficient for calculating a result for a particular channel or the variance is
zero, the value NaN (not a number) according to IEC 754 is returned for this channel. The presence of this
error value can be checked with the function LrealIsNaN().
The reason may be that so far not enough input data were transferred or that only NaNs were transferred as
input values for individual channels.
A variance of zero may occur if the time series of the values is constant, for example if no sensor data were
transferred due to a broken wire or switching errors.

If a set of input values contains the special constant NaN, no value is added to the statistics for this channel
for this time step, i.e. it is treated as indicator for missing values.

Error values
If the situations described above, which lead to NaN values, cannot be ruled out or safely ne-
glected, the application program must be able to handle these error values

Inputs and outputs

The input and output buffers correspond to the following definition (Shape). The variable parameters are part
of the function block input stInitPars.

Multi-array in the Element type Dimensions Dimensional variables
input stream LREAL 1 nChannels

output stream LREAL 2 nChannels x (nOrder
+1)

If several data sets are to be added with each call, the following alternative usage is available with this
function block:

Multi-array in the Element type Dimensions Dimensional variables
input stream LREAL 2 nChannels x not

specified*
output stream LREAL 2 nChannels x (nOrder

+1)

*: The length of the second dimension can be selected as desired and thus adapted to the application or the
output buffer of the preceding algorithm.

Input parameters

The input parameters of this function block represent initialization parameters and must already be assigned
in the declaration of the FB instance! (Alternatively: Init() method)
They may only be assigned once. A change at runtime is not possible.
VAR_INPUT
    stInitPars       : ST_CM_MomentCoefficients_InitPars; // init parameter
    nOwnID           : UDINT;                             // ID for this FB instance
    aDestIDs: ARRAY[1..cCMA_MaxDest] OF UDINT;            // IDs of destinations for output
    nResultBuffers   : UDINT := 4;                        // number of MultiArrays which should be i
nitialized for results (0 for no initialization)
    tTransferTimeout : LTIME := LTIME#500US;             // timeout checking off during access to in
ter-task FIFOs
END_VAR

• stInitPars  : Function-block-specific structure with initialization parameters of the type
ST_CM_MomentCoefficients_InitPars [} 180]. The parameters must correlate to the above definition of
the input and output buffers.



PLC API

TC3 Condition Monitoring 133Version: 1.4

• nOwnID  : Identifies the function block instance with a unique ID. This must always be greater than
zero. A proven approach is to define an enumeration for this purpose.

• aDestIDs  : Defines the destinations to which the results are to be forwarded by specifying the IDs of
the destinations. The definition of the output buffer (as described above) must correlate to the definition
of the input buffer of each selected destination.

• nResultBuffers  : The function block initializes a Transfer Tray Stream with the specified number of
multi-array buffers. The default value is four.

• tTransferTimeout  : Setting of the synchronous timeout for internal multi-array forwardings. See
section Parallel processing [} 66].

Output parameters
VAR_OUTPUT
    bError     : BOOL;         // TRUE if an error occurs. Reset by next method call.
    hrErrorCode : HRESULT;     // '< 0' = error; '> 0' = info; '0' = no error/info
    nCntResults : ULINT;       // counts outgoing results (MultiArrays were calculated and sent to t
ransfer tray)
END_VAR

• bError  : The output is TRUE if an error occurs.
• hrErrorCode  : If an error occurs, a corresponding error code of the type HRESULT is output. Possible

values are described in the List of error codes [} 224].

Methods

Call() : 

The method is called in each cycle to calculate and output the current results from the input signal and the
current internal memory of the FB. An alternative method is CallEx().
The function block waits for input data if the method indicates neither new results nor an error. This is a
regular behavior in the process of the analysis chain.
METHOD Call : HRESULT
VAR_OUTPUT
    bNewResult  : BOOL;        // TRUE every time when outgoing MultiArray was calculated and sent t
o transfer tray.
    bError      : BOOL;        // TRUE if an error occurs.
    hrErrorCode : HRESULT;     // '< 0' = error; '> 0' = info; '0' = no error/info
END_VAR

• bError  : The output is TRUE if an error occurs.
• hrErrorCode  : If an error occurs, a corresponding error code of the type HRESULT is output. Possible

values are described in the List of error codes [} 224]. This output is identical to the return value of the
method.
Note: If a timeout occurs or no multi-array buffer is available for the result, then neither the input data
nor the result data are lost. They are forwarded on the next call.

CallEx() :

The method is called in each cycle to update the internal memory from the input signal. A result is output
only every nAppendData cycles. An alternative method is Call().

The function block waits for input data if the method indicates neither new results nor an error. This is a
regular behavior in the process of the analysis chain.
METHOD CallEx : HRESULT
VAR_INPUT
    nAppendData  : UDINT;      // count of data buffers which are appended until calculation (1= cal
culate always)
    bResetData   : BOOL;       // automatic reset of dataset buffer after each calculation
END_VAR
VAR_OUTPUT
    bNewResult   : BOOL;        // TRUE every time when outgoing MultiArray was calculated and sent
to transfer tray.
    bError       : BOOL;        // TRUE if an error occurs.
    hrErrorCode  : HRESULT;     // '< 0' = error; '> 0' = info; '0' = no error/info
END_VAR

• nAppendData  : Defines how many input data buffers are to be collected before a calculation is carried
out, because several data blocks are preferably added in order to achieve a precise result.



PLC API

TC3 Condition Monitoring134 Version: 1.4

• bResetData : If set, the internal data buffer is completely deleted after calculation.
• bError  : The output is TRUE if an error occurs.
• hrErrorCode  : If an error occurs, a corresponding error code of the type HRESULT is output. Possible

values are described in the List of error codes [} 224]. This output is identical to the return value of the
method.
Note: If a timeout occurs or no multi-array buffer is available for the result, then neither the input data
nor the result data are lost. They are forwarded on the next call.

ResetData() :

This method deletes all the data sets already added. Alternatively, the automatic reset can be used via the
variable bResetData in the method CallEx().

METHOD ResetData : HRESULT
VAR_INPUT
END_VAR

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 224].

Init() :

This method is not usually necessary in a Condition Monitoring application. It offers an alternative to the
function block initialization. The Init() method may only be called during the initialization phase of the PLC. It
cannot be used at runtime. You are referred to the use of an FB_init method or the attribute
‘call_after_init’ (see TwinCAT PLC reference). In addition, this facilitates the block encapsulation.

The input parameters of the function block instance may not be assigned in the declaration if the initialization
is to take place using the Init() method.
METHOD Init : HRESULT
VAR_INPUT
    stInitPars    : ST_CM_MomentCoefficients_InitPars;  // init parameter
    nOwnID        : UDINT;                              // ID for this FB instance
    aDestIDs      : ARRAY[1..cCMA_MaxDest] OF UDINT;    // IDs of destinations for output
    nResultBuffers: UDINT := 4;                         // number of MultiArrays which should be ini
tialized for results (0 for no initialization)
END_VAR

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 224].

• stInitPars  : Function-block-specific structure with initialization parameters of the type
ST_CM_MomentCoefficients_InitPars [} 180]. The parameters must correlate to the above definition of
the input and output buffers.

• nOwnID  : Identifies the function block instance with a unique ID. This must always be greater than
zero. A proven approach is to define an enumeration for this purpose.

• aDestIDs  : Defines the destinations to which the results are to be forwarded by specifying the IDs of
the destinations. The definition of the output buffer (as described above) must correlate to the definition
of the input buffer of each selected destination.

• nResultBuffers  : The function block initializes a Transfer Tray Stream with the specified number of
multi-array buffers.

PassInputs() :

As long as an FB_CMA_Source instance is called and thus signal data are transferred to a target block, all
further function blocks of the analysis chain have to be called cyclically, as explained in the API PLC reference
[} 73].
Sometimes it is useful not to be execute an algorithm for a certain time. For example, some algorithms
should be executed only after prior training or configuration. Although the function block still has to be called
cyclically, it is sufficient that the data arriving at the function block are relayed in the communication ring
[} 66]. This is done using the PassInputs() method in place of the Call() method. The algorithm itself is not
called, and accordingly no result is calculated and no output buffer is generated.



PLC API

TC3 Condition Monitoring 135Version: 1.4

METHOD PassInputs : HRESULT
VAR_INPUT
END_VAR

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 224].

Similar function blocks

The function block FB_CMA_EmpiricalMean [} 97] calculates the empirical average of input values.

The function block FB_CMA_EmpiricalStandardDeviation [} 105] calculates the empirical standard deviation of
input values.

The function block FB_CMA_EmpiricalSkew [} 101] calculates the empirical skew of input values.

The function block FB_CMA_EmpiricalExcess [} 93] calculates the empirical excess of input values.

The FB_CMA_HistArray [} 115] function block calculates the histograms of input value distributions.

The FB_CMA_Quantiles [} 148] block calculates the quantiles of an empirical distribution, which enable the
frequency of outliers to be assessed.

As an alternative to the kurtosis the FB_CMA_CrestFactor [} 83] block calculates a different measure for
peakiness (Crest Factor) of a signal, although this is more sensitive to outliers.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4013 PC or CX (x86, x64) Tc3_CM, Tc3_CM_Base

5.1.20 FB_CMA_MultiBandRMS

Calculated RMS value for single- and multi-channel real-valued time series for configurable
frequency bands

The block calculates the RMS values of the signals for single- and multi-channel time series, based on
individually configurable frequency bands.

The number of channels is described via the input stream. The maximum number of frequency bands
configured for a channel and the parameters of the internal Fourier transformation are transferred via
ST_CM_MultiBandRMS_InitPars [} 180]. The frequency bands are configured by calling the Configure()
method.

The block is well suited for monitoring of bearing damage frequencies, for example.

Delimitation to FB_CMA_IntegratedRMS [} 124]:

The IntegratedRMS block has additional functionality in that the input time series can be temporally
integrated before the frequency band-limited RMS calculation, optionally up to second order. In this way the
IntegratedRMS block can directly calculate the RMS value for vibration acceleration, vibration velocity and
vibration displacement for a defined frequency band, for example. On the other hand, the IntegratedRMS
block can only be used to define a single frequency band.

Configuration

As configuration parameters, a three-dimensional array with values is transferred to the Configure() method
of the function block (or optionally two-dimensional in case of a single input channel). Each value specifies
the lower and upper limit of a frequency band. The function block then calculates the RMS values for these
frequency bands of each channel on the basis of the input data.

Memory characteristics 



PLC API

TC3 Condition Monitoring136 Version: 1.4

Since the Welch method is used, in each case the current input buffer together with the last transferred
buffer is used for the calculation.
The frequency analysis takes step changes in the time series into account. In order to achieve a correct
result, the last two input buffers should therefore be consecutive without step changes.

NaN occurrence

If the input vector contains one or more NaN values, the entire spectrum result is filled with NaN. 
This property can be used to mark results as undefined in case a gap in the input signal leads to jumps in the
time series. Refer here to the description of the input methods at the FB_CMA_Source [} 159].
If incoming NaN values cannot be excluded, the user program must handle these error values.

Sample implementation

A sample implementation is available under the following link: http://infosys.beckhoff.com/content/1033/
TF3600_TC3_Condition_Monitoring/Resources/zip/9007202649246859.zip.

Inputs and outputs

The input and output buffers correspond to the following definition (Shape). The variable parameters are part
of the function block input stInitPars.

Multi-array in the Element type Dimensions Dimensional variables
input stream LREAL 2 nChannels  x

 nWindowLength/2
output stream LREAL 2 nChannels  x  nMaxBands

Input parameters

The input parameters of this function block represent initialization parameters and must already be assigned
in the declaration of the FB instance! (Alternatively: Init() method)
They may only be assigned once. A change at runtime is not possible.
VAR_INPUT
    stInitPars       : ST_CM_MultiBandRMS_InitPars;     // init parameter
    nOwnID           : UDINT;                 // ID for this FB instance
    aDestIDs         : ARRAY[1..cCMA_MaxDest] OF UDINT; // IDs of destinations for output
    nResultBuffers   : UDINT := 4;            // number of MultiArrays which should be initialized f
or results (0 for no initialization)
    tTransferTimeout : LTIME := LTIME#500US;  // timeout checking off during access to inter-
task FIFOs
END_VAR

• stInitPars  : Function-block-specific structure with initialization parameters of the type
ST_CM_MultiBandRMS_InitPars [} 180]. The parameters must correlate to the above definition of the
input and output buffers.

• nOwnID  : Identifies the function block instance with a unique ID. This must always be greater than
zero. A proven approach is to define an enumeration for this purpose.

• aDestIDs  : Defines the destinations to which the results are to be forwarded by specifying the IDs of
the destinations. The definition of the output buffer (as described above) must correlate to the definition
of the input buffer of each selected destination.

• nResultBuffers  : The function block initializes a Transfer Tray Stream with the specified number of
multi-array buffers. The default value is four.

• tTransferTimeout  : Setting of the synchronous timeout for internal multi-array forwardings. See
section Parallel processing [} 66].

Output parameters
VAR_OUTPUT
    bError      : BOOL;        // TRUE if an error occurs. Reset by next method call.
    hrErrorCode : HRESULT;     // '< 0' = error; '> 0' = info; '0' = no error/info
    nCntResults : ULINT;       // counts outgoing results (MultiArrays were calculated and sent to t
ransfer tray)
END_VAR

• bError  : The output is TRUE if an error occurs.



PLC API

TC3 Condition Monitoring 137Version: 1.4

• hrErrorCode  : If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 224].

Methods

Call() : 

The method is called in each cycle in order to calculate multi-band RMS values from the input signal.
The function block waits for input data if the method indicates neither new results nor an error. This is a
regular behavior in the process of the analysis chain.
METHOD Call : HRESULT
VAR_OUTPUT
    bNewResult  : BOOL;         // TRUE every time when outgoing MultiArray was calculated and sent
to transfer tray.
    bError      : BOOL;         // TRUE if an error occurs.
    hrErrorCode : HRESULT;      // '< 0' = error; '> 0' = info; '0' = no error/info
END_VAR

• bError  : The output is TRUE if an error occurs.
• hrErrorCode  : If an error occurs, a corresponding error code of the type HRESULT is output. Possible

values are described in the List of error codes [} 224]. This output is identical to the return value of the
method.
Note: If a timeout occurs or no multi-array buffer is available for the result, then neither the input data
nor the result data are lost. They are forwarded on the next call.

Configure() :

The RMS bands must be configured at the beginning with the call of this method. The corresponding PLC
array must be defined as follows. The Configure() method can also be used for a new configuration with a
different set of arguments.

Element type Dimensions Dimensional variables
Argument LREAL 3 nChannels  x

 nMaxBands x 2

METHOD Configure : HRESULT
VAR_INPUT
    pArg        : POINTER TO LREAL;  // pointer to 3-dimensional array (LREAL) of arguments (or 2-
dimensional in case of single input channel)
    nArgSize    : UDINT;             // size of arguments buffer in bytes 
END_VAR

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 224].

Init() :

This method is not usually necessary in a Condition Monitoring application. It offers an alternative to the
function block initialization. The Init() method may only be called during the initialization phase of the PLC. It
cannot be used at runtime. You are referred to the use of an FB_init method or the attribute
‘call_after_init’ (see TwinCAT PLC reference). In addition, this facilitates the block encapsulation.

The input parameters of the function block instance may not be assigned in the declaration if the initialization
is to take place using the Init() method.
METHOD Init : HRESULT
VAR_INPUT
    stInitPars     : ST_CM_MultiBandRMS_InitPars;      // init parameter
    nOwnID         : UDINT;        // ID for this FB instance
    aDestIDs       : ARRAY[1..cCMA_MaxDest] OF UDINT;  // IDs of destinations for output
    nResultBuffers : UDINT := 4;   // number of MultiArrays which should be initialized for results
(0 for no initialization)
END_VAR

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 224].



PLC API

TC3 Condition Monitoring138 Version: 1.4

• stInitPars  : Function-block-specific structure with initialization parameters of the type
ST_CM_MultiBandRMS_InitPars [} 180]. The parameters must correlate to the above definition of the
input and output buffers.

• nOwnID  : Identifies the function block instance with a unique ID. This must always be greater than
zero. A proven approach is to define an enumeration for this purpose.

• aDestIDs  : Defines the destinations to which the results are to be forwarded by specifying the IDs of
the destinations. The definition of the output buffer (as described above) must correlate to the definition
of the input buffer of each selected destination.

• nResultBuffers  : The function block initializes a Transfer Tray Stream with the specified number of
multi-array buffers.

PassInputs() :

As long as an FB_CMA_Source instance is called and thus signal data are transferred to a target block, all
further function blocks of the analysis chain have to be called cyclically, as explained in the API PLC reference
[} 73].
Sometimes it is useful not to be execute an algorithm for a certain time. For example, some algorithms
should be executed only after prior training or configuration. Although the function block still has to be called
cyclically, it is sufficient that the data arriving at the function block are relayed in the communication ring
[} 66]. This is done using the PassInputs() method in place of the Call() method. The algorithm itself is not
called, and accordingly no result is calculated and no output buffer is generated.
METHOD PassInputs : HRESULT
VAR_INPUT
END_VAR

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 224].

ResetData() :

The method deletes all data records that have already been added, see Memory property of the function
block. If the Call() method is called again after a ResetData(), the internal memory must be replenished in
order to calculate a valid result.
METHOD ResetData : HRESULT
VAR_INPUT
END_VAR

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 224].

Similar function blocks

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4016.12 PC or CX (x86, x64) Tc3_CM, Tc3_CM_Base

5.1.21 FB_CMA_PowerCepstrum

The function block calculates the power cepstrum for a real-valued input signal.

The power cepstrum Cp(τ) is defined as follows, in this case in time-continuous representation:

Accordingly, it is defined as inverse Fourier transformation of the logarithmized power spectrum (see
FB_CMA_PowerSpectrum [} 142]). Transformation and inverse transformation bring the result back into the
time range.



PLC API

TC3 Condition Monitoring 139Version: 1.4

The function block is helpful for monitoring of gear units, see Gearbox monitoring [} 47].

In the numerical implementation the PowerSpectrum is calculated first. The input data buffer is this
overlapped with the immediately preceding buffer and multiplied with a window function. If the value of
parameter nFFT_Length is greater than the parameter nWindowLength, the windowed time signal is filled
with the same number of zeros at the beginning and the end, in order to reach the required FFT input length
(zero padding). Subsequently a FFT for real values is applied, and the absolute value of the resulting
complex values and the square of the values is calculated. The values are then logarithmized. Before the
logarithmization the argument is compared with the value of the parameter fLogThreshold. If they are
smaller they are set to this value in order to avoid value range errors or the attempt to calculate the logarithm
of zero. This is followed by another inverse Fourier transformation. The result is an array with complex
values.

Evaluation of the complex-valued result
In practice the absolute value, the squared absolute value or only the real part of the complex-val-
ued power cepstrum is evaluated, depending on the application. This has to be implemented by the
user as required.

Differentiation to the complex cepstrum:

The power cepstrum differs from the complex cepstrum, which is defined as logarithmized Fourier back
transformation of a complex signal spectrum. Due to the absolute value calculation the power cepstrum is
less sensitive to the properties of the phase angle of the signal, compared with the complex cepstrum. In
addition, the complex cepstrum directly provides a real-valued result.

Definition of the power cepstrum:

A number of slightly different definitions exist for the power cepstrum. The definition used here is based on
common definitions by J. Korelus and Robert B. Randall, see Literature notes [} 51].

Memory characteristics 

Since the Welch method is used, in each case the current input buffer together with the last transferred
buffer is used for the calculation.
The frequency analysis takes step changes in the time series into account. In order to achieve a correct
result, the last two input buffers should therefore be consecutive without step changes.

NaN occurrence

If the input vector contains one or more NaN values, the entire spectrum result is filled with NaN. 
This property can be used to mark results as undefined in case a gap in the input signal leads to jumps in the
time series. Refer here to the description of the input methods at the FB_CMA_Source [} 159].
If incoming NaN values cannot be excluded, the user program must handle these error values.

Sample implementation

A sample implementation is available under the following link: Power cepstrum [} 220]

Inputs and outputs

The input and output buffers correspond to the following definition (Shape). The variable parameters are part
of the function block input stInitPars.

Multi-array in the Element type Dimensions Dimensional variables
input stream LREAL 1 nWindowLength/2
output stream LCOMPLEX 1 nFFT_Length/2 +1

Input parameters



PLC API

TC3 Condition Monitoring140 Version: 1.4

The input parameters of this function block represent initialization parameters and must already be assigned
in the declaration of the FB instance! (Alternatively: Init() method)
They may only be assigned once. A change at runtime is not possible.
VAR_INPUT
    stInitPars       : ST_CM_PowerCepstrum_InitPars;    // init parameter
    nOwnID           : UDINT;                 // ID for this FB instance
    aDestIDs         : ARRAY[1..cCMA_MaxDest] OF UDINT; // IDs of destinations for output
    nResultBuffers   : UDINT := 4;            // number of MultiArrays which should be initialized f
or results (0 for no initialization)
    tTransferTimeout : LTIME := LTIME#500US;  // timeout checking off during access to inter-
task FIFOs
END_VAR

• stInitPars  : Function-block-specific structure with initialization parameters of the type
ST_CM_PowerCepstrum_InitPars [} 181]. The parameters must correlate to the above definition of the
input and output buffers.

• nOwnID  : Identifies the function block instance with a unique ID. This must always be greater than
zero. A proven approach is to define an enumeration for this purpose.

• aDestIDs  : Defines the destinations to which the results are to be forwarded by specifying the IDs of
the destinations. The definition of the output buffer (as described above) must correlate to the definition
of the input buffer of each selected destination.

• nResultBuffers  : The function block initializes a Transfer Tray Stream with the specified number of
multi-array buffers. The default value is four.

• tTransferTimeout  : Setting of the synchronous timeout for internal multi-array forwardings. See
section Parallel processing [} 66].

Output parameters
VAR_OUTPUT
    bError      : BOOL;      // TRUE if an error occurs. Reset by next method call.
    hrErrorCode : HRESULT;   // '< 0' = error; '> 0' = info; '0' = no error/info
    nCntResults : ULINT;     // counts outgoing results (MultiArrays were calculated and sent to tra
nsfer tray)
END_VAR

• bError  : The output is TRUE if an error occurs.
• hrErrorCode  : If an error occurs, a corresponding error code of the type HRESULT is output. Possible

values are described in the List of error codes [} 224].

Methods

Call() : 

The method is called in each cycle in order to calculate the power cepstrum from the input signal.
The function block waits for input data if the method indicates neither new results nor an error. This is a
regular behavior in the process of the analysis chain.
METHOD Call : HRESULT
VAR_OUTPUT
    bNewResult  : BOOL;         // TRUE every time when outgoing MultiArray was calculated and sent
to transfer tray.
    bError      : BOOL;         // TRUE if an error occurs.
    hrErrorCode : HRESULT;      // '< 0' = error; '> 0' = info; '0' = no error/info
END_VAR

• bError  : The output is TRUE if an error occurs.
• hrErrorCode  : If an error occurs, a corresponding error code of the type HRESULT is output. Possible

values are described in the List of error codes [} 224]. This output is identical to the return value of the
method.
Note: If a timeout occurs or no multi-array buffer is available for the result, then neither the input data
nor the result data are lost. They are forwarded on the next call.

Init() :



PLC API

TC3 Condition Monitoring 141Version: 1.4

This method is not usually necessary in a Condition Monitoring application. It offers an alternative to the
function block initialization. The Init() method may only be called during the initialization phase of the PLC. It
cannot be used at runtime. You are referred to the use of an FB_init method or the attribute
‘call_after_init’ (see TwinCAT PLC reference). In addition, this facilitates the block encapsulation.

The input parameters of the function block instance may not be assigned in the declaration if the initialization
is to take place using the Init() method.
METHOD Init : HRESULT
VAR_INPUT
    stInitPars     : ST_CM_PowerCepstrum_InitPars;     // init parameter
    nOwnID         : UDINT;         // ID for this FB instance
    aDestIDs       : ARRAY[1..cCMA_MaxDest] OF UDINT;  // IDs of destinations for output
    nResultBuffers : UDINT := 4;    // number of MultiArrays which should be initialized for results
 (0 for no initialization)
END_VAR

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 224].

• stInitPars  : Function-block-specific structure with initialization parameters of the type
ST_CM_PowerCepstrum_InitPars [} 181]. The parameters must correlate to the above definition of the
input and output buffers.

• nOwnID  : Identifies the function block instance with a unique ID. This must always be greater than
zero. A proven approach is to define an enumeration for this purpose.

• aDestIDs  : Defines the destinations to which the results are to be forwarded by specifying the IDs of
the destinations. The definition of the output buffer (as described above) must correlate to the definition
of the input buffer of each selected destination.

• nResultBuffers  : The function block initializes a Transfer Tray Stream with the specified number of
multi-array buffers.

PassInputs() :

As long as an FB_CMA_Source instance is called and thus signal data are transferred to a target block, all
further function blocks of the analysis chain have to be called cyclically, as explained in the API PLC reference
[} 73].
Sometimes it is useful not to be execute an algorithm for a certain time. For example, some algorithms
should be executed only after prior training or configuration. Although the function block still has to be called
cyclically, it is sufficient that the data arriving at the function block are relayed in the communication ring
[} 66]. This is done using the PassInputs() method in place of the Call() method. The algorithm itself is not
called, and accordingly no result is calculated and no output buffer is generated.
METHOD PassInputs : HRESULT
VAR_INPUT
END_VAR

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 224].

ResetData() :

The method deletes all data records that have already been added, see Memory property of the function
block. If the Call() method is called again after a ResetData(), the internal memory must be replenished in
order to calculate a valid result.
METHOD ResetData : HRESULT
VAR_INPUT
END_VAR

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 224].

Similar function blocks

The function block FB_CMA_Envelope [} 109] is also suitable for the analysis of pulse-like excitations with
linear and non-linear system components.



PLC API

TC3 Condition Monitoring142 Version: 1.4

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4018 PC or CX (x86, x64) Tc3_CM (v1.0.19), Tc3_CM_Base

5.1.22 FB_CMA_PowerSpectrum

Calculation of the power spectrum of a real-valued input signal, and optional decibel scaling.

The block calculates the power spectrum (also referred to as correlogram or periodogram) of a real-valued
input signal. The function block performs several functions, see Analysis of data streams [} 16] and
Frequency analysis [} 35]:

The input data buffer is first overlapped with the immediately preceding buffer and multiplied with a window
function. If the value of parameter nFFT_Length is greater than the parameter nWindowLength, the
windowed time signal is filled with the same number of zeros at the beginning and the end, in order to reach
the required FFT input length (zero padding). Subsequently a FFT for real values is applied, and the absolute
value of the resulting complex values and the square of the values is calculated. If the parameter
bTransformToDecibel is TRUE, the values are transformed to decibel values. These decibel values are
the same for magnitude and power spectra, i.e. the influence of squaring is taken into account in the
calculation of the decibel value by a factor of two for the magnitude spectrum. In addition, the magnitude
spectrum can be scaled via the parameter eScalingType, see Scaling of spectra [} 22].

The block FB_CMA_PowerSpectrum behaves similar to FB_CMA_MagnitudeSpectrum [} 127]. The
difference is squaring of the results in FB_CMA_PowerSpectrum [} 142].

In many cases the short-term power spectrum is not a good statistical estimator for the spectrum of a signal.
In many cases the fluctuation of the estimated values should be reduced through averaging over several
frequencies or over consecutive spectra.

Scale

The scaling of the result values, e.g. the acceleration spectral densities matches the definition of the FFT by
default. This means that the influence of the window length and the window function can be eliminated. For
mathematical scaling of absolute measurements tabulated parameters can be used, which are described in
section "Scaling factors".
The scaling of the power densities may become imprecise, if very small values are specified for the window
lengths.

Memory characteristics 

Since the Welch method is used, in each case the current input buffer together with the last transferred
buffer is used for the calculation.
The frequency analysis takes step changes in the time series into account. In order to achieve a correct
result, the last two input buffers should therefore be consecutive without step changes.

NaN occurrence

If the input vector contains one or more NaN values, the entire spectrum result is filled with NaN. 
This property can be used to mark results as undefined in case a gap in the input signal leads to jumps in the
time series. Refer here to the description of the input methods at the FB_CMA_Source [} 159].
If incoming NaN values cannot be excluded, the user program must handle these error values.

Inputs and outputs

The input and output buffers correspond to the following definition (Shape). The variable parameters are part
of the function block input stInitPars.



PLC API

TC3 Condition Monitoring 143Version: 1.4

Multi-array in the Element type Dimensions Dimensional variables
input stream LREAL 1 nWindowLength/2
output stream LREAL 1 nFFT_Length/2 +1

Input parameters

The input parameters of this function block represent initialization parameters and must already be assigned
in the declaration of the FB instance! (Alternatively: Init() method)
They may only be assigned once. A change at runtime is not possible.
VAR_INPUT
    stInitPars       : ST_CM_PowerSpectrum_InitPars;    // init parameter
    nOwnID           : UDINT;                           // ID for this FB instance
    aDestIDs         : ARRAY[1..cCMA_MaxDest] OF UDINT; // IDs of destinations for output
    nResultBuffers   : UDINT := 4;                      // number of MultiArrays which should be ini
tialized for results (0 for no initialization)
    tTransferTimeout : LTIME := LTIME#500US;            // timeout checking off during access to int
er-task FIFOs
END_VAR

• stInitPars  : Function-block-specific structure with initialization parameters of the type
ST_CM_PowerSpectrum_InitPars [} 182]. The parameters must correlate to the above definition of the
input and output buffers.

• nOwnID  : Identifies the function block instance with a unique ID. This must always be greater than
zero. A proven approach is to define an enumeration for this purpose.

• aDestIDs  : Defines the destinations to which the results are to be forwarded by specifying the IDs of
the destinations. The definition of the output buffer (as described above) must correlate to the definition
of the input buffer of each selected destination.

• nResultBuffers  : The function block initializes a Transfer Tray Stream with the specified number of
multi-array buffers. The default value is four.

• tTransferTimeout  : Setting of the synchronous timeout for internal multi-array forwardings. See
section Parallel processing [} 66].

Output parameters
VAR_OUTPUT
    bError        : BOOL;         // TRUE if an error occurs. Reset by next method call.
    hrErrorCode   : HRESULT;      // '< 0' = error; '> 0' = info; '0' = no error/info
    nCntResults   : ULINT;        // counts outgoing results (MultiArrays were calculated and sent t
o transfer tray)
END_VAR

• bError  : The output is TRUE if an error occurs.
• hrErrorCode  : If an error occurs, a corresponding error code of the type HRESULT is output. Possible

values are described in the List of error codes [} 224].

Methods

Call() : 

The method is called in each cycle in order to calculate the power spectrum from the input signal.
The function block waits for input data if the method indicates neither new results nor an error. This is a
regular behavior in the process of the analysis chain.
METHOD Call : HRESULT
VAR_OUTPUT
    bNewResult  : BOOL;       // TRUE every time when outgoing MultiArray was calculated and sent to
 transfer tray.
    bError      : BOOL;       // TRUE if an error occurs.
    hrErrorCode : HRESULT;    // '< 0' = error; '> 0' = info; '0' = no error/info
END_VAR

• bError  : The output is TRUE if an error occurs.



PLC API

TC3 Condition Monitoring144 Version: 1.4

• hrErrorCode  : If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 224]. This output is identical to the return value of the
method.
Note: If a timeout occurs or no multi-array buffer is available for the result, then neither the input data
nor the result data are lost. They are forwarded on the next call.

Init() :

This method is not usually necessary in a Condition Monitoring application. It offers an alternative to the
function block initialization. The Init() method may only be called during the initialization phase of the PLC. It
cannot be used at runtime. You are referred to the use of an FB_init method or the attribute
‘call_after_init’ (see TwinCAT PLC reference). In addition, this facilitates the block encapsulation.

The input parameters of the function block instance may not be assigned in the declaration if the initialization
is to take place using the Init() method.
METHOD Init : HRESULT
VAR_INPUT
    stInitPars     : ST_CM_PowerSpectrum_InitPars;    // init parameter
    nOwnID    : UDINT;                                // ID for this FB instance
    aDestIDs       : ARRAY[1..cCMA_MaxDest] OF UDINT; // IDs of destinations for output
    nResultBuffers : UDINT := 4;                      // number of MultiArrays which should be initi
alized for results (0 for no initialization)
END_VAR

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 224].

• stInitPars  : Function-block-specific structure with initialization parameters of the type
ST_CM_PowerSpectrum_InitPars [} 182]. The parameters must correlate to the above definition of the
input and output buffers.

• nOwnID  : Identifies the function block instance with a unique ID. This must always be greater than
zero. A proven approach is to define an enumeration for this purpose.

• aDestIDs  : Defines the destinations to which the results are to be forwarded by specifying the IDs of
the destinations. The definition of the output buffer (as described above) must correlate to the definition
of the input buffer of each selected destination.

• nResultBuffers  : The function block initializes a Transfer Tray Stream with the specified number of
multi-array buffers.

PassInputs() :

As long as an FB_CMA_Source instance is called and thus signal data are transferred to a target block, all
further function blocks of the analysis chain have to be called cyclically, as explained in the API PLC reference
[} 73].
Sometimes it is useful not to be execute an algorithm for a certain time. For example, some algorithms
should be executed only after prior training or configuration. Although the function block still has to be called
cyclically, it is sufficient that the data arriving at the function block are relayed in the communication ring
[} 66]. This is done using the PassInputs() method in place of the Call() method. The algorithm itself is not
called, and accordingly no result is calculated and no output buffer is generated.
METHOD PassInputs : HRESULT
VAR_INPUT
END_VAR

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 224].

ResetData() :

The method deletes all data records that have already been added, see Memory property of the function
block. If the Call() method is called again after a ResetData(), the internal memory must be replenished in
order to calculate a valid result.
METHOD ResetData : HRESULT
VAR_INPUT
END_VAR



PLC API

TC3 Condition Monitoring 145Version: 1.4

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 224].

Similar function blocks

The FB_CMA_MagnitudeSpectrum [} 127] function block calculates the magnitude spectrum without squaring
of the values in the last step.

The FB_CMA_PowerCepstrum [} 138] function block calculates a transformation that emphasizes harmonics.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4013 PC or CX (x86, x64) Tc3_CM, Tc3_CM_Base

5.1.23 FB_CMA_RealFFT

Calculation of the fast Fourier transformation (FFT) for real-valued input signals.

The FB_CMA_RealFFT function block calculates the Fourier transform of the real-valued input signal x[n] at
the function block. A high-performance FFT algorithm is used for this purpose. The transformation and the
inverse transformation can be calculated. The input stInitPars is used for the setting (see inputs and
outputs).

Definition of the Fourier forward transformation in DFT notation:

Definition of the Fourier inverse transformation in DFT notation:

The highest frequency of an input signal component should not exceed half the sampling rate of the input
signal, in order to avoid aliasing effects.

The FFT is defined as transform of a cyclically continuous signal. This can result in step changes, if the
cyclically continuous signal is not exactly continuous, i.e. not the same at the start and finish. The function
blocks FB_CMA_PowerSpectrum [} 142] and FB_CMA_MagnitudeSpectrum [} 127] can be used to avoid
these issues by using overlapping sections, which are multiplied with a window function, as the basis for the
analysis.

Scaling

For a quantitative evaluation of the spectrum the calculated spectrum should be weighted with 1/
nFFT_Length for the off-set, i.e. the first array element of the outputs, and with 2/nFFT_Length for all
other outputs elements.

During the forward transformation and the inverse transformation the function block scales such that during
consecutively transformations and inverse transformations the original input signal is calculated again
directly at the output.

Memory properties

The function block result is only determined by the current input values, i.e. no past values are taken into
account.

NaN occurrence



PLC API

TC3 Condition Monitoring146 Version: 1.4

If one or several elements at the input are NaN (not a number), the total output signal for the real and the
imaginary part is NaN.

Sample implementation

A sample implementation is available under the following link: FFT with real-value input signal [} 188].

Inputs and outputs

The input and output buffers correspond to the following definition (Shape). The variable parameters are part
of the function block input stInitPars.

Multi-array in the Element type Dimensions Dimensional variables
input stream LREAL 1 nFFT_Length

output stream LCOMPLEX 1 nFFT_Length/2 +1

The output buffer can be made to output the full spectrum by negating the parameter bHalfSpec
(:=FALSE). This enables the following alternative use option:

Multi-array in the Element type Dimensions Dimensional variables
input stream LREAL 1 nFFT_Length

output stream LCOMPLEX 1 nFFT_Length

Input parameters

The input parameters of this function block represent initialization parameters and must already be assigned
in the declaration of the FB instance! (alternatively: Init() method)
They may only be assigned once. A change at runtime is not possible.
VAR_INPUT
    stInitPars       : ST_CM_RealFFT_InitPars;          // init parameter
    nOwnID           : UDINT;                           // ID for this FB instance
    aDestIDs         : ARRAY[1..cCMA_MaxDest] OF UDINT; // IDs of destinations for output
    nResultBuffers   : UDINT := 4;                      // number of MultiArrays which should be ini
tialized for results (0 for no initialization)
    tTransferTimeout : LTIME := LTIME#500US;            // timeout checking off during access to int
er-task FIFOs
END_VAR

• stInitPars  : Function-block-specific structure with initialization parameters of type
ST_CM_RealFFT_InitPars [} 183]. The parameters must correlate to the above definition of the input and
output buffers.

• nOwnID  : Identifies the function block instance with a unique ID. This must always be greater than
zero. A proven approach is to define an enumeration for this purpose.

• aDestIDs  : Defines the destinations to which the results are to be forwarded by specifying the IDs of
the destinations. The definition of the output buffer (as described above) must correlate to the definition
of the input buffer of each selected destination.

• nResultBuffers  : The function block initializes a Transfer Tray Stream with the specified number of
multi-array buffers. The default is four.

• tTransferTimeout  : Setting of the synchronous timeout for internal multi-array forwardings. See
section Parallel processing [} 66].

Output parameters
VAR_OUTPUT
    bError        : BOOL;         // TRUE if an error occurs. Reset by next method call.
    hrErrorCode   : HRESULT;      // '< 0' = error; '> 0' = info; '0' = no error/info
    nCntResults   : ULINT;        // counts outgoing results (MultiArrays were calculated and sent t
o transfer tray)
END_VAR

• bError  : The output is TRUE if an error occurs.
• hrErrorCode  : If an error occurs, a corresponding error code of the type HRESULT is output. Possible

values are described in the List of error codes [} 224].



PLC API

TC3 Condition Monitoring 147Version: 1.4

Methods

Call() : 

The method is called in each cycle in order to calculate the FFT from the input signal.
The function block waits for input data if the method indicates neither new results nor an error. This is a
regular behavior in the process of the analysis chain.
METHOD Call : HRESULT
VAR_OUTPUT
    bNewResult  : BOOL;       // TRUE every time when outgoing MultiArray was calculated and sent to
 transfer tray.
    bError      : BOOL;       // TRUE if an error occurs.
    hrErrorCode : HRESULT;    // '< 0' = error; '> 0' = info; '0' = no error/info
END_VAR

• bError  : The output is TRUE if an error occurs.
• hrErrorCode  : If an error occurs, a corresponding error code of the type HRESULT is output. Possible

values are described in the List of error codes [} 224]. This output is identical to the return value of the
method.
Note: If a timeout occurs or no multi-array buffer is available for the result, then neither the input data
nor the result data are lost. They are forwarded on the next call.

Init() :

This method is not usually necessary in a Condition Monitoring application. It offers an alternative to the
function block initialization. The Init() method may only be called during the initialization phase of the PLC. It
cannot be used at runtime. You are referred to the use of an FB_init method or the attribute
‘call_after_init’ (see TwinCAT PLC reference). In addition, this facilitates the function block encapsulation.

The input parameters of the function block instance may not be assigned in the declaration if the initialization
is to take place using the Init() method.
METHOD Init : HRESULT
VAR_INPUT
    stInitPars     : ST_CM_RealFFT_InitPars;    // init parameter
    nOwnID    : UDINT;                                // ID for this FB instance
    aDestIDs       : ARRAY[1..cCMA_MaxDest] OF UDINT; // IDs of destinations for output
    nResultBuffers : UDINT := 4;                      // number of MultiArrays which should be initi
alized for results (0 for no initialization)
END_VAR

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 224].

• stInitPars  : Function-block-specific structure with initialization parameters of type
ST_CM_RealFFT_InitPars [} 183]. The parameters must correlate to the above definition of the input and
output buffers.

• nOwnID  : Identifies the function block instance with a unique ID. This must always be greater than
zero. A proven approach is to define an enumeration for this purpose.

• aDestIDs  : Defines the destinations to which the results are to be forwarded by specifying the IDs of
the destinations. The definition of the output buffer (as described above) must correlate to the definition
of the input buffer of each selected destination.

• nResultBuffers  : The function block initializes a Transfer Tray Stream with the specified number of
multi-array buffers.

PassInputs() :

As long as an FB_CMA_Source instance is called and thus signal data are transferred to a target block, all
further function blocks of the analysis chain have to be called cyclically, as explained in the API PLC reference
[} 73].
Sometimes it is useful not to be execute an algorithm for a certain time. For example, some algorithms
should be executed only after prior training or configuration. Although the function block still has to be called
cyclically, it is sufficient that the data arriving at the function block are relayed in the communication ring
[} 66]. This is done using the PassInputs() method in place of the Call() method. The algorithm itself is not
called, and accordingly no result is calculated and no output buffer is generated.



PLC API

TC3 Condition Monitoring148 Version: 1.4

METHOD PassInputs : HRESULT
VAR_INPUT
END_VAR

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 224].

Similar function blocks

The function block FB_CMA_ComplexFFT [} 86] calculates the Fourier transformation of a complex-valued
input signal.

The function block FB_CMA_PowerSpectrum [} 142] calculates the power spectrum of a real-valued input
signal.

The function block FB_CMA_MagnitudeSpectrum [} 127] calculates the magnitude spectrum of a real-valued
input signal.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4018 PC or CX (x86, x64) Tc3_CM, Tc3_CM_Base

5.1.24 FB_CMA_Quantiles

Calculates the quantile of the input value distribution for single- and multi-channel real-valued
signals.

The block FB_CMA_Quantiles calculates p-quantiles of single- or multi-channel real-valued input data. Each
channel is considered independently.

The block is initially based on the calculation of a frequency distribution, see FB_CMA_HistArray [} 115]. The
lower and upper limit values and the number of classes (also referred to as bins) of the frequency distribution
are transferred for parameterization. The individual class limits are then distributed in identical intervals
across the so defined total range, see Histograms [} 25]. The cumulative frequency distribution is then
calculated, and from this the configured quantile, see Statistical analysis [} 25]. A further configuration
parameter is the number of quantiles to be calculated for each channel.

The result is a two-dimensional array with real values. The first index is the channel number, the second
index is the number of the respective quantile.

Values that are below the lower limit and values above the upper limit with regard to the classification are
ignored for the quantile calculation. Within an interval the quantile values are interpolated. If the empirical
cumulative frequency distribution is constant section by section, the smallest suitable value is used.

Memory properties

The block takes into account all input values since the instantiation or since the last call of the ResetData()
method, if it was called since the start.

Configuration

A two-dimensional array with values is transferred to the Configure() method of the block as configuration
parameter. Each value represents the relative frequency for a channel and quantile to be calculated. The
block then calculates the quantiles for these frequencies for each channel, based on the input data. The set
frequency is 0.5, which corresponds to the median.

NaN occurrence

If results are not yet available for a channel, the value NaN (not a number) is returned for this channel.
Reasons may be that no input data have been transferred yet, all data transferred so far are outside the
interval between fMinBinned and fMaxBinned, or only NaNs were transferred as input values for



PLC API

TC3 Condition Monitoring 149Version: 1.4

individual channels.
If a set of input values contains the special constant NaN, no value is added to the statistics for this channel
for this time step, i.e. it is treated as indicator for missing values.

Error values
If the situations described above, which lead to NaN values, cannot be ruled out or safely ne-
glected, the application program must be able to handle these error values.

Router memory

The quantile calculation is a statistical calculation based on histograms, which require a lot of memory. The
memory usage depends on the parameters nChannels, nBins and nMaxQuantiles. It is recommended to
keep these parameters as small as possible! Otherwise an out-of-memory error occurs, and the function
block is not initialized.
Currently the maximum possible calculation comprises approx. 4200 channels, 100 bins and 4 quantile
arguments.

Sample implementation

A sample implementation is available under the following link: Condition Monitoring with frequency analysis
[} 209].

Inputs and outputs

The input and output buffers correspond to the following definition (Shape). The variable parameters are part
of the function block input stInitPars.

Multi-array in the Element type Dimensions Dimensional variables
input stream LREAL 1 nChannels

output stream LREAL 2 nChannels x
nMaxQuantiles

If several data sets are to be added with each call, the following alternative usage is available with this
function block:

Multi-array in the Element type Dimensions Dimensional variables
input stream LREAL 2 nChannels x not

specified*
output stream LREAL 2 nChannels x

nMaxQuantiles

*: The length of the second dimension can be selected as desired and thus adapted to the application or the
output buffer of the preceding algorithm.

Input parameters

The input parameters of this function block represent initialization parameters and must already be assigned
in the declaration of the FB instance! (Alternatively: Init() method)
They may only be assigned once. A change at runtime is not possible.
VAR_INPUT
    stInitPars       : ST_CM_Quantiles_InitPars; // init parameter
    nOwnID           : UDINT;                    // ID for this FB instance
    aDestIDs: ARRAY[1..cCMA_MaxDest] OF UDINT;   // IDs of destinations for output
    nResultBuffers   : UDINT := 4;               // number of MultiArrays which should be initialize
d for results (0 for no initialization)
    tTransferTimeout : LTIME := LTIME#500US;     // timeout checking off during access to inter-
task FIFOs
END_VAR

• stInitPars  : Function-block-specific structure with initialization parameters of the type
ST_CM_Quantiles_InitPars [} 182]. The parameters must correlate to the above definition of the input
and output buffers.



PLC API

TC3 Condition Monitoring150 Version: 1.4

• nOwnID  : Identifies the function block instance with a unique ID. This must always be greater than
zero. A proven approach is to define an enumeration for this purpose.

• aDestIDs  : Defines the destinations to which the results are to be forwarded by specifying the IDs of
the destinations. The definition of the output buffer (as described above) must correlate to the definition
of the input buffer of each selected destination.

• nResultBuffers  : The function block initializes a Transfer Tray Stream with the specified number of
multi-array buffers. The default value is four.

• tTransferTimeout  : Setting of the synchronous timeout for internal multi-array forwardings. See
section Parallel processing [} 66].

Output parameters
VAR_OUTPUT
    bError      : BOOL;         // TRUE if an error occurs. Reset by next method call.
    hrErrorCode : HRESULT;      // '< 0' = error; '> 0' = info; '0' = no error/info
    nCntResults : ULINT;        // counts outgoing results (MultiArrays were calculated and sent to
transfer tray)
END_VAR

• bError  : The output is TRUE if an error occurs.
• hrErrorCode  : If an error occurs, a corresponding error code of the type HRESULT is output. Possible

values are described in the List of error codes [} 224].

Methods

Call() : 

The method is called in each cycle in order to calculate quantiles from the input signal. An alternative method
is CallEx().
The function block waits for input data if the method indicates neither new results nor an error. This is a
regular behavior in the process of the analysis chain.
METHOD Call : HRESULT
VAR_OUTPUT
    bNewResult  : BOOL;       // TRUE every time when outgoing MultiArray was calculated and sent to
 transfer tray.
    bError      : BOOL;       // TRUE if an error occurs.
    hrErrorCode : HRESULT;    // '< 0' = error; '> 0' = info; '0' = no error/info
END_VAR

• bError  : The output is TRUE if an error occurs.
• hrErrorCode  : If an error occurs, a corresponding error code of the type HRESULT is output. Possible

values are described in the List of error codes [} 224]. This output is identical to the return value of the
method.
Note: If a timeout occurs or no multi-array buffer is available for the result, then neither the input data
nor the result data are lost. They are forwarded on the next call.

CallEx() :

The method is called in each cycle in order to calculate quantiles from the input signal. An alternative method
is Call().
The quantile evaluation is generally significantly more computationally demanding than the registration of
new input values. Therefore a use of the method Callex() can considerably shorten the runtime, depending
on the configured parameters, by only calculating statistic results when they are required.

The function block waits for input data if the method indicates neither new results nor an error. This is a
regular behavior in the process of the analysis chain.
METHOD CallEx : HRESULT
VAR_INPUT
    nAppendData  : UDINT;      // count of data buffers which are appended until calculation (1= cal
culate always)
    bResetData   : BOOL;       // automatic reset of dataset buffer after each calculation
END_VAR
VAR_OUTPUT
    bNewResult   : BOOL;        // TRUE every time when outgoing MultiArray was calculated and sent
to transfer tray.



PLC API

TC3 Condition Monitoring 151Version: 1.4

    bError       : BOOL;        // TRUE if an error occurs.
    hrErrorCode  : HRESULT;     // '< 0' = error; '> 0' = info; '0' = no error/info
END_VAR

• nAppendData  : Defines how many input data buffers are to be collected before a calculation is carried
out, because several data blocks are preferably added in order to achieve a precise result.

• bResetData : If set, the internal data buffer is completely deleted after calculation.
• bError  : The output is TRUE if an error occurs.
• hrErrorCode  : If an error occurs, a corresponding error code of the type HRESULT is output. Possible

values are described in the List of error codes [} 224]. This output is identical to the return value of the
method.
Note: If a timeout occurs or no multi-array buffer is available for the result, then neither the input data
nor the result data are lost. They are forwarded on the next call.

Configure() :

The quantile arguments must be configured at the beginning with the call of this method. The corresponding
PLC array must be defined as follows. The Configure() method can also be used for a new configuration with
a different set of arguments.

Element type Dimensions Dimensional variables
Argument LREAL 2 nChannels x

nMaxQuantiles

METHOD Configure : HRESULT
VAR_INPUT
    pArg         : POINTER TO LREAL;   // pointer to 2-dimensional array (LREAL) of arguments
    nArgSize     : UDINT;              // size of arguments buffer in bytes 
END_VAR

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 224].

ResetData() :

This method deletes all the data sets already added. Alternatively the automatic reset in the method CallEx()
can be used.

METHOD ResetData : HRESULT
VAR_INPUT
END_VAR

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 224].

Init() :

This method is not usually necessary in a Condition Monitoring application. It offers an alternative to the
function block initialization. The Init() method may only be called during the initialization phase of the PLC. It
cannot be used at runtime. You are referred to the use of an FB_init method or the attribute
‘call_after_init’ (see TwinCAT PLC reference). In addition, this facilitates the block encapsulation.

The input parameters of the function block instance may not be assigned in the declaration if the initialization
is to take place using the Init() method.
METHOD Init : HRESULT
VAR_INPUT
    stInitPars     : ST_CM_Quantiles_InitPars;  // init parameter
    nOwnID         : UDINT;                     // ID for this FB instance
    aDestIDs       : ARRAY[1..cCMA_MaxDest] OF UDINT; // IDs of destinations for output
    nResultBuffers : UDINT := 4;                      // number of MultiArrays which should be initi
alized for results (0 for no initialization)
END_VAR

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 224].



PLC API

TC3 Condition Monitoring152 Version: 1.4

• stInitPars  : Function-block-specific structure with initialization parameters of the type
ST_CM_Quantiles_InitPars [} 182]. The parameters must correlate to the above definition of the input
and output buffers.

• nOwnID  : Identifies the function block instance with a unique ID. This must always be greater than
zero. A proven approach is to define an enumeration for this purpose.

• aDestIDs  : Defines the destinations to which the results are to be forwarded by specifying the IDs of
the destinations. The definition of the output buffer (as described above) must correlate to the definition
of the input buffer of each selected destination.

• nResultBuffers  : The function block initializes a Transfer Tray Stream with the specified number of
multi-array buffers.

PassInputs() :

As long as an FB_CMA_Source instance is called and thus signal data are transferred to a target block, all
further function blocks of the analysis chain have to be called cyclically, as explained in the API PLC reference
[} 73].
Sometimes it is useful not to be execute an algorithm for a certain time. For example, some algorithms
should be executed only after prior training or configuration. Although the function block still has to be called
cyclically, it is sufficient that the data arriving at the function block are relayed in the communication ring
[} 66]. This is done using the PassInputs() method in place of the Call() method. The algorithm itself is not
called, and accordingly no result is calculated and no output buffer is generated.
METHOD PassInputs : HRESULT
VAR_INPUT
END_VAR

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 224].

Similar function blocks

The FB_CMA_HistArray [} 115] function block calculates the histograms of input value distributions.

The FB_CMA_MomentCoefficients [} 130] block calculates the statistical moment coefficients: average value,
standard deviation, skew and kurtosis.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4013 PC or CX (x86, x64) Tc3_CM, Tc3_CM_Base

5.1.25 FB_CMA_RMS

Calculates the temporal RMS value for single- and multi-channel real-valued signals.

This function block calculates the temporal RMS of one or more input channels. The RMS is calculated
block-by-block over an internal buffer length M.

If this internal buffer is full, the oldest values are replaced by the current ones and a new result is output. The
number of input values to be replaced depends on the multi-array size set at the source function block
(FB_CMA_Source [} 158]).

Memory properties



PLC API

TC3 Condition Monitoring 153Version: 1.4

Input values nBufferLength are stored in the internal buffer (refer to the initialization parameters of the
type ST_CM_RMS_InitPars [} 183]). These are successively replaced by new input values.

NaN occurrence

If a set of input values contains the special constant NaN, then the result is also NaN. This remains the case
until the internal buffer is completely filled with new valid values.

Sample implementation

A sample implementation is available under the following link: Time-based RMS [} 200].

Inputs and outputs

The input and output buffers correspond to the following definition (Shape). The variable parameters are part
of the function block input stInitPars.

Multi-array in the Element type Dimensions Dimensional variables
input stream LREAL 2 nChannels x not

specified*
output stream LREAL 1 nChannels

*The length of the second dimension can be selected as desired and thus adapted to the application or the
output buffer of the preceding algorithm.

  
Input parameters

The input parameters of this function block represent initialization parameters and must already be assigned
in the declaration of the FB instance! (alternatively: Init() method)
They may only be assigned once. A change at runtime is not possible.
VAR_INPUT
    stInitPars       : ST_CM_RMS_InitPars;    // init parameter
    nOwnID           : UDINT;                 // ID for this FB instance
    aDestIDs         : ARRAY[1..cCMA_MaxDest] OF UDINT; // IDs of destinations for output
    nResultBuffers   : UDINT := 4;            // number of MultiArrays which should be initialized f
or results (0 for no initialization)
    tTransferTimeout : LTIME := LTIME#500US;  // timeout checking off during access to inter-
task FIFOs
END_VAR

• stInitPars: Function-block-specific structure with initialization parameters of the type
ST_CM_RMS_InitPars [} 183]. The parameters must correlate to the above definition of the input and
output buffers.

• nOwnID: Identifies the function block instance with a unique ID. This must always be greater than zero.
A proven approach is to define an enumeration for this purpose.

• aDestIDs: Defines the destinations to which the results are to be forwarded by specifying the IDs of the
destinations. The definition of the output buffer (as described above) must correlate to the definition of
the input buffer of each selected destination.

• nResultBuffers: The function block initializes a Transfer Tray Stream with the specified number of
multi-array buffers. The default is four.

• tTransferTimeout: Setting of the synchronous timeout for internal multi-array forwardings. See section
Parallel processing [} 66].

Output parameters
VAR_OUTPUT
    bError      : BOOL;        // TRUE if an error occurs. Reset by next method call.
    hrErrorCode : HRESULT;     // '< 0' = error; '> 0' = info; '0' = no error/info
    nCntResults : ULINT;       // counts outgoing results (MultiArrays were calculated and sent to t
ransfer tray)
END_VAR

• bError: The output is TRUE if an error occurs.
• hrErrorCode: If an error occurs, a corresponding error code of the type HRESULT is output. Possible

values are described in the List of error codes [} 224].



PLC API

TC3 Condition Monitoring154 Version: 1.4

Methods

Call(): 

The method is called in each cycle in order to calculate RMS values from the input signal.
The function block waits for input data if the method indicates neither new results nor an error. This is a
regular behavior in the process of the analysis chain.
METHOD Call : HRESULT
VAR_OUTPUT
    bNewResult  : BOOL;         // TRUE every time when outgoing MultiArray was calculated and sent
to transfer tray.
    bError      : BOOL;         // TRUE if an error occurs.
    hrErrorCode : HRESULT;      // '< 0' = error; '> 0' = info; '0' = no error/info
END_VAR

• bError: The output is TRUE if an error occurs.
• hrErrorCode: If an error occurs, a corresponding error code of the type HRESULT is output. Possible

values are described in the List of error codes [} 224]. This output is identical to the return value of the
method.
Note: If a timeout occurs or no multi-array buffer is available for the result, then neither the input data
nor the result data are lost. They are forwarded on the next call.

  
Init():

This method is not usually necessary in a Condition Monitoring application. It offers an alternative to the
function block initialization. The Init() method may only be called during the initialization phase of the PLC. It
cannot be used at runtime. You are referred to the use of an FB_init method or the attribute
‘call_after_init’ (see TwinCAT PLC reference). In addition, this facilitates the function block encapsulation.

The input parameters of the function block instance may not be assigned in the declaration if the initialization
is to take place using the Init() method.
METHOD Init : HRESULT
VAR_INPUT
    stInitPars     : ST_CM_RMS_InitPars;  // init parameter
    nOwnID         : UDINT;               // ID for this FB instance
    aDestIDs       : ARRAY[1..cCMA_MaxDest] OF UDINT;  // IDs of destinations for output
    nResultBuffers : UDINT := 4;  // number of MultiArrays which should be initialized for results (
0 for no initialization)
END_VAR

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 224].

• stInitPars: Function-block-specific structure with initialization parameters of the type
ST_CM_RMS_InitPars [} 183]. The parameters must correlate to the above definition of the input and
output buffers.

• nOwnID: Identifies the function block instance with a unique ID. This must always be greater than zero.
A proven approach is to define an enumeration for this purpose.

• aDestIDs: Defines the destinations to which the results are to be forwarded by specifying the IDs of the
destinations. The definition of the output buffer (as described above) must correlate to the definition of
the input buffer of each selected destination.

• nResultBuffers: The function block initializes a Transfer Tray Stream with the specified number of
multi-array buffers.

PassInputs() :

As long as an FB_CMA_Source instance is called and thus signal data are transferred to a target block, all
further function blocks of the analysis chain have to be called cyclically, as explained in the API PLC reference
[} 73].
Sometimes it is useful not to be execute an algorithm for a certain time. For example, some algorithms
should be executed only after prior training or configuration. Although the function block still has to be called
cyclically, it is sufficient that the data arriving at the function block are relayed in the communication ring
[} 66]. This is done using the PassInputs() method in place of the Call() method. The algorithm itself is not
called, and accordingly no result is calculated and no output buffer is generated.



PLC API

TC3 Condition Monitoring 155Version: 1.4

METHOD PassInputs : HRESULT
VAR_INPUT
END_VAR

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 224].

Similar function blocks

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4016.12 PC or CX (x86, x64) Tc3_CM (v1.0.19), Tc3_CM_Base

Documents about this
2 RMS_Sample.zip (Resources/zip/9007202649250187.zip)

5.1.26 FB_CMA_Sink

This function block writes data from a multi-array buffer into an external PLC data buffer.

It contains all the multi-arrays that are transferred to the specified analysis ID.
Depending on the analysis chain the output results can contain NaN values.

NOTE
Exception
Comparisons with NaN (Not a Number) can cause an exception that leads to an execution stop and may
possibly cause machine damage. It is urgently recommended to check the result for NaN before it is pro-
cessed. Or if NaNs are to be processed in the application, the floating point exception must be deactivated
for this task.

Inputs and outputs

Input parameters

The input parameters of this function block represent initialization parameters and must already be assigned
in the declaration of the FB instance! (alternatively: Init() method)
They may only be assigned once. A change at runtime is not possible.
VAR_INPUT
    nOwnID           : UDINT;                // ID for this FB instance 
    tTransferTimeout : LTIME := LTIME#40US;  // timeout checking off during access to inter-
task FIFOs
END_VAR

• nOwnID  : Identifies the function block instance with a unique ID. This must always be greater than
zero. A proven approach is to define an enumeration for this purpose.

• tTransferTimeout  : Synchronous timeout setting for internal multi-array transfer commands. See
section Parallel processing [} 66].

Output parameters
VAR_OUTPUT
    bError       : BOOL;            // TRUE if an error occurs. Reset by next method call.
    hrErrorCode  : HRESULT;         // '< 0' = error; '> 0' = info; '0' = no error/info
    nCntResults  : ULINT;           // counts outgoing results
END_VAR

• bError : This output is TRUE if an error occurs.
• hrErrorCode  : If an error occurs, a corresponding error code of the type HRESULT is output. Possible

values are described in the List of error codes [} 224].



PLC API

TC3 Condition Monitoring156 Version: 1.4

Methods

Output1D() :
Writes data from a multi-array into an external one-dimensional data buffer.
The function block waits for input data if the method indicates neither new results nor an error. This is a
regular behavior in the process of the analysis chain.
METHOD Output1D : HRESULT
VAR_INPUT
    pDataOut      : POINTER TO BYTE;      // address of data buffer
    nDataOutSize  : UDINT;                // size of data buffer in bytes
    eElementType  : E_MA_ElementTypeCode; // valid types: LREAL, INT32, UINT64, LCOMPLEX
    nWorkDim      : UDINT:=0;             // It designates the dimension in the MultiArray being pro
cessed.
    nElements     : UDINT:=0;             // optional: default:0->full
 copy; It designates the number of elements to be copied out of the MultiArray.
    pStartIndex   : POINTER TO UDINT;    (* optional: default:0-
>internally handled as [0,0,..]; It designates the index of the first element to be copied out of th
e MultiArray.
                         If allocated it must point to a onedimensional array of UDINT with so many
elements as dimensions of the MultiArray. *)
    nOptionPars   : DWORD;                // option mask 
END_VAR
VAR_OUTPUT
    bNewResult    : BOOL;                 // TRUE every time when data was written from MultiArray t
o data buffer.
    bError        : BOOL;                 // TRUE if an error occurs.
    hrErrorCode   : HRESULT;              // '< 0' = error; '> 0' = info; '0' = no error/info
END_VAR

• eElementType  : This input is of the type E_MA_ElementTypeCode [} 166]. The element type of the
specified multi-array buffer must correlate to the element type of the specified external data buffer.

• nWorkDim  : The dimension of the multi-array to be processed. These data are copied into the
specified external data buffer. In general the multi-array is also one-dimensional and nWorkDim:=0, but
the multi-array can also have additional dimensions, which may not then be copied, however.

• nElements  : Specifies the number of elements to be copied from the multi-array. Set nElements=0 to
copy everything. If you are only interested in a certain bandwidth of your result, however, then it is not
necessary to copy the entire data quantity. This also reduces the necessary size of your specified
external data buffer.

• pStartIndex  : This is an optional parameter that is useful if the multi-array has more than one
dimension or if not all elements are to be copied. Specifies the index of the first element that is to be
copied from the multi-array. If assigned, it must point to a one-dimensional array of UDINT that has as
many elements as the multi-array has dimensions.

• bNewResult  : This output is TRUE each time a new result has been successfully written into the data
buffer.

• bError : This output is TRUE if an error occurs.
• hrErrorCode  : If an error occurs, then a descriptive error code of the type HRESULT is displayed.

Possible values are described in the List of error codes [} 224]. This output is identical to the return
value of the method.
Tip: If a timeout occurs, the input data are not lost. They are processed on the next call.

  
Output2D() :

Writes data from a multi-array into an external two-dimensional data buffer.
If the method is returned with neither an indication of a new result nor with an error, then the object waits for
input data. This is a regular behavior in the analysis chain.
METHOD Output2D : HRESULT
VAR_INPUT
    pDataOut      : POINTER TO BYTE;  // address of data buffer
    nDataOutSize  : UDINT;            // size of data buffer in bytes
    eElementType  : E_MA_ElementTypeCode; // valid types: LREAL, INT32, UINT64, LCOMPLEX
    nWorkDim0     : UDINT:=0;         // It designates the first dimension in the MultiArray being p
rocessed.
    nWorkDim1     : UDINT:=1;         // It designates the second dimension in the MultiArray being
processed.
    nElementsDim0 : UDINT:=0;         // optional: default:0-
>full copy; It designates the number of elements to be copied out of WorkDim0 of the MultiArray.
    nElementsDim1 : UDINT:=0;         // optional: default:0-



PLC API

TC3 Condition Monitoring 157Version: 1.4

>full copy; It designates the number of elements to be copied out of WorkDim1 of the MultiArray.
    pStartIndex   : POINTER TO UDINT; (* optional: default:0->internally handled as [0,0,..]; 
                                      It designates the index of the first element to be copied out
of the MultiArray.
                                      If allocated it must point to a onedimensional array of UDINT
with so many elements as dimensions of the MultiArray. *)
    nOptionPars   : DWORD;           // option mask END_VARVAR_OUTPUT
    bNewResult    : BOOL;            // TRUE every time when data was written from MultiArray to dat
a buffer.
    bError        : BOOL;                // TRUE if an error occurs.
    hrErrorCode   : HRESULT;         // '< 0' = error; '> 0' = info; '0' = no error/info
END_VAR

• pDataOut  : Address of the external two-dimensional data buffer.

• eElementType  : This input is of the type E_MA_ElementTypeCode [} 166]. The element type of the
specified multi-array buffer must correlate to the element type of the specified external data buffer.

• nWorkDim0  : Specifies the first dimension of the multi-array to be processed. These data are copied
into the first dimension of the specified external data buffer. In general the multi-array is also two-
dimensional and nWorkDim0:=0, but the multi-array can also have additional dimensions, which may
not then be copied, however.
E.g.: If the second dimension is to be copied into the first index of the target data buffer, then set
nWorkDim0:=1.

• nWorkDim1  : Specifies the second dimension of the multi-array to be processed. These data are
copied into the second dimension of the specified external data buffer. In general the multi-array is also
two-dimensional and nWorkDim1:=1, but the multi-array can also have additional dimensions, which
may not then be copied, however.
E.g.: If the first dimension is to be copied into the second index of the target data buffer, then set
nWorkDim1:=0.

• nElementsDim0  : Specifies the number of elements to be copied from nWorkDim0 of the multi-array.
Set nElementsDim0=0 to copy everything. If you are only interested in a certain bandwidth of your
result, however, then it is not necessary to copy the entire data quantity. This also reduces the
necessary size of your specified external data buffer.

• nElementsDim1  : Specifies the number of elements to be copied from nWorkDim0 of the multi-array.
Set nElementsDim1=0 to copy everything. If you are only interested in a certain bandwidth of your
result, however, then it is not necessary to copy the entire data quantity. This also reduces the
necessary size of your specified external data buffer.

• pStartIndex  : This is an optional parameter that is useful if the multi-array has more than two
dimensions or if not all elements are to be copied. Specifies the index of the first element that is to be
copied from the multi-array. If assigned, it must point to a one-dimensional array of UDINT that has as
many elements as the multi-array has dimensions.

• bNewResult  : This output is TRUE each time a new result has been successfully written into the data
buffer.

• bError : This output is TRUE if an error occurs.
• hrErrorCode  : If an error occurs, then a descriptive error code of the type HRESULT is displayed.

Possible values are described in the List of error codes [} 224]. This output is identical to the return
value of the method.
Tip: If a timeout occurs, the input data are not lost. They are processed on the next call.

  
Init() :

This method is not usually necessary in a Condition Monitoring application. It offers an alternative to the
function block initialization. The Init() method may only be called during the initialization phase of the PLC. It
cannot be used at runtime. You are referred to the use of an FB_init method or the attribute
‘call_after_init’ (see TwinCAT PLC reference). In addition, this facilitates the function block encapsulation.

The input parameters of the function block instance may not be assigned in the declaration if the initialization
is to take place using the Init() method.
METHOD Init : HRESULT
VAR_INPUT
    nOwnID: UDINT; // ID for this FB instance 
END_VAR



PLC API

TC3 Condition Monitoring158 Version: 1.4

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 224].

• nOwnID  : Identifies the function block instance with a unique ID. This must always be greater than
zero. A proven approach is to define an enumeration for this purpose.

PassInputs() :

As long as an FB_CMA_Source instance is called and thus signal data are transferred to a target block, all
further function blocks of the analysis chain have to be called cyclically, as explained in the API PLC reference
[} 73].
Sometimes it is useful not to be execute an algorithm for a certain time. For example, some algorithms
should be executed only after prior training or configuration. Although the function block still has to be called
cyclically, it is sufficient that the data arriving at the function block are relayed in the communication ring
[} 66]. This is done using the PassInputs() method in place of the Call() method. The algorithm itself is not
called, and accordingly no result is calculated and no output buffer is generated.
METHOD PassInputs : HRESULT
VAR_INPUT
END_VAR

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 224].

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4013 PC or CX (x86, x64) Tc3_CM, Tc3_CM_Base,

Tc3_MultiArray

5.1.27 FB_CMA_Source

This function block writes data from an external PLC data buffer into a multi-array buffer.

It accumulates input data continuously, until the maximum size of the multi-array is reached. Once the multi-
array is full, it is transferred to the target analysis ID.
An instance of FB_CMA_Source must not be used as target for any other analysis block. It offers only
source functionality.

A time series collection can be interrupted in the event of an error. Lost signal data can lead to an
unexpected result of the analysis chain, depending on the configuration of the algorithms.

Inputs and outputs

The output buffers correspond to the following definition (Shape). The variable parameters are part of the
function block input stInitPars.

Multi-array in the Element type Dimensions Dimensional variables
output stream eTypeCode nDims aDimSizes

  
Input parameters

The input parameters of this function block represent initialization parameters and must already be assigned
in the declaration of the FB instance! (alternatively: Init() method)
They may only be assigned once. A change at runtime is not possible.
VAR_INPUT
    stInitPars       : ST_MA_MultiArray_InitPars;  // init parameter
    nOwnID           : UDINT;                      // ID for this FB instance
    aDestIDs         : ARRAY[1..cCMA_MaxDest] OF UDINT; // IDs of destinations for output
    nResultBuffers   : UDINT := 4;                 // number of MultiArrays which should be initiali
zed for results (0 for no initialization)



PLC API

TC3 Condition Monitoring 159Version: 1.4

    tTransferTimeout : LTIME := LTIME#40US;        // timeout checking off during access to inter-
task FIFOs
END_VAR

• stInitPars : Function-block-specific structure of the initialization parameters of the type
ST_MA_MultiArray_InitPars [} 184]. Multi-array buffers are specified for the result buffers. These
parameters must correlate to the above definition of the output buffers.

• nOwnID  : Identifies the function block instance with a unique ID. This must always be greater than
zero. A proven approach is to define an enumeration for this purpose.

• aDestIDs  : Defines the destinations to which the results are to be forwarded by specifying the IDs of
the destinations. The definition of the output buffer (as described above) must correlate to the definition
of the input buffer of each selected destination.

• nResultBuffers  : The function block initializes a Transfer Tray Stream with the specified number of
multi-array buffers. The default is four.

• tTransferTimeout  : Synchronous timeout setting for internal multi-array transfer commands. See
section Parallel processing [} 66].

Output parameters
VAR_OUTPUT
    bError        : BOOL;    // TRUE if an error occurs. Reset by next method call.
    hrErrorCode   : HRESULT; // '< 0' = error; '> 0' = info; '0' = no error/info
    nCntResults   : ULINT;   // counts outgoing results (MultiArrays were calculated and sent to tra
nsfer tray)
END_VAR

• bError  : This output is TRUE if an error occurs.
• hrErrorCode  : If an error occurs, a corresponding error code of the type HRESULT is output. Possible

values are described in the List of error codes [} 224].

Methods

Input1D() : 

Writes data from an external one-dimensional data buffer into a multi-array.
This method must be called whenever new input samples are available, usually cyclically.
METHOD Input1D : HRESULT
VAR_INPUT
    pDataIn       : POINTER TO BYTE;      // address of data buffer (e.g. oversampling data) as one-
dimensional array
    nDataInSize   : UDINT;                // size of data buffer in bytes
    eElementType  : E_MA_ElementTypeCode; // valid types: LREAL, INT32, UINT64, LCOMPLEX
    nWorkDim      : UDINT;                // It designates the dimension in the multi array being pr
ocessed.
    pStartIndex    : POINTER TO UDINT;    (* optional: default:0-
>internally handled; It designates the index of the first MultiArray element to be copied.
                         If allocated it must point to a onedimensional array of UDINT with so many
elements as dimensions of the MultiArray.
                         Upon successful completion of the copy, corresponding StartIndex is increme
nted by the number of copied elements. *)
    nOptionPars    : DWORD;               // option mask (cCMA_Option_MarkInterruption, ...)
END_VAR
VAR_OUTPUT
    bNewResult     : BOOL;                // TRUE every time when outgoing MultiArray was calculated
 and sent to transfer tray.
    bError         : BOOL;                // TRUE if an error occurs.
    hrErrorCode    : HRESULT;             // '< 0' = error; '> 0' = info; '0' = no error/info
END_VAR

• eElementType  : This input is of the type E_MA_ElementTypeCode [} 166]. The element type of the
specified multi-array buffer (initialization parameters) must match the element type of the specified
external data buffer.

• nWorkDim  : Defines the dimension in which the data are accumulated. In general the multi-array is
also one-dimensional and nWorkDim:=0, but the multi-array can also have additional dimensions,
which may not then be processed, however.



PLC API

TC3 Condition Monitoring160 Version: 1.4

• pStartIndex  : This is an optional parameter, which can be useful if the multi-array has more than one
dimension. Specifies the index of the first multi-array element to be copied. If assigned, it must point to
a one-dimensional array of UDINT that has as many elements as the multi-array has dimensions. After
a successful copy process, the corresponding StartIndex is incremented by the number of copied
elements.

• nOptionMask:  Available options:
◦ cCMA_Option_MarkInterruption : Several errors can occur and cause interruptions of the time series

collection. If the flag is set and the element type is LREAL, the first data buffer element is marked as
invalid (NaN). This can be used to detect an interruption in the result data sets, because it is not
possible to calculate correct spectra based on fragmented time series. See separate section for
further information on NaN values [} 65].

• bError : This output is TRUE if an error occurs.
• hrErrorCode  : If an error occurs, then a descriptive error code of the type HRESULT is displayed.

Possible values are described in the List of error codes [} 224]. This output is identical to the return
value of the method.

  
Input2D() :

Writes data from an external two-dimensional data buffer into a multi-array.
This method must be called whenever new input samples are available, usually cyclically.

METHOD Input2D : HRESULT
VAR_INPUT
    pDataIn       : POINTER TO BYTE;      // address of data buffer (e.g. oversampling data)
 as twodimensional array (e.g.[1..channels,1..oversamples] )
    nDataInSize   : UDINT;                // size of data buffer in bytes
    eElementType  : E_MA_ElementTypeCode; // valid types: LREAL, INT32, UINT64, LCOMPLEX
    nWorkDim0     : UDINT:=0;             // It designates the first dimension in the MultiA
rray being processed. (e.g. 1..channels)
    nWorkDim1     : UDINT:=1;             // It designates the second dimension in the Multi
Array being processed.
    pStartIndex   : POINTER TO UDINT;     (* optional: default:0->
internally handled; It designates the index of the first MultiArray element to be copied.
                         If allocated it must point to a onedimensional array of UDINT with
so many elements as dimensions of the MultiArray.
                         Upon successful completion of the copy, corresponding StartIndex is
 incremented by the number of copied elements. *)
    nOptionPars   : DWORD;                 // option mask (cCMA_Option_MarkInterruption, ...
)
END_VAR
VAR_OUTPUT
    bNewResult    : BOOL;                  // TRUE every time when outgoing MultiArray was c
alculated and sent to transfer tray.
    bError    : BOOL;                      // TRUE if an error occurs.
    hrErrorCode   : HRESULT;               // '< 0' = error; '> 0' = info; '0' = no error/
info
END_VAR

• pDataIn  : The data buffer must contain the data from all channels.

• eElementType  : This input is of the type E_MA_ElementTypeCode [} 166]. The element type of the
specified multi-array buffer (initialization parameters) must match the element type of the specified
external data buffer.

• nWorkDim0  : Defines the dimension that matches the number of channels. In general the multi-array
is also two-dimensional and nWorkDim0:=0, but the multi-array can also have additional dimensions,
which may not then be processed, however.
E.g.: If the first index of the specified data buffer stands for the channels, while the second dimension
of the multi-array counts the channels, then set nWorkDim0:=1.

• nWorkDim1  : Defines the dimension in which the data are accumulated. In general the multi-array is
also two-dimensional and nWorkDim1:=1, but the multi-array can also have additional dimensions,
which may not then be processed, however.
E.g.: If the second index of the specified data buffer stands for the accumulated data, while the first
dimension of the multi-array collects the data, then set nWorkDim1:=0.



PLC API

TC3 Condition Monitoring 161Version: 1.4

• pStartIndex  : This is an optional parameter, which can be useful if the multi-array has more than two
dimensions. Specifies the index of the first multi-array element to be copied. If assigned, it must point
to a one-dimensional array of UDINT that has as many elements as the multi-array has dimensions.
After a successful copy process, the corresponding StartIndex is incremented by the number of copied
elements.

• nOptionMask:  Available options:
◦ cCMA_Option_MarkInterruption : Several errors can occur and cause interruptions of the time series

collection. If the flag is set and the element type is LREAL, the first data buffer element (of each
channel) is marked as invalid (NaN). This can be used to detect an interruption in the result data
sets, because it is not possible to calculate correct spectra based on fragmented time series. See
separate section for further information on NaN values [} 65].

• bError : This output is TRUE if an error occurs.
• hrErrorCode  : If an error occurs, then a descriptive error code of the type HRESULT is displayed.

Possible values are described in the List of error codes [} 224]. This output is identical to the return
value of the method.

  
ResetData() :

The method deletes all records that were already added, in order to make space for the current output buffer
(multi-array). 
To use external indices (pStartIndex parameter) for the filling procedure, these have to be reset explicitly.

METHOD ResetData : HRESULT
VAR_INPUT
END_VAR

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 224].

  
Init() :

This method is not usually necessary in a Condition Monitoring application. It offers an alternative to the
function block initialization. The Init() method may only be called during the initialization phase of the PLC. It
cannot be used at runtime. You are referred to the use of an FB_init method or the attribute
‘call_after_init’ (see TwinCAT PLC reference). In addition, this facilitates the function block encapsulation.

The input parameters of the function block instance may not be assigned in the declaration if the initialization
is to take place using the Init() method.
METHOD Init : HRESULT
VAR_INPUT
    stInitPars     : ST_MA_MultiArray_InitPars;       // init parameter
    nOwnID         : UDINT;                           // ID for this FB instance
    aDestIDs       : ARRAY[1..cCMA_MaxDest] OF UDINT; // IDs of destinations for output
    nResultBuffers : UDINT := 4;                      // number of MultiArrays which should be initi
alized for results (0 for no initialization)
END_VAR

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 224].

• stInitPars : Function-block-specific structure of the initialization parameters of the type
ST_MA_MultiArray_InitPars [} 184]. Multi-array buffers are specified for the result buffers. These
parameters must correlate to the above definition of the output buffers.

• nOwnID  : Identifies the function block instance with a unique ID. This must always be greater than
zero. A proven approach is to define an enumeration for this purpose.

• aDestIDs  : Defines the destinations to which the results are to be forwarded by specifying the IDs of
the destinations. The definition of the output buffer (as described above) must correlate to the definition
of the input buffer of each selected destination.

• nResultBuffers  : The function block initializes a Transfer Tray Stream with the specified number of
multi-array buffers.



PLC API

TC3 Condition Monitoring162 Version: 1.4

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4013 PC or CX (x86, x64) Tc3_CM, Tc3_CM_Base,

Tc3_MultiArray

5.1.28 FB_CMA_WatchUpperThresholds

Configurable threshold value monitoring of multi-channel data

Similar to the FB_CMA_DiscreteClassification [} 89] block, this block allocates the individual channels of a
multi-channel signal to a number of configurable discrete categories, based on configurable threshold
values. After the configuration the block calculates a one-dimensional array with precisely two values for
each input vector. The type of both elements is a signed 32-bit Integer number. The first value of the result
identifies the number of highest determined category, the second value the channel number with the highest
category. In both cases numbering starts with zero. If no input value of a channel matches the respective
threshold value for the lowest category, the resulting value is -1. If an input value equals the threshold value
of a category, it is counted under this category. If several channels are allocated the highest category, the
channel number with the lower number is returned.

Configuration 

The block can be configured at runtime by specifying the threshold value for each channel and each
threshold value category.

Memory properties 

Depending on the block configuration, the number of the highest threshold value category and the number of
the triggering channel are saved until the method ResetData() is called, or the values are recalculated
after each step.

Inputs and outputs

The input and output buffers correspond to the following definition (Shape). The variable parameters are part
of the function block input stInitPars.

Multi-array in the Element type Dimensions Dimensional variables
input stream LREAL 1 nChannels

output stream INT (32bit) 1 2

  
Input parameters

The input parameters of this function block represent initialization parameters and must already be assigned
in the declaration of the FB instance! (alternatively: Init() method)
They may only be assigned once. A change at runtime is not possible.
VAR_INPUT
    stInitPars      : ST_CM_WatchUpperThresholds_InitPars; // init parameter
    nOwnID          : UDINT;                               // ID for this FB instance
    aDestIDs        : ARRAY[1..cCMA_MaxDest] OF UDINT;     // IDs of destinations for output
    nResultBuffers  : UDINT := 4;                           // number of MultiArrays which should be
 initialized for results (0 for no initialization)
    tTransferTimeout: LTIME := LTIME#500US;                // timeout checking off during access to
inter-task FIFOs
END_VAR

• stInitPars  : Function-block-specific structure with initialization parameters of the type
ST_CM_WatchUpperThresholds_InitPars [} 184]. The parameters must correlate to the above definition
of the input and output buffers.

• nOwnID  : Identifies the function block instance with a unique ID. This must always be greater than
zero. A proven approach is to define an enumeration for this purpose.



PLC API

TC3 Condition Monitoring 163Version: 1.4

• aDestIDs  : Defines the destinations to which the results are to be forwarded by specifying the IDs of
the destinations. The definition of the output buffer (as described above) must correlate to the definition
of the input buffer of each selected destination.

• nResultBuffers  : The function block initializes a Transfer Tray Stream with the specified number of
multi-array buffers. The default is four.

• tTransferTimeout  : Setting of the synchronous timeout for internal multi-array forwardings. See
section Parallel processing [} 66].

Output parameters
VAR_OUTPUT
    bError        : BOOL;        // TRUE if an error occurs. Reset by next method call.
    hrErrorCode  : HRESULT;      // '< 0' = error; '> 0' = info; '0' = no error/info
    nCntResults  : ULINT;        // counts outgoing results (MultiArrays were calculated and sent to
 transfer tray)
END_VAR

• bError  : The output is TRUE if an error occurs.
• hrErrorCode  : If an error occurs, a corresponding error code of the type HRESULT is output. Possible

values are described in the List of error codes [} 224].

Methods

Call() : 

The method is called in each cycle in order to calculate threshold value results from the input signal.
The function block waits for input data if the method indicates neither new results nor an error. This is a
regular behavior in the process of the analysis chain.

METHOD Call : HRESULT
VAR_OUTPUT
    bNewResult  : BOOL;         // TRUE every time when outgoing MultiArray was calculated and sent
to transfer tray.
    bError      : BOOL;         // TRUE if an error occurs.
    hrErrorCode : HRESULT;      // '< 0' = error; '> 0' = info; '0' = no error/info
END_VAR

• bError  : The output is TRUE if an error occurs.
• hrErrorCode  : If an error occurs, a corresponding error code of the type HRESULT is output. Possible

values are described in the List of error codes [} 224]. This output is identical to the return value of the
method.
Note: If a timeout occurs or no multi-array buffer is available for the result, then neither the input data
nor the result data are lost. They are forwarded on the next call.

  
Configure() :

The classification arguments must be configured at the beginning with the call of this method. The
corresponding PLC array must be defined as follows. The Configure() method can also be used for a new
configuration with a different set of arguments.

Element type Dimensions Dimensional variables
Argument LREAL 2 nChannels x

nMaxClasses

METHOD Configure : HRESULT
VAR_INPUT
    pArg     : POINTER TO LREAL; // pointer to 2-dimensional array (LREAL) of arguments
    nArgSize : UDINT;           // size of arguments buffer in bytes 
END_VAR

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 224].

  
ResetData() :



PLC API

TC3 Condition Monitoring164 Version: 1.4

This method deletes all the data sets already added. Alternatively bMemorize=FALSE can be set in the
initialization structure for an automatic reset.
Resets the reached maximum category of the function block to -1.
METHOD ResetData : HRESULT
VAR_INPUT
END_VAR

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 224].

  
Init() :

This method is not usually necessary in a Condition Monitoring application. It offers an alternative to the
function block initialization. The Init() method may only be called during the initialization phase of the PLC. It
cannot be used at runtime. You are referred to the use of an FB_init method or the attribute
‘call_after_init’ (see TwinCAT PLC reference). In addition, this facilitates the function block encapsulation.

The input parameters of the function block instance may not be assigned in the declaration if the initialization
is to take place using the Init() method.
METHOD Init : HRESULT
VAR_INPUT
    stInitPars     : ST_CM_WatchUpperThresholds_InitPars; // init parameter
    nOwnID         : UDINT;                               // ID for this FB instance
    aDestIDs        : ARRAY[1..cCMA_MaxDest] OF UDINT;  // IDs of destinations for output
    nResultBuffers  : UDINT := 4;                       // number of MultiArrays which should be ini
tialized for results (0 for no initialization)
END_VAR

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 224].

• stInitPars  : Function-block-specific structure with initialization parameters of the type
ST_CM_WatchUpperThresholds_InitPars [} 184]. The parameters must correlate to the above definition
of the input and output buffers.

• nOwnID  : Identifies the function block instance with a unique ID. This must always be greater than
zero. A proven approach is to define an enumeration for this purpose.

• aDestIDs  : Defines the destinations to which the results are to be forwarded by specifying the IDs of
the destinations. The definition of the output buffer (as described above) must correlate to the definition
of the input buffer of each selected destination.

• nResultBuffers  : The function block initializes a Transfer Tray Stream with the specified number of
multi-array buffers.

PassInputs() :

As long as an FB_CMA_Source instance is called and thus signal data are transferred to a target block, all
further function blocks of the analysis chain have to be called cyclically, as explained in the API PLC reference
[} 73].
Sometimes it is useful not to be execute an algorithm for a certain time. For example, some algorithms
should be executed only after prior training or configuration. Although the function block still has to be called
cyclically, it is sufficient that the data arriving at the function block are relayed in the communication ring
[} 66]. This is done using the PassInputs() method in place of the Call() method. The algorithm itself is not
called, and accordingly no result is calculated and no output buffer is generated.
METHOD PassInputs : HRESULT
VAR_INPUT
END_VAR

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 224].

Similar function blocks

The block FB_CMA_DiscreteClassification [} 89] classifies multi-channel input data.



PLC API

TC3 Condition Monitoring 165Version: 1.4

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4013 PC or CX (x86, x64) Tc3_CM, Tc3_CM_Base

5.2 Functions

5.2.1 F_MA_IsNAN
This function tests for presence of a NaN (Not-a-Number) value, returning TRUE when the value is a NaN.
FUNCTION F_MA_IsNAN : BOOL 
VAR_INPUT
     fValue : LREAL;
END_VAR

For further information see chapter Handling with NaN values [} 65].

The function is obsolete.
Please use the LrealIsNaN() function instead (Tc2_Utilities library).

Requirements

Development environment Target system type PLC libraries to include
TwinCAT v3.1.4013 PC or CX (x86, x64) Tc3_MultiArray

5.3 Data types

5.3.1 E_CM_MCoefOrder
TYPE E_CM_MCoefOrder :
(
    eCM_N        := 0,       (* count of included cases *)
    eCM_Mean     := 1,       (* mean value *)
    eCM_StDev    := 2,       (* standard deviation *)
    eCM_Skew     := 3,       (* skew value (third moment) *)
    eCM_Kurtosis := 4        (* Excess Kurtosis value *)
) UDINT;
END_TYPE

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4013 PC or CX (x86, x64) Tc3_CM_Base

5.3.2 E_CM_ScalingType
For deeper details to the scaling options see "Spectrum Scaling Options [} 227]".

TYPE E_CM_ScalingType :
(
     eCM_NoScaling            := 0, 
     eCM_DiracScaling         := 1, 
     eCM_PeakAmplitude        := 2, 
     eCM_ROOT_POWER_SUM       := 3, 
     eCM_RMS                  := 4, 
     eCM_GainCorrection       := 5, 



PLC API

TC3 Condition Monitoring166 Version: 1.4

     eCM_PowerSpectralDensity := 6, 
     eCM_UnitaryScaling       := 7
) UDINT;
END_TYPE

Requirements

Development environment Target system type PLC libraries to include
TwinCAT v3.1.4013 PC or CX (x86, x64) Tc3_CM_Base

5.3.3 E_CM_WindowType
For deeper details to the different window types see "".

TYPE E_CM_WindowType :
(
     eCM_HannWindow             := 16#05300901, 
     eCM_RectangularWindow      := 16#05300902
) UDINT;
END_TYPE

Requirements

Development environment Target system type PLC libraries to include
TwinCAT v3.1.4013 PC or CX (x86, x64) Tc3_CM_Base

5.3.4 E_MA_ElementTypeCode
TYPE E_MA_ElementTypeCode :
(
     eMA_TypeCode_NONE       := 16#0000,   (*   [ internally used ] *)
     eMA_TypeCode_STRING     := 16#0001,   (*   [ internally used: length byte followed by ANSI C st
ring ] *)
     eMA_TypeCode_BYTE       := 16#0002,   
     eMA_TypeCode_CHAR       := 16#0003,   
     eMA_TypeCode_WCHAR      := 16#0004,   
     eMA_TypeCode_BOOL       := 16#0005,   (* boolean type *)
     eMA_TypeCode_INT16      := 16#0006,   
     eMA_TypeCode_UINT16     := 16#0007,   
     eMA_TypeCode_INT32      := 16#0008,   (* used e.g. for classification results *)
     eMA_TypeCode_UINT32     := 16#0009,   
     eMA_TypeCode_INT64      := 16#000A,   
     eMA_TypeCode_UINT64     := 16#000B,   (* 64-bit long unsigned. use
this for statistical counters *)
     eMA_TypeCode_REAL       := 16#000C,   (*   [Unsupported: 32-bit  floating point type. ]*)
     eMA_TypeCode_LREAL      := 16#000D,   (* Standard floating-point type. *)
     eMA_TypeCode_COMPLEX    := 16#000E,   (*   [ Unsupported: 64-bit
complex type. Use LCOMPLEX. ] *)
     eMA_TypeCode_LCOMPLEX   := 16#000F,   (* Standard 128-bit complex  type (real part first) *)
     eMA_TypeCode_LQUATERNION := 16#0010,   (* 256-bit quaternion
 values, for representation of spatial rotations. *)
     eMA_TypeCode_PUNKNOWN    := 16#0011,   (*   [ internally used: pointer to object implementing I
TcUnknown. ] *)
     eMA_TypeCode_MFPOINT     := 16#0012,   (*   [ internally used: type for motion control. ] *)
     eMA_TypeCode_OTHER       := 16#0013   
) UDINT;
END_TYPE

Requirements

Development environment Target system type PLC libraries to include
TwinCAT v3.1.4013 PC or CX (x86, x64) Tc3_MultiArray



PLC API

TC3 Condition Monitoring 167Version: 1.4

5.3.5 Error codes

5.3.5.1 E_CM_ErrorCode

code (HRESULT) symbol description / solution
0 eCM_OK No Error, everything is OK
Top category
16#9851_FFFF eCM_LibraryError_MASK CM Library Bitmask
logic errors
16#9851_0100 eCM_ErrLogic general logic error
16#9851_01FF eCM_ErrLogic_MASK logic error category bitmask
16#9851_0101 eCM_ErrLogic_AssertionFailed internal assumptions are violated
16#9851_0102 eCM_ErrLogic_NotImplemented function is not yet implemented
16#9851_0110 eCM_ErrLogic_LackOfInitialization algorithm was not initialized correctly
16#9851_0111 eCM_ErrLogic_LackOfInitialization_W

indowFunction
window function was not initialized correctly

16#9851_0121 eCM_ErrLogic_MissingLicense no valid license key was found
16#9851_0122 eCM_ErrLogic_InvalidHandle an invalid object ID was passed
16#9851_0123 eCM_ErrLogic_NullHandle a null handle was passed
16#9851_0124 eCM_ErrLogic_InvalidHandleType an invalid type of handle was passed
16#9851_0125 eCM_ErrLogic_InvalidObjectState the operation is invalid for object state
16#9851_0126 eCM_ErrLogic_NoHandlesLeft it was not possible to assign a new object ID
16#9851_0127 eCM_ErrRTime_InstanceExists there is already an allocated instance
configuration errors
16#9851_1000 eCM_ErrConfig general configuration error
16#9851_1FFF eCM_ErrConfig_MASK general configuration error category bitmask
maps to ADSERR_DEVICE_NOMEMORY
16#9851_1100 eCM_ErrConfig_OutOfMemory memory allocation failed

=> increase router memory (see chapter
Memory management [} 62] )

all errors below result in a HRESULT of ADS_E_INVALIDPARM
16#9851_1800 eCM_ErrConfig_IllegalParameter configuration parameter is not valid
16#9851_1900 eCM_ErrConfig_ParameterOutOfRan

ge
configuration parameter is out of range

16#9851_1901 eCM_ErrConfig_ParameterOutOfRan
ge_NoPowerOfTwo

parameter is not power of two as required

16#9851_1902 eCM_ErrConfig_ParameterOutOfRan
ge_FFT_length_Zero

the FFT length is zero or smaller and needs
to be positive

16#9851_1903 eCM_ErrConfig_ParameterOutOfRan
ge_DecibelThreshold_too_small

fDecibelThreshold is too small), which would
cause underflow

16#9851_1904 eCM_ErrConfig_ParameterOutOfRan
ge_LogThreshold_too_small

fLogThreshold is too small), which would
cause underflow

16#9851_1905 eCM_ErrConfig_ParameterOutOfRan
ge_nInLength_Minimum_two

nInLength value must be at least two

16#9851_1906 eCM_ErrConfig_ParameterOutOfRan
ge_nInLength_NotEven

nInLength is not an even number

16#9851_1907 eCM_ErrConfig_ParameterOutOfRan
ge_nFrameShift_not_positive

nFrameShift is not at least one

16#9851_1908 eCM_ErrConfig_ParameterOutOfRan
ge_nOutWindowLength_not_even

nOutWindowLength is not even

16#9851_1909 eCM_ErrConfig_ParameterOutOfRan
ge_Unsuitable_WindowFunction

window function not suitable for
reconstruction



PLC API

TC3 Condition Monitoring168 Version: 1.4

code (HRESULT) symbol description / solution
16#9851_190A eCM_ErrConfig_ParameterOutOfRan

ge_FFT_length_less_two
FFT length is less than two which is needed
here

16#9851_190B eCM_ErrConfig_ParameterOutOfRan
ge_WindowLength_odd

Window length is not an even number

16#9851_190C eCM_ErrConfig_ParameterOutOfRan
ge_FFT_length_odd

FFT length is not an even number

16#9851_190D eCM_ErrConfig_ParameterOutOfRan
ge_nChannels_smaller_one

nChannels is smaller than one

16#9851_190E eCM_ErrConfig_ParameterOutOfRan
ge_nBins_smaller_one

nBins is smaller than one

16#9851_190F eCM_ErrConfig_ParameterOutOfRan
ge_invalid_limit_interval

lower limit is not smaller than upper limit

16#9851_1910 eCM_ErrConfig_ParameterOutOfRan
ge_unknown_scaling_type

scaling type is not known

16#9851_1911 eCM_ErrConfig_ParameterOutOfRan
ge_illegal_quantile_argument

quantile argument outside [0 .. 1]

16#9851_1912 eCM_ErrConfig_ParameterOutOfRan
ge_illegal_threshold_order

thresholds must be in ascending order

16#9851_1913 eCM_ErrConfig_ParameterOutOfRan
ge_threshold_number_toolarge

more threshold values than configured

16#9851_1914 eCM_ErrConfig_ParameterOutOfRan
ge_Integration_limit_too_low

integration limit is too low

16#9851_1915 eCM_ErrConfig_ParameterOutOfRan
ge_Integration_limit_too_high

integration limit is too high

16#9851_1916 eCM_ErrConfig_ParameterOutOfRan
ge_Integration_limits_inconsistent

integration limits are inconsistent

16#9851_1917 eCM_ErrConfig_ParameterOutOfRan
ge_Samplerate_not_positive

sample rate is zero or negative

16#9851_192B eCM_ErrConfig_ParameterOutOfRan
ge_Nonascending_Sequence

sequence is nonascending

16#9851_1A10 eCM_ErrConfig_IllegalParamType configuration parameter has wrong type
16#9851_1A20 eCM_ErrConfig_ParameterNameNot

Found
parameter id was not found

16#9851_1B00 eCM_ErrConfig_ParameterMismatch parameter dependency not met
16#9851_1B01 eCM_ErrConfig_ParameterMismatch

_WindowLength_larger_FFT_length
window length larger than FFT length

16#9851_1B02 eCM_ErrConfig_ParameterMismatch
_LengthDifference_odd

difference between window length and FFT
length not even

16#9851_1B03 eCM_ErrConfig_ParameterMismatch
_nFrameShift_larger_nInLength

nFrameShift is larger than nInLength

16#9851_1B04 eCM_ErrConfig_ParameterMismatch
_nOutWindowLength_larger_nInLengt
h

nOutWindowLength is larger than nInLength

16#9851_1B05 eCM_ErrConfig_ParameterMismatch
_LogThreshold_too_small

fLogThreshold is too small), which would
cause underflow

runtime errors (while data processing)
these errors result in a HRESULT of ADS_E_INVALIDPARM
16#9851_2000 eCM_ErrRTime general runtime error
16#9851_2FFF eCM_ErrRTime_MASK general runtime error category bitmask
16#9851_2020 eCM_ErrRTime_WrongFunctionSigna

ture
algorithm called with wrong signature

16#9851_203F eCM_ErrRTime_WrongFunctionSigna
ture_MASK

signature error category bitmask

16#9851_2021 eCM_ErrRTime_IllegalBuffer illegal data buffer



PLC API

TC3 Condition Monitoring 169Version: 1.4

code (HRESULT) symbol description / solution
16#9851_2022 eCM_ErrRTime_IllegalSubarraySize illegal size of subarray
16#9851_2023 eCM_ErrRTime_IllegalInput illegal input signature
16#9851_2024 eCM_ErrRTime_IllegalInputArgnum input data has illegal argument number
16#9851_2025 eCM_ErrRTime_IllegalInputDimensio

nNumber
input data has illegal number of dimensions

16#9851_2026 eCM_ErrRTime_IllegalInputShape input data has illegal shape
16#9851_2027 eCM_ErrRTime_IllegalInputValue illegal value in input data stream
16#9851_2028 eCM_ErrRTime_IllegalInputDataType illegal element type of input data stream
16#9851_2029 eCM_ErrRTime_IllegalInputShapeZer

o
input data has illegal shape of Zero

16#9851_202A eCM_ErrRTime_IllegalInputCombine
ParameterMismatch

parameters of objects do not match

16#9851_202B eCM_ErrRTime_IllegalInputNoArray no multiarray passed as input parameter
illegal output buffer parameters (can occur in fixed-buffer ADS calls )
16#9851_2030 eCM_ErrRTime_IllegalOutput general invalid output buffer parameters
16#9851_2031 eCM_ErrRTime_IllegalOutputArgnum output data has illegal argument number
16#9851_2032 eCM_ErrRTime_IllegalOutputDimensi

onNumber
output buffer has illegal number of
dimensions

16#9851_2033 eCM_ErrRTime_IllegalOutputShape output buffer has illegal shape
16#9851_2034 eCM_ErrRTime_IllegalOutputDataTyp

e
illegal element type of output data buffer

16#9851_2035 eCM_ErrRTime_IllegalOutputNoArray no multiarray passed as output parameter
16#9851_2036 CM_ErrRTime_IllegalOutputNoData Multiarray has no data (product of dimension

sizes is zero)
16#9851_2040 eCM_ErrRTime_FloatPoint general floating point error during

computation
16#9851_204F eCM_ErrRTime_FloatPoint_MASK general floating point error category bitmask
16#9851_2041 eCM_ErrRTime_FloatPointDivisionBy

Zero
division by zero attempted

16#9851_2042 eCM_ErrRTime_FloatPointOverflow overflow in computation
16#9851_2043 eCM_ErrRTime_FloatPointUnderflow arithmetic underflow
16#9851_2044 eCM_ErrRTime_FloatPointOutOfReal

Domain
result is no real number

16#9851_2045 eCM_ErrRTime_FloatPointLogarithm
OfZero

logarithm of zero attempted

16#9851_2050 eCM_ErrRTime_NumericNoUsefulRe
sult

cannot compute useful result now (e.g.),
variance from single sample)

16#9851_2051 eCM_ErrRTime_NumericInsufficientD
ata

amount of valid data is insufficient for
evaluation

16#9851_2052 eCM_ErrRTime_MissingTraining a classification method was invoked without
prior training

16#9851_2053 eCM_ErrRTime_RecursionDepthExce
eded

the maximum recursion depth of an algorithm
was exceeded

16#9851_2054 eCM_ErrRTime_OutOfRouterMemory amount of available router memory was
exceeded

errors in interaction with periphery
16#9851_2360 eCM_ErrRTime_OSError error in general OS call
16#9851_236F eCM_ErrRTime_OSError_MASK OS call error bitmask
note: codes corresponding to file operations are placeholders currently not used
16#9851_2370 eCM_ErrRTime_IOError I/O operation failed (e.g. file operation)
16#9851_237F eCM_ErrRTime_IOError_MASK I/O error category bitmask



PLC API

TC3 Condition Monitoring170 Version: 1.4

code (HRESULT) symbol description / solution
16#9851_2371 eCM_ErrRTime_IOError_FileOpenFai

led
failure on attempt to open file

16#9851_2372 eCM_ErrRTime_IOError_FileReadFai
led

failure on attempt to read from filee

16#9851_2373 eCM_ErrRTime_IOError_FileWriteFail
ed

failure on attempt to write to file

16#9851_2374 eCM_ErrRTime_IOError_FileCloseFai
led

failure on attempt to close file

16#9851_2375 eCM_ErrRTime_IOError_FileBadStat
e

file is in bad state for operation

ADS service errors
16#9851_2400 eCM_ErrRTime_CMService Error in communication with CM service
16#9851_24FF eCM_ErrRTime_CMService_MASK CM server error category bitmask
user errors (probably due to looped initialization)
16#9851_2410 eCM_ErrRTime_CMServiceUser CM service usage errors
16#9851_241F eCM_ErrRTime_CMServiceUser_MA

SK
CM service usage error category bitmask

16#9851_2411 eCM_ErrRTime_CMServiceUser_Res
ourcesExhausted

the ADS service has insufficient resources

16#9851_2412 eCM_ErrRTime_CMServiceUser_No
HandlesLeft

the maximum number of handles is
exhausted

16#9851_2413 eCM_ErrRTime_CMServiceUser_Unk
nownHandle

no instance with this handle is currently
registered

16#9851_2414 eCM_ErrRTime_CMServiceUser_Han
dleAlreadyFreed

illegal request: this handle was already freed

16#9851_2415 eCM_ErrRTime_CMServiceUser_Inst
anceExists

illegal request: this handle is already used

protocol errors (probably from mismatch of client/server software)
16#9851_2420 eCM_ErrRTime_CMServiceProtocol protocol error (internal error in

communication)
16#9851_242F eCM_ErrRTime_CMServiceProtocol_

MASK
protocol error category bitmask

16#9851_2421 eCM_ErrRTime_CMServiceProtocol_
UnknownFunction

logic error: no function with this class id is
known

16#9851_2422 eCM_ErrRTime_CMServiceProtocol_I
llegalRequest

illegal request to service

16#9851_2423 eCM_ErrRTime_CMServiceProtocol_I
llegalRequestSyntax

illegal syntax in request

16#9851_2424 eCM_ErrRTime_CMServiceProtocol_I
llegalHandle

the handle number is inconsistent by internal
checks

16#9851_2425 eCM_ErrRTime_CMServiceProtocol_I
nvalidNullpointer

a NULL pointer was passed to store return
values

16#9851_2426 eCM_ErrRTime_CMServiceProtocol_
UnknownParameterID

the used parameter ID is unknown

16#9851_2427 eCM_ErrRTime_CMServiceProtocol_I
llegalValType

type of passed value does not match

16#9851_2428 eCM_ErrRTime_CMServiceProtocol_
ClientServerMismatch

protocol error due to client / server mismatch

16#9851_2429 eCM_ErrRTime_CMServiceProtocol_
ResultBufferTooSmall

ADS read buffer is too small to pass return
data correctly

16#9851_242A eCM_ErrRTime_CMServiceProtocol_I
nputBufferTooSmall

ADS write buffer is too small to pass
argument data correctly

16#9851_242B eCM_ErrRTime_CMServiceProtocol_
UnknownMethod

logic error: no action with this code is known



PLC API

TC3 Condition Monitoring 171Version: 1.4

Prerequisites

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4013 PC or CX (x86, x64) Tc3_CM_Base

5.3.5.2 E_CMA_ErrorCode

These error codes are necessary in the realtime context only. Please, note that the analysis function blocks
must be allocated in the PLC declaration part correctly.
The configuration errors should be solved first, followed by the initialization errors.
For example: If any instances throw the error eCMA_ErrConfig_InvalidOwnID this has to be solved first.
Runtime errors at other function blocks can be subsequent errors.

code (HRESULT) symbol description / solution 
0 eCMA_OK No Error, everything is OK
configuration errors 
16#9852_0101 eCMA_ErrConfig_InvalidOwnID invalid transfer own ID was allocated
16#9852_0102 eCMA_ErrConfig_InvalidDestID invalid transfer destination IDs were

allocated
16#9852_0103 eCMA_ErrConfig_InvalidBufferNumber invalid number of MultiArrays which

should be initialized for results
16#9852_0104 eCMA_ErrConfig_InvalidTimeout invalid timeout. condition: 0us <<

tTransferTimeout << task cycle time
initialization errors 
16#9852_0201 eCMA_ErrInit_IllegalInitContext initialization not possible. Illegal

initialization context or internal members
uninitialized.

16#9852_0202 eCMA_ErrInit_InitTransferTrayFailed Initialization of transfer tray has been
failed. Check TcCOM object states and
router memory (see Memory
management [} 62] ). Check installed
TwinCAT version (see System
requirements [} 53] ).

16#9852_0203 eCMA_ErrInit_NoStreamAllocated The analysis chain is incorrect. Check all
OwnIDs and DestIDs.

16#9852_0204 eCMA_ErrInit_StreamOverrun Not enough streams available. Adjust
ST_CM_TransferTray_InitPars

runtime errors 
16#9852_0301 eCMA_ErrRTime_InvalidPointer NULL pointer was allocated
16#9852_0302 eCMA_ErrRTime_InvalidDataBufferSize invalid size of data buffer was allocated
16#9852_0303 eCMA_ErrRTime_InvalidElementType invalid element type was allocated
16#9852_0304 eCMA_ErrRTime_InvalidElementCnt element count does not match. (check

number of elements, MultiArray buffer
size and start index)

16#9852_0305 eCMA_ErrRTime_InvalidStartIndex invalid pStartIndex was allocated (check
buffer sizes)

16#9852_0311 eCMA_ErrRTime_MissingConfiguration Argument not configured. Call method
Configure() first.

16#9852_0321 eCMA_ErrRTime_NoMultiArrayAvailable no multiarray available for result. Check
analysis chain, task cycle times and the
number of MultiArrays (usually at least 3
in each ring)



PLC API

TC3 Condition Monitoring172 Version: 1.4

Requirements

Development environment Target system type PLC libraries to include
TwinCAT v3.1.4013 PC or CX (x86, x64) Tc3_CM

5.3.5.3 E_MA_ErrorCode

code (HRESULT) symbol description / solution 
0 eMA_OK No Error, everything is OK
16#9871_0100 eMA_ErrLogic general logic error
16#9871_0110 eMA_ErrLogic_LackOfInitialization algorithm was not initialized correctly
16#9871_1000 eMA_ErrConfig general configuration error
16#9871_1100 eMA_ErrConfig_OutOfMemory memory allocation failed

=> increase router memory (see chapter
Memory management [} 62]).

16#9871_1800 eMA_ErrConfig_IllegalParameter configuration parameter is not valid
16#9871_2000 eMA_ErrRTime general runtime error
16#9871_2011 eMA_ErrRTime_IllegalPointer illegal interface pointer or memory

address
16#9871_2012 eMA_ErrRTime_EmptyArray multiarray has no data (product of

dimension sizes is zero)
16#9871_2021 eMA_ErrRTime_IllegalBuffer illegal data buffer
16#9871_2022 eMA_ErrRTime_IllegalSubarraySize illegal size of subarray
16#9871_2023 eMA_ErrRTime_IllegalInput illegal input signature
16#9871_2024 eMA_ErrRTime_IllegalInputArgnum input data has illegal argument number
16#9871_2025 eMA_ErrRTime_IllegalInputDimensionNu

mber
input data has illegal number of
dimensions

16#9871_2026 eMA_ErrRTime_IllegalInputShape input data has illegal shape
16#9871_2027 eMA_ErrRTime_IllegalInputValue illegal value in input data stream
16#9871_2028 eMA_ErrRTime_IllegalInputDataType illegal element type of input data stream

Requirements

Development environment Target system type PLC libraries to include
TwinCAT v3.1.4013 PC or CX (x86, x64) Tc3_MultiArray

5.3.6 InitPars structures

5.3.6.1 ST_CM_AnalyticSignal_InitPars

Function-block-specific structure with initialization parameters, which are analyzed when the function block is
initialized.
TYPE ST_CM_AnalyticSignal_InitPars EXTENDS ST_MA_InitPars :
STRUCT
    nFFT_Length            : UDINT := 512;                           (* length of FFT *)
    nWindowLength          : UDINT := 400;                           (* length of analysis window *)
    eWindowType            : E_CM_WindowType := eCM_HannWindow;      (* window type of window analys
is *)
    eOverlapWindowType     : E_CM_WindowType := eCM_HannWindow;      (* window type for output synth
esis *)
END_STRUCT
END_TYPE



PLC API

TC3 Condition Monitoring 173Version: 1.4

• nFFT_Length is the length of the FFT of the envelopes. It must be greater than one and an integral
power of two.

• nWindowLength is the length of the analysis window in samples. The length must be greater than one
and an even number.

• eWindowType defines the used window function (of the type E_CM_WindowType [} 166]). A good
default value is the window type eCM_HannWindow.

• eOverlapWindowType defines the window function used for the inverse transformation. It is freely
selectable. A good default value is the window type eCM_HannWindow. Windowing can switched off by
using the type eCM_RectangularWindow.

Avoiding artefacts
The value of nFFT_Length must be equal or greater the value of nWindowLength. In order to
avoid artefacts in the calculation, nFFT_Length should be at least 30 to 50% larger than nWin-
dowLength. An increase in the FFT length in relation to the window length makes sense with this
function block in order to avoid circular aliasing.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4016.12 PC or CX (x86, x64) Tc3_CM_Base

5.3.6.2 ST_CM_ArgSort_InitPars

Function-block-specific structure with initialization parameters, which are analyzed when the function block is
initialized.
TYPE ST_CM_ArgSort_InitPars EXTENDS ST_MA_InitPars :
STRUCT
    nInLength       : UDINT := 256;    (* length of input data array *)
    bSortDownward   : BOOL  := FALSE;  (* if true, sort in descending order (largest values first)*)
    bShiftNaNsToEnd : BOOL  := TRUE;   (* if true, sorts correctly even if NaN values occur, shiftin
g these to the end *)
    fScaleFactor    : LREAL := 1.0;    (*
scaling factor to transform index values, for example to frequency values *)
END_STRUCT
END_TYPE

• nInLength is the length of the input array.
• bSortDownward is a flag with which you can select whether the data are to be sorted in ascending or

descending order. If bSortDownward is TRUE, then the largest values are placed at the front.
• bShiftNaNsToEnd can be set to TRUE in order to sort possible NaN values to the end.
• fScaleFactor can be used in order to directly display, for example, the amplitude with associated

frequencies instead of the index position (fScaleFactor = 1).

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4018 PC or CX (x86, x64)  Tc3_CM_Base

5.3.6.3 ST_CM_CrestFactor_InitPars

Function block specific structure for initialization parameters.
TYPE ST_CM_CrestFactor_InitPars EXTENDS ST_CM_InitPars :
STRUCT
    nChannels          : UDINT := 32;         (* number of channels *)
    nBufferLength      : UDINT := 250;        (* number of time values *)
    fDecibelThreshold  : LREAL := cCM_MinArgLog10;    (* lower limit for logarithm argument *)
END_STRUCT
END_TYPE



PLC API

TC3 Condition Monitoring174 Version: 1.4

•    nChannels is the number of independent channels. This must always be bigger than zero.
•    nBufferLength is the number of values of the input vector. This must always be an integer bigger

than zero.
•    fDecibelThreshold is a very small floating point value bigger than zero. Values that are less than

this number are replaced with this value before the transformation to the decibel scale is done. (The
purpose is the avoidance of value range errors. The logarithm of zero is not defined and strives
infinitely towards minus for the limit value of small arguments. The same applies to the argument of the
number zero, arg(0). The smallest possible value is 3.75e-324, which is equivalent to the constant
cCM_MinArgLog10. )

Requirements

Development environment Target system type PLC libraries to include
TwinCAT v3.1.4013 PC or CX (x86, x64) Tc3_CM_Base

5.3.6.4 ST_CM_ComplexFFT_InitPars

Function-block-specific structure with initialization parameters, which are analyzed when the function block is
initialized.
TYPE ST_CM_ComplexFFT_InitPars EXTENDS ST_CM_InitPars :
STRUCT
    nFFT_Length        : UDINT := 256;       (* length of FFT *)
    bForward           : BOOL := TRUE;
END_STRUCT
END_TYPE

• nFFT_Length is the length of the FFT. It must be greater than one and an integral power of two.
• bForward is a Boolean parameter indicating the direction of the FFT. If the value is "true", the normal

FFT is calculated. Otherwise the inverse FFT is used.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4018 PC or CX (x86, x64) Tc3_CM_Base

5.3.6.5 ST_CM_DiscreteClassification_InitPars

Function block specific structure for initialization parameters.
TYPE ST_CM_DiscreteClassification_InitPars EXTENDS ST_CM_InitPars :
STRUCT
    nChannels      : UDINT :=  10;      (* number of input channels *)
    nMaxClasses    : UDINT :=   3;      (* number of configurable classes *)
END_STRUCT
END_TYPE

• nChannels  is the number of independent channels. This must always be bigger than zero.
• nMaxClasses  is the maximum number of configured classes. This must always be bigger than zero.

Requirements

Development environment Target system type PLC libraries to include
TwinCAT v3.1.4013 PC or CX (x86, x64) Tc3_CM_Base

5.3.6.6 ST_CM_EmpiricalMoments_InitPars

Function-block-specific structure with initialization parameters, which are analyzed when the function block is
initialized.



PLC API

TC3 Condition Monitoring 175Version: 1.4

TYPE ST_CM_EmpiricalMoments_InitPars EXTENDS ST_CM_InitPars :
STRUCT
    nChannels              : UDINT :=  512;   (* number of input channels *)
END_STRUCT
END_TYPE

• nChannels is the number of independent channels. This must be greater than zero.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4022 PC or CX (x86, x64) Tc3_CM_Base >= v1.1.10

5.3.6.7 ST_CM_Envelope_InitPars

Function block specific structure for initialization parameters.
TYPE ST_CM_Envelope_InitPars EXTENDS ST_CM_InitPars :
STRUCT
    nFFT_Length        : UDINT := 512;          (* length of FFT *)
    nWindowLength      : UDINT := 400;          (* length of analysis window *)
    eWindowType        : E_CM_WindowType := eCM_HannWindow;  (* window type of window analysis *)
    eOverlapWindowType  : E_CM_WindowType := eCM_HannWindow; (* window type for output synthesis *)
END_STRUCT
END_TYPE

•    nFFT_Lengthhas to be bigger than one. It has to be a power of two.
•    nWindowLength is the length of the analysis window in samples. The length must be bigger than

one and an even number.
•    eWindowType defines the used window function. Refer to type definition E_CM_WindowType.

Because the signal will be transformed backwards intothe time domain and the sum of the overlapping
window factors needs to be one at every time, only these window functions can be used:
◦ Hann-Window (eCM_HannWindow),
◦ Bartlett-Window (eCM_BartlettWindow) und
◦ Bartlett-Hann-Window (eCM_BartlettHannWindow)

In most cases the eCM_HannWindow window type is a meaningful default value.
•    eOverlapWindowType defines the used window function for the inverse transformation (of type

E_CM_WindowType). Good standard is the eCM_HannWindow. The windowing can be switched off by
using the eCM_RectangularWindow. Further explanations and the list of possible window functions
can be found in the introductory section Window functions.

Avoid artefacts
The value of nFFT_Length must be equal or greater the value of nWindowLength. In order to
avoid artefacts during the calculation, nFFT_Length should be at least 30% to 50% greater than
nWindowLength. An increase in the FFT length in relation to the window length makes sense with
this block in order to avoid circular aliasing.

Requirements

Development environment Target system type PLC libraries to include
TwinCAT v3.1.4013 PC or CX (x86, x64) Tc3_CM_Base

5.3.6.8 ST_CM_EnvelopeSpectrum_InitPars

Function block specific structure for initialization parameters.
TYPE ST_CM_EnvelopeSpectrum_InitPars EXTENDS ST_CM_InitPars :
STRUCT
    nFFT_length_Envelope  : UDINT := 512;    (* length of Envelope FFT *)
    nFFT_length_Spectrum  : UDINT := 512;    (* length of Spectrum FFT *)
    nWindowLength         : UDINT := 400;    (* length of analysis window *)



PLC API

TC3 Condition Monitoring176 Version: 1.4

    bTransformToDecibel   : BOOL  := TRUE;
    fDecibelThreshold     : LREAL := cCM_MinArgLog10;
    eWindowType           : E_CM_WindowType := eCM_HannWindow;  (* window type of window analysis *)
    eOverlapWindowType    : E_CM_WindowType := eCM_HannWindow;  (* window type for output synthesis
*)
    eScalingType          : E_CM_ScalingType := eCM_DiracScaling;
END_STRUCT
END_TYPE

•    nFFT_length_Envelope has to be bigger than one. It has to be a power of two.
•    nFFT_length_Spectrum has to be bigger than one. It has to be a power of two.
•    nWindowLength is the length of the analysis window in samples. The length has to be bigger than

one and an even number.
•    bTransformToDecibel is a boolean value to specify if the FFT result should be transformed to

decibel scale using the transformation x → 20 * log10(x).
•    fDecibelThreshold is a very small floating point value bigger than zero. Values below this

threshold will be replaced by that value before transformation to decibel scale. This is caused by the
mathematic fact, that a logarithm of zero is not defined.

•    eWindowType defines the used window function (of type E_CM_WindowType [} 166]). Default is
eCM_HannWindow.

•    eOverlapWindowType defines the used window function for the inverse transformation. Good
standard is the eCM_HannWindow. The windowing can be switched off by using the
eCM_RectangularWindow. Further explanations and the list of possible window functions can be
found in the introductory section Window functions (in work).

•    eScalingType offers a scaling selection (refer E_CM_ScalingType [} 165]) if an absolute scaling is
required. Default is eCM_DiracScaling.

Avoid artefacts
The value of nFFT_Length must be equal or greater the value of nWindowLength. In order to
avoid artefacts during the calculation, nFFT_Length should be at least 30% to 50% greater than
nWindowLength. An increase in the FFT length in relation to the window length makes sense with
this block in order to avoid circular aliasing .

Requirements

Development environment Target system type PLC libraries to include
TwinCAT v3.1.4013 PC or CX (x86, x64) Tc3_CM_Base

5.3.6.9 ST_CM_HistArray_InitPars

Function-block-specific structure with initialization parameters, which are analyzed when the function block is
initialized.
TYPE ST_CM_HistArray_InitPars EXTENDS ST_CM_InitPars :
STRUCT
    nChannels    : UDINT :=  512;     (* number of input channels *)
    nBins        : UDINT :=  100;     (* number of bins in interval *)
    fMinBinned   : LREAL := -120;     (* minimum binned value *)
    fMaxBinned   : LREAL :=  100;     (* maximum binned value *)
END_STRUCT
END_TYPE

•    nChannels is the number of independent channels. This must be greater than zero.
•    fMinBinned is the lower limit value for which samples are counted in the regular histogram bins.
•    fMaxBinned is the upper limit value for which samples are counted in the regular histogram bins.
fMaxBinned must be greater than fMinBinned.

•    nBins is the number of histogram bins. It must be at least one. In many cases it makes sense to
choose values between 10 and 20. The two special bins for values that lie below fMinBinned or
above fMaxBinned are not included in this value.



PLC API

TC3 Condition Monitoring 177Version: 1.4

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4016.12 PC or CX (x86, x64)  Tc3_CM_Base

5.3.6.10 ST_CM_InstantaneousFrequency_InitPars

Function-block-specific structure with initialization parameters, which are analyzed when the function block is
initialized.
TYPE ST_CM_InstantaneousFrequency_InitPars EXTENDS ST_MA_InitPars :
STRUCT
    nFFT_Length         : UDINT := 512;                       (* length of FFT *)
    nWindowLength       : UDINT := 400;                       (* length of analysis window *)
    eWindowType         : E_CM_WindowType := eCM_HannWindow;  (* window type of window analysis *)
    eOverlapWindowType  : E_CM_WindowType := eCM_HannWindow;  (* window type for output synthesis *)
    fMagnitudeThreshold : LREAL := cCM_MinArgDiv;
    fSampleRateHz       : LREAL := 50000;                     (* sample rate in Hertz *)
END_STRUCT
END_TYPE

• nFFT_Length is the length of the FFT. It must be greater than one and an integral power of two.
• nWindowLength is the length of the analysis window in samples. The length must be greater than one

and an even number.

• eWindowType defines the used window function (of the type E_CM_WindowType [} 166]). A good
default value is the window type eCM_HannWindow. The windowing can be switched off by the use of
the window type eCM_RectangularWindow. Further explanations and the list of possible window
functions can be found in the introductory section Window functions.

• eOverlapWindowType defines the window function used for the inverse transformation. It is freely
selectable. A good default value is the window type eCM_HannWindow. Windowing can switched off by
using the type eCM_RectangularWindow.

• fMagnitudeThreshold defines the limit value for the numerical calculability of the instantaneous
frequency. The limit value refers to the value

• fSampleRateHz Sampling rate of the incoming time signal. The value is used for scaling the result in
Hz.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4018 PC or CX (x86, x64) Tc3_CM_Base

5.3.6.11 ST_CM_InstantaneousPhase_InitPars

Function-block-specific structure with initialization parameters, which are analyzed when the function block is
initialized.
TYPE ST_CM_InstantaneousPhase_InitPars EXTENDS ST_MA_InitPars :
STRUCT
    nFFT_Length         : UDINT := 512;                       (* length of internal  FFT *)
    nWindowLength       : UDINT := 400;                       (* length of analysis window *)
    eWindowType         : E_CM_WindowType := eCM_HannWindow;  (* window type of window analysis *)
    eOverlapWindowType  : E_CM_WindowType := eCM_HannWindow;  (* window type for output synthesis *)
    eUnwrapMethod       : E_CM_UnwrapMethod := eCM_ThresholdUnwrapping; (* Unwrap phase values *)
    fPhaseThreshold     : LREAL := cCM_MinArgDiv;
END_STRUCT
END_TYPE

• nFFT_Length is the length of the FFT. It must be greater than one and an integral power of two.



PLC API

TC3 Condition Monitoring178 Version: 1.4

• nWindowLength is the length of the analysis window in samples. The length must be greater than one
and an even number.

• eWindowType defines the used window function (of the type E_CM_WindowType [} 166]). A good
default value is the window type eCM_HannWindow. The windowing can be switched off by the use of
the window type eCM_RectangularWindow. Further explanations and the list of possible window
functions can be found in the introductory section Window functions.

• eOverlapWindowType defines the window function used for the inverse transformation. It is freely
selectable. A good default value is the window type eCM_HannWindow. Windowing can switched off by
using the type eCM_RectangularWindow.

• eUnwrapMethod defines the method used for phase unwrapping.
• fPhaseThreshold Limit value for calculating the instantaneous phase. The value refers to the signal

envelope. Interpretation: If the signal level is too low, the phase calculation is numerically too uncertain
and cannot be evaluated reliably. In this case 0 is output as the phase.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4018 PC or CX (x86, x64) Tc3_CM_Base

5.3.6.12 ST_CM_IntegratedRMS_InitPars

Function block specific structure for initialization parameters.
TYPE ST_CM_IntegratedRMS_InitPars EXTENDS ST_CM_InitPars :
STRUCT
    nFFT_Length         : UDINT := 512;    (* length of FFT *) 
    nWindowLength       : UDINT := 400;    (* length of FFT window *)
    fSampleRate         : LREAL := 20000;  (* sample rate *) 
    fLowerFrequencyLimit: LREAL := 20.0;   (* lower frequency limit of measurement *)
    fUpperFrequencyLimit: LREAL := 1000.0; (* upper frequency limit of measurement *)
    nOrder              : UDINT := 2;      (* maximum order of integration (0 = acceleration, 1 = ve
locity, 2 = place *) 
    nChannels           : UDINT := 2;      (* number of input channels *)
    eWindowType         : E_CM_WindowType := eCM_HannWindow; (* windowing function used *)
    bTransformToDecibel : BOOL  := TRUE;   (* transform result to decibel *)
    fDecibelThreshold   : LREAL := cCM_MinArgLog10; (* log threshold for decibel transformation *)
END_STRUCT
END_TYPE

• nFFT_Length has to be bigger than one. It has to be a power of two.
• nWindowLength is the length of the analysis window in samples. The length has to be bigger than

one and an even number.
• fSampleRate Sampling rate of the incoming time signal.
• fLowerFrequencyLimit Lower limit of the considered frequency interval. The lower limit frequency

must be at least the sampling rate divided by the FFT length.
• fUpperFrequencyLimit Upper limit of the considered frequency interval. The upper limit frequency

must be no greater than half the sampling rate and greater than the lower limit frequency.
• nOrder is the maximum order of the integration. This must be an integer between zero and two. The

number of the values determined per channel is (nOrder+1).
• nChannels is the number of independent channels. This must be greater than zero.

• eWindowType defines the used window function (of type E_CM_WindowType [} 166]). A good default
value is the window type eCM_HannWindow. The windowing can be switched off by the use of the
window type eCM_RectangularWindow. Further explanations and the list of possible window
functions can be found in the introductory section Window functions (in work).

• bTransformToDecibel is a Boolean value that indicates whether the result of the FFT is to be
transformed to the decibel scale, according to transformation x → 20 * log10(x).

• fDecibelThreshold is a very small floating point value greater than zero. Values that are less than
this number are replaced with this value before any transformation to the decibel scale, since the
logarithm of zero is not defined mathematically.



PLC API

TC3 Condition Monitoring 179Version: 1.4

Window length
The value of nFFT_Length must be equal or greater the value of nWindowLength. The length of
the FFT can orient itself to the required frequency resolution. Typically a value of about 3/4 of the
FFT length is often used as the window length.

If nFFT_Length is greater than nWindowLength, the frequency resolution of the FFT is increased. The
length difference is filled with zeros before the Fourier Transform. This can be useful for achieving a higher
frequency resolution or, e.g. when calculating with inverse transformation in the time domain, in order to
avoid circular aliasing. Despite the higher frequency resolution, however, the result contains no more
information.

Requirements

Development environment Target system type PLC libraries to include
TwinCAT v3.1.4013 PC or CX (x86, x64) Tc3_CM_Base

5.3.6.13 ST_CM_MagnitudeSpectrum_InitPars

Function block specific structure for initialization parameters.
TYPE ST_CM_MagnitudeSpectrum_InitPars EXTENDS ST_CM_InitPars :
STRUCT
    nFFT_Length          : UDINT := 512;
    nWindowLength        : UDINT := 400;
    fDecibelThreshold    : LREAL := cCM_MinArgLog10;
    bTransformToDecibel  : BOOL  := TRUE;
    eWindowType          : E_CM_WindowType := eCM_HannWindow;
    eScalingType         : E_CM_ScalingType := eCM_DiracScaling;
END_STRUCT
END_TYPE

•    nFFT_Length has to be bigger than one. It has to be a power of two.
•    nWindowLength is the length of the analysis window in samples. The length has to be bigger than

one and an even number.
•    fDecibelThreshold is a very small floating point value greater than zero. Values that are less

than this number are replaced with this value before any transformation to the decibel scale, since the
logarithm of zero is not defined mathematically.

•    bTransformToDecibel is a Boolean value that indicates whether the result of the FFT is to be
transformed to the decibel scale, according to transformation x → 20 * log10(x).

•    eWindowType defines the used window function (of type E_CM_WindowType [} 166]). A good default
value is the window type eCM_HannWindow. The windowing can be switched off by the use of the
window type eCM_RectangularWindow. Further explanations and the list of possible window
functions can be found in the introductory section Window functions (in work).

•    eScalingType offers a choice of scaling (refer E_CM_ScalingType [} 165]), if absolute scaling is
required. The default value is eCM_DiracScaling. The standard value eCM_DiracScaling adapts
the scaling to the common scaling of the FFT. When selecting the scaling the type of signal should be
considered: either deterministic signals or wide-band signals with stochastic portion. Both types require
different scalings. More precise explanations are given in section Scaling factors.

Window length
The value of nFFT_Length must be equal or greater the value of nWindowLength. The length of
the FFT can orient itself to the required frequency resolution. Typically a value of about 3/4 of the
FFT length is often used as the window length.

If nFFT_Length is greater than nWindowLength, the frequency resolution of the FFT (and therefore also
the length of the return values vector) is increased. The length difference is filled with zeros before the
Fourier transform . This can be useful for achieving a higher frequency resolution or, e.g. when calculating
with inverse transformation in the time domain , in order to avoid circular aliasing . Despite the higher
frequency resolution, however, the result contains no more information.



PLC API

TC3 Condition Monitoring180 Version: 1.4

Requirements

Development environment Target system type PLC libraries to include
TwinCAT v3.1.4013 PC or CX (x86, x64) Tc3_CM_Base

5.3.6.14 ST_CM_MomentCoefficients_InitPars

Function-block-specific structure with initialization parameters, which are analyzed when the function block is
initialized.
TYPE ST_CM_MomentCoefficients_InitPars EXTENDS ST_CM_InitPars :
STRUCT
    nChannels              : UDINT :=  512;   (* number of input channels *)
    nOrder                 : E_CM_MCoefOrder := E_CM_MCoefOrder.eCM_Kurtosis; 
    bPopulationEstimates   : BOOL := FALSE;   (* apply Bessel's correction to results *)
END_STRUCT
END_TYPE

• nChannels is the number of independent channels. This must be greater than zero.

• nOrder is the maximum order of the moment coefficients (E_CM_MCoefOrder [} 165]) that are
calculated. This must be an integer between one and four. The order numbers are: 0 = counter, 1 =
average value, 2 = standard deviation, 3 = skew, 4 = excess kurtosis. The number of determined
coefficients is (nOrder+1).

• bPopulationEstimates is a Boolean value that indicates, whether the corresponding Bessel's
correction is applied to the sample variance, skew and excess.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4013 PC or CX (x86, x64) Tc3_CM_Base

5.3.6.15 ST_CM_MultiBandRMS_InitPars

Function-block-specific structure with initialization parameters, which are analyzed when the function block is
initialized.
TYPE ST_CM_MultiBandRMS_InitPars EXTENDS ST_CM_InitPars :
STRUCT
    nFFT_Length          : UDINT := 512;    (* length of FFT *) 
    nWindowLength        : UDINT := 400;    (* length of FFT window *)
    fSampleRate          : LREAL := 20000;  (* sample rate *) 
    nMaxBands            : UDINT := 10;     (* maximum number of bands *) 
    nChannels            : UDINT := 10;     (* number of input channels *)
    eWindowType          : E_CM_WindowType := E_CM_WindowType.eCM_HannWindow; (* windowing function
used *)
    bTransformToDecibel  : BOOL  := TRUE;   (* transform result to decibel *)
    fDecibelThreshold    : LREAL := cCM_MinArgLog10; (* log threshold for decibel transformation *)
END_STRUCT
END_TYPE

• nFFT_Length is the length of the FFT. It must be greater than one and an integral power of two.
• nWindowLength is the length of the analysis window in samples. The length must be greater than one

and an even number.
• fSampleRate specifies the sampling rate (samples per second) of the input signal.
• nMaxBands specifies the maximum number of bands for which the RMS is calculated.
• nChannels is the number of independent channels. This must be greater than zero.

• eWindowType defines the used window function (of the type E_CM_WindowType [} 166]). A good
default value is the window type eCM_HannWindow. The windowing can be switched off by the use of
the window type eCM_RectangularWindow. Further explanations and the list of possible window
functions can be found in the introductory section Window functions.



PLC API

TC3 Condition Monitoring 181Version: 1.4

• bTransformToDecibel is a Boolean value that indicates whether the result of the FFT is to be
transformed to the decibel scale, according to transformation x → 20 * log10(x).

• fDecibelThreshold is a very small floating point value greater than zero. Values that are less than
this number are replaced with this value before any transformation to the decibel scale, since the
logarithm of zero is not defined mathematically. The smallest possible value is 3.75e-324, which is
equivalent to the constant cCM_MinArgLog10 .

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4016.12 PC or CX (x86, x64)  Tc3_CM_Base

5.3.6.16 ST_CM_PowerCepstrum_InitPars

Function-block-specific structure with initialization parameters, which are analyzed when the function block is
initialized.
TYPE ST_CM_PowerCepstrum_InitPars EXTENDS ST_CM_InitPars :
STRUCT
    nFFT_Length   : UDINT := 512;             (* length of FFT *)
    nWindowLength : UDINT := 400;             (* length of analysis window *)
    eWindowType   : E_CM_WindowType := eCM_HannWindow; (* window type of window analysis *)
    fLogThreshold : LREAL := cCM_MinArgLogN;  (* threshold for logarithm computation *)
    eScalingType  : E_CM_ScalingType := eCM_DiracScaling;
END_STRUCT
END_TYPE

• nFFT_Length is the length of the FFT. It must be greater than one and an integral power of two.
• nWindowLength is the length of the analysis window in samples. The length must be greater than one

and an even number.

• eWindowType defines the used window function (of the type E_CM_WindowType [} 166]). A good
default value is the window type eCM_HannWindow. The windowing can be switched off by the use of
the window type eCM_RectangularWindow. Further explanations and the list of possible window
functions can be found in the introductory section Window functions.

• fLogThreshold is a very small floating point value greater than zero. The smallest possible value is
3.75e-324, which is equivalent to the constant cCM_MinArgLogN.
Spectral values with absolute values that are smaller than this number are replaced with this value
before the spectrum is logarithmized. The purpose is the avoidance of value range errors. The
logarithm of zero is not defined and strives infinitely towards minus for the limit value of small
arguments. The same applies to the argument of the number zero, arg(0).

• eScalingType offers a choice of scaling (see E_CM_ScalingType [} 165]), if absolute scaling is
required. The default value eCM_DiracScaling adapts the scaling of the PowerSpectrum function
block to the common scaling of the FFT. For further information see notes in the introductory
"Frequency analysis" section [} 35], section "Absolute scaling of the power spectrum", and the Scaling
factor table [} 227].
When selecting the scaling the type of signal should be considered: either deterministic signals or
wide-band signals with stochastic portion. Both types require different scalings.

Window length
The value of nFFT_Length must be equal or greater the value of nWindowLength. The length of
the FFT can orient itself to the required frequency resolution. Typically a value of about 3/4 of the
FFT length is often used as the window length.

If nFFT_Length is greater than nWindowLength, the frequency resolution of the FFT (and therefore also
the length of the return values vector) is increased. The length difference is filled with zeros before the
Fourier transform. This can be useful for achieving a higher frequency resolution or, e.g. when calculating
with inverse transformation in the time domain, in order to avoid circular aliasing . Despite the higher
frequency resolution, however, the result contains no more information.



PLC API

TC3 Condition Monitoring182 Version: 1.4

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4016.12 PC or CX (x86, x64) Tc3_CM_Base

5.3.6.17 ST_CM_PowerSpectrum_InitPars

Function block specific structure for initialization parameters.
TYPE ST_CM_PowerSpectrum_InitPars EXTENDS ST_CM_InitPars :
STRUCT
    nFFT_Length        : UDINT := 512;               
    nWindowLength      : UDINT := 400;
    fDecibelThreshold  : LREAL := cCM_MinArgLog10;
    bTransformToDecibel: BOOL  := TRUE;
    eWindowType        : E_CM_WindowType := eCM_HannWindow;
    eScalingType       : E_CM_ScalingType := eCM_DiracScaling;
END_STRUCT
END_TYPE

•    nFFT_Length has to be bigger than one. It has to be a power of two.
•    nWindowLength is the length of the analysis window in samples. The length has to be bigger than

one and an even number.
•    fDecibelThreshold is a very small floating point value greater than zero. Values that are less

than this number are replaced with this value before any transformation to the decibel scale, since the
logarithm of zero is not defined mathematically.

•    bTransformToDecibel is a Boolean value that indicates whether the result of the FFT is to be
transformed to the decibel scale, according to transformation x → 20 * log10(x).

•    eWindowType defines the used window function (of type E_CM_WindowType [} 166]). A good default
value is the window type eCM_HannWindow. The windowing can be switched off by the use of the
window type eCM_RectangularWindow. Further explanations and the list of possible window
functions can be found in the introductory section Window functions (in work).

•    eScalingType offers a choice of scaling (refer E_CM_ScalingType [} 165]), if absolute scaling is
required. The default value is eCM_DiracScaling. The standard value eCM_DiracScaling adapts
the scaling to the common scaling of the FFT. When selecting the scaling the type of signal should be
considered: either deterministic signals or wide-band signals with stochastic portion. Both types require
different scalings. More precise explanations are given in section Scaling factors.

Window length
The value of nFFT_Length must be equal or greater the value of nWindowLength. The length of
the FFT can orient itself to the required frequency resolution. Typically a value of about 3/4 of the
FFT length is often used as the window length.

If nFFT_Length is greater than nWindowLength, the frequency resolution of the FFT (and therefore also
the length of the return values vector) is increased. The length difference is filled with zeros before the
Fourier transform. This can be useful for achieving a higher frequency resolution or, e.g. when calculating
with inverse transformation in the time domain, in order to avoid circular aliasing . Despite the higher
frequency resolution, however, the result contains no more information.

Requirements

Development environment Target system type PLC libraries to include
TwinCAT v3.1.4013 PC or CX (x86, x64) Tc3_CM_Base

5.3.6.18 ST_CM_Quantiles_InitPars

Function block specific structure for initialization parameters.



PLC API

TC3 Condition Monitoring 183Version: 1.4

TYPE ST_CM_Quantiles_InitPars EXTENDS ST_CM_InitPars :
STRUCT
    nChannels        : UDINT :=  512;       (* number of input channels *)
    fMinBinned       : LREAL := 120;        (* minimum binned value *)
    fMaxBinned       : LREAL :=  100;       (* maximum binned value *)
    nBins            : UDINT :=  100;       (* number of bins in interval *)
    nMaxQuantiles    : UDINT :=  10;        (* maximum number of quantile values for *)
END_STRUCT
END_TYPE

•    nChannels is the number of independent channels. This must always be bigger than zero.
•    fMinBinned is the lower limit value for which samples are counted in the regular histogram bins.
•    fMaxBinned is the upper limit value for which samples are counted in the regular histogram bins.
fMaxBinned must be greater than fMinBinned.

•    nBins is the number of bins in the Histogram. It must be at least one. In many cases it makes sense
to set the value between 10 and 20. Take care about fMinBinned and fMaxBinned. The two special
bins for values below fMinBinned and above fMaxBinned are not included in this value.

•    nMaxQuantiles is the number of quantiles to be calculated for each channel. This must be an
integer bigger than zero.

Requirements

Development environment Target system type PLC libraries to include
TwinCAT v3.1.4013 PC or CX (x86, x64) Tc3_CM_Base

5.3.6.19 ST_CM_RealFFT_InitPars

Function-block-specific structure with initialization parameters, which are analyzed when the function block is
initialized.
TYPE ST_CM_RealFFT_InitPars EXTENDS ST_CM_InitPars :
STRUCT
    nFFT_Length        : UDINT := 512;       (* length of FFT *)
    bForward           : BOOL := TRUE;
    bHalfSpec          : BOOL := TRUE;
END_STRUCT
END_TYPE

• nFFT_Length is the length of the FFT. It must be greater than one and an integral power of two.
• bForward is a Boolean parameter indicating the direction of the FFT. If the value is "true", the normal

FFT is calculated. Otherwise the inverse FFT is used.
• bHalfSpec is a Boolean parameter, that specifies the parameters of the result buffer. If the value is

"true", the algorithm outputs half the spectrum (nFFT_Length/2 + 1).

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4018 PC or CX (x86, x64) Tc3_CM_Base

5.3.6.20 ST_CM_RMS_InitPars

Function-block-specific structure with initialization parameters, which are analyzed when the function block is
initialized.
TYPE ST_CM_RMS_InitPars EXTENDS ST_CM_InitPars :
STRUCT
    nChannels           : UDINT := 4;
    nBufferLength       : UDINT := 2000;
    fDecibelThreshold   : LREAL := cCM_MinArgLog10;



PLC API

TC3 Condition Monitoring184 Version: 1.4

    bTransformToDecibel : BOOL  := TRUE;
END_STRUCT
END_TYPE

•    nChannels is the number of independent channels. This must be greater than zero.
•    nBufferLength is the number of input values per channel to be held in the internal buffer.
•    fDecibelThreshold is a very small floating point value greater than zero. Values that are less

than this number are replaced with this value before any transformation to the decibel scale, since the
logarithm of zero is not defined mathematically. The smallest possible value is 3.75e-324, which is
equivalent to the constant cCM_MinArgLog10 .

•    bTransformToDecibel is a boolean value that specifies whether the result is to be transformed to
the decibel scale, according to the transformation x → 20 * log10(x).

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4016.12 PC or CX (x86, x64)  Tc3_CM_Base

5.3.6.21 ST_CM_WatchUpperThresholds_InitPars

Function block specific structure for initialization parameters.
TYPE ST_CM_WatchUpperThresholds_InitPars EXTENDS ST_CM_InitPars :
STRUCT
    nChannels      : UDINT := 10;   (* number of input channels *)
    nMaxClasses    : UDINT := 3;    (* number of configurable threshold classes *)
    bMemorize      : BOOL :=TRUE;   (* retain largest result until Reset() call *)
END_STRUCT
END_TYPE

• nChannels  is the number of independent channels. This must always be bigger than zero.
• nMaxClasses  is the maximum number of configured classes. This must always be bigger than zero.
• bMemorize  is a boolean variable. If FALSE the function block recalculates the number of the highest

category and the corresponding channel for each call. So only current input data influence the output. If
TRUE the result values are stored and considered at next calculation until the ResetData() method is
called. Default is TRUE.

Requirements

Development environment Target system type PLC libraries to include
TwinCAT v3.1.4013 PC or CX (x86, x64) Tc3_CM_Base

5.3.6.22 ST_MA_MultiArray_InitPars

Function block specific structure for initialization parameters.
TYPE ST_MA_MultiArray_InitPars :
STRUCT
    eTypeCode     : E_MA_ElementTypeCode := eMA_TypeCode_LREAL;
    nDims         : UDINT := 1;
    aDimSizes     : ARRAY[0.. 15] OF UDINT := [1, 1, 1, 1,  1, 1, 1, 1,  1, 1, 1, 1,  1, 1, 1, 1]; (
* size for each dimension *)
END_STRUCT
END_TYPE

• eTypeCode  This parameter specifies the element type (E_MA_ElementTypeCode [} 166]) of the
MultiArray buffer elements.

• nDims  This parameter specifies the number of dimensions of the MultiArray buffer.



PLC API

TC3 Condition Monitoring 185Version: 1.4

• aDimSizes  The size of each dimension is specified by this array.
If the required shape of the input buffer of an following algorithm is given as 'm x n' (in its input stream)
the MultiArray buffer has to be specified with aDimSizes := [m,n].

Requirements

Development environment Target system type PLC libraries to include
TwinCAT v3.1.4013 PC or CX (x86, x64) Tc3_MultiArray

5.3.6.23 ST_MA_TransferTray_InitPars

Function block specific structure for initialization parameters.
TYPE ST_CM_TransferTray_InitPars EXTENDS ST_CM_InitPars :
STRUCT
    nStreams           : UDINT :=   64;     (* number of independent Queue channels *)
    nMaxEntries        : UDINT :=   32;     (* minimum space in queue *)
    nQueueSize         : UDINT :=  256;     (* reserved space of queue (power-of-two) *)
    bLockFree          : BOOL  :=  TRUE;    (* use lock free structures in place of interrupts *)
    nUpdatePeriod      : UDINT :=    2;     (* frequency of updates to queue indices *)
END_STRUCT
END_TYPE

• nStreams This parameter indicates how many streams (i.e. independently functioning queues) the
function block FB_CM_TransferTray provides. There should be a separate queue for each task-
spanning data stream. Additional channels do not require any system resources.

• nMaxEntries This parameter indicates the maximum number of elements that the queues can
contain. For the communication of data buffers it usually makes sense for all buffers that come into
question to have space in the queue so that no buffer overrun conditions can occur. A value of one can
also be selected.

• bLockFree If this parameter is TRUE, a modern lock-free implementation is used for the queues. This
is the preset state. Otherwise a classic implementation with interrupt disable is used. The lock-free
implementation can achieve a better time behavior of the overall system, but may lead to higher
latencies under an extremely high load.

• nQueueSize The reserved length of the queues. This value must be larger than nMaxEntries and in
addition must be a power of two.

• nUpdatePeriod This parameter indicates how often internal intermediate results are refreshed. The
frequency of complex operations can be reduced by a value greater than one. Values of two (preset) or
three are usually practical.

Requirements

Development environment Target system type PLC libraries to include
TwinCAT v3.1.4013 PC or CX (x86, x64) Tc3_MultiArray

5.4 Global constants

5.4.1 GVL_CM
Option flags for option mask: 

Each method lists its supported option flags.
cCMA_Option_MarkInterruption : DWORD := 16#0000_0001;

Mark first buffer element (of each channel) as invalid (NaN) if time series collection has been interrupted.
Hint: It isn't possible to compute correct spectra from chopped time series.

For further information see chapter Handling with NaN values [} 65].



PLC API

TC3 Condition Monitoring186 Version: 1.4

Analysis block constants: 
cCMA_MaxDest : UDINT := 20;

Maximum number of destinations for one analysis block.
cCMA_MaxID : UDINT := 200;

Maximum ID which can be used (=maximum number of analysis blocks).

Transfer Tray parameter: 

The internal Transfer Tray used for buffer transfer between analysis blocks is initialized with these constants.
cCMA_InitParsTransferTray  : ST_MA_TransferTray_InitPars := (  
nStreams      := 1024,
                                   nMaxEntries   := 10,
                                   nQueueSize    := 64,
                                   bLockFree     := TRUE,
                                   nUpdatePeriod := 2 );

nStreams  : number of independent FIFO streams
nMaxEntries  : maximum entries in FIFO
nQueueSize  : size of FIFO (power of two > nMaxEntries)
bLockFree  : if true use lock-free data structure | if false use interrupt-locks
nUpdatePeriod  : update frequency of internal indices

Requirements

Development environment Target system type PLC libraries to include
TwinCAT v3.1.4013 PC or CX (x86, x64) Tc3_CM

5.4.2 GVL_CM_Base

Threshold constants: 
cCM_MinArgLog10 : LREAL :=  2.3E-308;   (* approximate minimum argument of decadic logarithm *)
cCM_MinArgLogN  : LREAL :=  2.3E-308;   (* approximate minimum argument of natural logarithm *)
cCM_MinArgDiv   : LREAL :=  2.3E-308;   (* minimum argument of division *)

The purpose is the avoidance of value range errors. The logarithm of zero is not defined and strives infinitely
towards minus for the limit value of small arguments. The same applies to the argument of the number zero,
arg(0).

Requirements

Development environment Target system type PLC libraries to include
TwinCAT v3.1.4013 PC or CX (x86, x64) Tc3_CM_Base

5.4.3 Global_Version

This global constant contains the library version information.

All libraries have a specific version. This version is shown in the PLC library repository too.

VAR_GLOBAL CONSTANT
    stLibVersion_Tc3_CM : ST_LibVersion;
END_VAR



PLC API

TC3 Condition Monitoring 187Version: 1.4

Type definition of this global constant structure: ST_LibVersion

To compare the existing version to a required version the function F_CmpLibVersion (defined in Tc2_System
library) is offered.



Samples

TC3 Condition Monitoring188 Version: 1.4

6 Samples

6.1 FFT with real-value input signal
The sample illustrates the implementation of a spectrum calculation with the function block FB_CMA_RealFFT
[} 145].

The sample is available for download from here:
http://infosys.beckhoff.com/content/1033/TF3600_TC3_Condition_Monitoring/Resources/
zip/9007202649248523.zip



Samples

TC3 Condition Monitoring 189Version: 1.4

Block diagram

Program parameters

The table below shows a list of important parameters for the configuration of the

RealFFT function block.

FFT length 2048
Forward calculation TRUE



Samples

TC3 Condition Monitoring190 Version: 1.4

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4018 PC or CX (x86, x64) Tc3_CM, Tc3_CM_Base,

Tc3_MultiArray

6.2 FFT with complex-value input signal
The sample illustrates the implementation of a spectrum calculation with the function block
FB_CMA_ComplexFFT [} 86]. In contrast to the function block FB_CMA_RealFFT [} 145], the data type
LCOMPLEX is used for the required multi-array.

The sample is available for download from here:
http://infosys.beckhoff.com/content/1033/TF3600_TC3_Condition_Monitoring/Resources/
zip/9007202649220747.zip



Samples

TC3 Condition Monitoring 191Version: 1.4

Block diagram

Program parameters

The table below shows a list of important parameters for the configuration of the

ComplexFFT function block.

Type code eMA_TypeCode_LCOMPLEX
FFT length 2048



Samples

TC3 Condition Monitoring192 Version: 1.4

Forward calculation TRUE

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4018 PC or CX (x86, x64) Tc3_CM, Tc3_CM_Base,

Tc3_MultiArray

6.3 Magnitude spectrum:
This sample implements a single-channel magnitude spectrum. The code is split into two tasks: a control
task, which collects the discrete input signal of a hardware module, e.g. EL3632, and a CM task, which
calculates the spectrum. The block diagram below shows the analysis chain implemented in the sample.

The source code for the sample is available for download from here:
http://infosys.beckhoff.com/content/1033/TF3600_TC3_Condition_Monitoring/Resources/
zip/9007202649315851.zip



Samples

TC3 Condition Monitoring 193Version: 1.4

Block Diagram

Program parameters

The table below shows a list of important parameters for the configuration of the magnitude spectrum
function block.

FFT-length 4096
Window size 3200
Buffer size 1600
Window type eCM_HannWindow
Scaling type eCM_ROOT_POWER_SUM
Scaling in decibels (dB) FALSE



Samples

TC3 Condition Monitoring194 Version: 1.4

Global Constants

These parameters are defined as constants in the list of global variables.
VAR_GLOBAL CONSTANT
    cOversamples       : UDINT := 10;      // oversampling factor
    cBufferLength      : UDINT := 1600;    // size of buffer for spectrum
    cWindowLength      : UDINT := 3200;   // size of window
    cFFTResult         : UDINT := 2049;   // size of spectrum result
    cFFTLength         : UDINT := 4096;   // spectrum lines
END_VAR

Code for Control Task

Following code snippet shows the declaration in MAIN program:
PROGRAM MAIN

VAR CONSTANT 
    cInitSource   : ST_MA_MultiArray_InitPars := ( eTypeCode := eMA_TypeCode_LREAL, nDims := 1, aDim
Sizes := [cBufferLength]);
END_VAR

VAR
     nInputSelection   : UDINT := 1; // Switch between hardware and function generator 
     nSample  : UDINT;
     aEl3632 AT %I*    : ARRAY[1..cOversamples] OF INT; // Input from hardware e.g. EL3632
     aBuffer  : ARRAY[1..cOversamples] OF LREAL; 

     fbSource      : FB_CMA_Source :=( stInitPars := cInitSource, nOwnID := eID_Source, aDestIDs :=
[eID_Spectrum]); // Initialize source buffers
     fbSink        : FB_CMA_Sink := (nOwnID := eID_Sink); 
     aSpectrumResult   : ARRAY[1..cFFTResult] OF LREAL; // Copy result        
END_VAR

Method calls in MAIN program:
fbSource.Input1D(pDataIn := ADR(aBuffer),
               nDataInSize := SIZEOF(aBuffer), 
               eElementType := eMA_TypeCode_LREAL,
               nWorkDim := 0,
               pStartIndex := 0,
               nOptionPars := cCMA_Option_MarkInterruption);

fbSink.Output1D(pDataOut := ADR(aSpectrumResult), 
               nDataOutSize := SIZEOF(aSpectrumResult), 
               eElementType := eMA_TypeCode_LREAL, 
               nWorkDim := 0,
               nElements := 0,
               pStartIndex := 0,
               nOptionPars := 0,
               bNewResult => bCalculate);

Code for CM Task

Declaration in MAIN_CM program:
PROGRAM MAIN_CM

VAR CONSTANT
     cInitSpectrum : ST_CM_MagnitudeSpectrum_InitPars := (nFFT_Length := cFFTLength, 
                                    nWindowLength := cWindowLength, 
                                    bTransformToDecibel:= FALSE, 
                                    eWindowType := eCM_HannWindow, 
                                    eScalingType := eCM_RMS);
END_VAR
VAR 
     fbSpectrum : FB_CMA_MagnitudeSpectrum :=(stInitPars := cInitSpectrum, 
                                   nOwnID := eID_Spectrum, 
                                   aDestIDs := [eID_Sink]);
END_VAR

Method calls in MAIN_CM program:
fbSpectrum.Call();



Samples

TC3 Condition Monitoring 195Version: 1.4

The result of the sample code can be checked for a sinusoidal signal of arbitrary amplitude and frequency as
the input signal. The variable, fRmsValue above should be exactly equal to amplitude/SQRT(2).

Each frequency value can be assigned to the corresponding array index of the spectrum result. Calculation
formula:
sample rate = oversampling factor / sampling task cycle time
index = frequency * (FFT length / sample rate)

Requirements

Development environment Target system type PLC libraries to include
TwinCAT v3.1.4013 PC or CX (x86, x64) Tc3_CM, Tc3_CM_Base,

Tc3_MultiArray

6.4 Multi-channel magnitude spectrum
This sample implements the magnitude spectrum for 5 input channels simultaneously. The code is split into
two tasks: a control task, which collects the input samplings of a hardware module, e.g. EL3632, and a CM
task, which calculates the spectrum. The block diagram below shows the analysis chain implemented in the
program.

The source code for the sample is available for download from here:
http://infosys.beckhoff.com/content/1033/TF3600_TC3_Condition_Monitoring/Resources/
zip/9007202649317515.zip

Block diagram

Note that this block diagram shows one of the input channels configured for calculating the magni-
tude spectrum. The chain is replicated exactly for the other channels.



Samples

TC3 Condition Monitoring196 Version: 1.4

Program parameters

The table below shows a list of important parameters for the configuration of the magnitude spectrum
function blocks.

Channels 5
FFT-length 4096
Window size 3200
Buffer size 1600
Window type eCM_HannWindow
Scaling type eCM_ROOT_POWER_SUM
Conversion to decibels FALSE

Global Constants

These parameters are defined in the global variable list as constants.
VAR_GLOBAL CONSTANT
    cOversamples       : UDINT := 20;    // oversampling factor
    cMaxChannels       : UDINT := 5;     // number of channels 
    cBufferLength           : UDINT := 1600;  // size of buffer for spectrum
    cFFTResult         : UDINT := 2049;  // size of spectrum result
    cWindowLength           : UDINT := 3200;  // size of window
    cFFTLength         : UDINT := 4096;  // spectrum lines
END_VAR

Code for Control Task

Following code snippet shows the declaration in MAIN program:
PROGRAM MAIN

VAR CONSTANT
    cInitParsResultBuffer : ST_MA_MultiArray_InitPars :=(eTypeCode := eMA_TypeCode_LREAL, aDimSizes
:= [cBufferLength]); // buffer length  
END_VAR

VAR
     nInputSelection   : UDINT := 1; // select input, 0: hardware, 1: function generator
     nChnIdx       : UDINT; // channel index
     nSample       : UDINT; 

     aEl3632 AT %I*    : ARRAY [1..cMaxChannels] OF ARRAY [1..cOversamples] OF INT; // connect senso
r signal here 
     aBuffer       : ARRAY [1..cMaxChannels] OF ARRAY [1..cOversamples] OF LREAL;

     fbSource : ARRAY[1..cMaxChannels] OF FB_CMA_Source // source collecting multi-
channel input signal
          := [     (stInitPars := cInitParsResultBuffer, nOwnID := eID_SourceChn1, aDestIDs := [eID_
SpectrumChn1]),
               (stInitPars := cInitParsResultBuffer, nOwnID := eID_SourceChn2, aDestIDs := [eID_Spec
trumChn2]),
               (stInitPars := cInitParsResultBuffer, nOwnID := eID_SourceChn3, aDestIDs := [eID_Spec
trumChn3]),
               (stInitPars := cInitParsResultBuffer, nOwnID := eID_SourceChn4, aDestIDs := [eID_Spec
trumChn4]),
               (stInitPars := cInitParsResultBuffer, nOwnID := eID_SourceChn5, aDestIDs := [eID_Spec
trumChn5])]; 

     fbSink : ARRAY[1..cMaxChannels] OF FB_CMA_Sink 
          := [     (nOwnID := eID_SinkChn1),
               (nOwnID := eID_SinkChn2),
               (nOwnID := eID_SinkChn3),
               (nOwnID := eID_SinkChn4),
               (nOwnID := eID_SinkChn5)];

     aNewResult : ARRAY[1..cMaxChannels] OF BOOL;
END_VAR

Method calls in MAIN program:



Samples

TC3 Condition Monitoring 197Version: 1.4

FOR nChnIdx :=1 TO cMaxChannels DO

// Collect input data in source
     fbSource[nChnIdx].Input1D(      pDataIn := ADR(aBuffer[nChnIdx]),
                    nDataInSize := SIZEOF(aBuffer[nChnIdx]),
                    eElementType := eMA_TypeCode_LREAL,
                    nWorkDim := 0,
                    pStartIndex := 0,
                    nOptionPars := cCMA_Option_MarkInterruption );    
// Push results to sink
     fbSink[nChnIdx].Output1D(  pDataOut := ADR(aSpectrumResult[nChnIdx]), 
                    nDataOutSize := SIZEOF(aSpectrumResult[nChnIdx]),
                    eElementType := eMA_TypeCode_LREAL,
                    nWorkDim := 0,
                    nElements := 0,
                    pStartIndex := 0,
                    nOptionPars := 0,
                    bNewResult => aNewResult[nChnIdx]);
END_FOR

Code for CM Task

Declaration in MAIN_CM program:
PROGRAM MAIN_CM

VAR CONSTANT
     cInitParsSpectrum : ST_CM_MagnitudeSpectrum_InitPars 
               :=(      nFFT_Length := cFFTLength, 
                    nWindowLength := cWindowLength,
                    fDecibelThreshold := cCM_MinArgLog10,
                    bTransformToDecibel := FALSE,
                    eWindowType := eCM_HannWindow,
                    eScalingType := eCM_ROOT_POWER_SUM); // Configure spectrum analyzer here
END_VAR

VAR
     fbSpectrum : ARRAY[1..cMaxChannels] OF FB_CMA_MagnitudeSpectrum 
          := [     (stInitPars := cInitParsSpectrum, nOwnID := eID_SpectrumChn1, aDestIDs := [eID_Si
nkChn1]),
               (stInitPars := cInitParsSpectrum, nOwnID := eID_SpectrumChn2, aDestIDs := [eID_SinkCh
n2]),
               (stInitPars := cInitParsSpectrum, nOwnID := eID_SpectrumChn3, aDestIDs := [eID_SinkCh
n3]),
               (stInitPars := cInitParsSpectrum, nOwnID := eID_SpectrumChn4, aDestIDs := [eID_SinkCh
n4]),
               (stInitPars := cInitParsSpectrum, nOwnID := eID_SpectrumChn5, aDestIDs := [eID_SinkCh
n5])];
     nChnIdx : UDINT;
END_VAR

Method calls in MAIN_CM program:
FOR nChnIdx:=1 TO cMaxChannels DO
     // Call Spectrum
     fbSpectrum[nChnIdx].Call();
END_FOR

The result of the sample code can be checked for sinusoidal signals of arbitrary amplitude and frequency.
The RMS values are stored in the array aRmsValue according to the corresponding channel number. The
result should be exactly equal to the peak amplitude of each sinusoidal signal divided by /SQRT(2). The
sample code can be extended for more than 5 channels depending on the requirements and the resources
of the target system.

Requirements

Development environment Target system type PLC libraries to include
TwinCAT v3.1.4013 PC or CX (x86, x64) Tc3_CM, Tc3_CM_Base,

Tc3_MultiArray



Samples

TC3 Condition Monitoring198 Version: 1.4

6.5 Window functions
This sample implements a single-channel magnitude spectrum and compares the application of different
window functions. For better illustration, the frequency range of the scope is limited to 0 Hz to 1000 Hz.

The source code for the sample is available for download from here:

http://infosys.beckhoff.com/content/1033/TF3600_TC3_Condition_Monitoring/Resources/zip/5261536139.zip

Block diagram

Program parameters

The table below shows a list of important parameters for the configuration of the magnitude spectrum
function block.

FFT length 4096
Window size 3200
Buffer size 1600
Window type eCM_HannWindow / eCM_RectangularWindow
Scaling type eCM_ PeakAmplitude

Requirements

Development environment Target system type PLC libraries to include
TwinCAT v3.1.4013 PC or CX (x86, x64) Tc3_CM, Tc3_CM_Base,

Tc3_MultiArray



Samples

TC3 Condition Monitoring 199Version: 1.4

6.6 Scaling of spectra
As described under Scaling of spectra [} 22], the Condition Monitoring library offers a number of different
options for scaling of spectra. This tutorial enables examination of various prepared scalings by means of a
simple sine wave, and to deepen the theoretical understanding. The scopes are limited to the range 0 Hz to
400 Hz, in order to be able to show the differences more clearly.

The tutorial is available for download from here:
http://infosys.beckhoff.com/content/1033/TF3600_TC3_Condition_Monitoring/Resources/
zip/9007202649251851.zip

Block diagram

Program parameters

The table below shows a list of important parameters for the configuration of the used function blocks
FB_CMA_MagnitudeSpectrum [} 127] and FB_CMA_PowerSpectrum [} 142].

GVL_Constant contains three scenarios, which you can test by commenting or uncommenting the selected
code segments and enabling the configuration. The expected behavior of the scenarios is documented in the
GVL as a comment.

FFT length 2048
Window size 1800
Conversion to decibels TRUE / FALSE
Window type eCM_HannWindow
Scaling type eCM_PeakAmplitude / eCM_RMS



Samples

TC3 Condition Monitoring200 Version: 1.4

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4018 PC or CX (x86, x64) Tc3_CM, Tc3_CM_Base,

Tc3_MultiArray

6.7 Time-based RMS
The sample illustrates the implementation of a time-based RMS calculation for a signal with the function
block FB_CMA_RMS [} 152].

The sample is available for download from here:

http://infosys.beckhoff.com/content/1033/TF3600_TC3_Condition_Monitoring/Resources/
zip/9007202649250187.zip



Samples

TC3 Condition Monitoring 201Version: 1.4

Block diagram

Program parameters

The table below shows a list of important parameters for the configuration of the program block for
calculating the time-based RMS of a signal.

Channels 1
Buffer size 1200
Conversion to decibels FALSE



Samples

TC3 Condition Monitoring202 Version: 1.4

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4016.12 PC or CX (x86, x64) Tc3_CM, Tc3_CM_Base,

Tc3_MultiArray

6.8 Multi-band RMS
The sample illustrates a calculation implementation for several frequency band-limited RMS values of a
signal with the function block FB_CMA_MultiBandRMS [} 135].

The sample is available for download from here:
http://infosys.beckhoff.com/content/1033/TF3600_TC3_Condition_Monitoring/Resources/
zip/9007202649246859.zip



Samples

TC3 Condition Monitoring 203Version: 1.4

Block diagram

Program parameters

The table below shows a list of important parameters for the configuration of the function block for calculating
several frequency band-limited RMS values of a signal

Size of the FFT 2048
Window size 1600
Sampling rate 10000
Frequency bands 2
Channels 1



Samples

TC3 Condition Monitoring204 Version: 1.4

Window type eCM_HannWindow
Conversion to decibels FALSE

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4016.12 PC or CX (x86, x64) Tc3_CM, Tc3_CM_Base,

Tc3_MultiArray

6.9 Histogram
This sample implements a histogram. The code is divided into two tasks: a control task that collects the input
data, e.g. from EL3632, and a so-called CM task that calculates the histogram. The block diagram below
shows the analysis chain.

The source code for the sample is available for download from here:
http://infosys.beckhoff.com/content/1033/TF3600_TC3_Condition_Monitoring/Resources/
zip/18014401904055179.zip

Block diagram



Samples

TC3 Condition Monitoring 205Version: 1.4

Program parameters

The table below shows the most important parameters for the configuration of the histogram function block:

Histogram Bins 100
Appended Datasets 10
Oversamples 10
Max. Bin Limit +3 or +5
Min. Bin Limit -3 or -5
Channels 1
Buffer Length 100

Global Constants

The parameters specified above can be defined as global constants:
VAR_GLOBAL CONSTANT
    cBufferLength : UDINT := 100;
    cChannels     : UDINT := 1;
    cOversamples  : UDINT := 10;
    cMaxBins      : UDINT := 100;
    cAppendedData : UDINT := 10;
    cBinLimit_1   : LREAL := 3;
    cBinLimit_2   : LREAL := 5;
END_VAR

Code for the MAIN task

The following code snippet shows the declaration in the MAIN program:
PROGRAM MAIN
VAR CONSTANT
    cInitSource    : ST_MA_MultiArray_InitPars 
    := (eTypeCode := eMA_TypeCode_LREAL, nDims := 2, aDimSizes := [1, cBufferLength]);
END_VAR
VAR
    nInputSelection : UDINT := 1;
    nSample         : UDINT;
    aEl3632 AT %I* : ARRAY [1..cOversamples] OF INT;
    aBuffer         : ARRAY [1..cOversamples] OF LREAL;
    fbSource        : FB_CMA_Source := (stInitPars := cInitSource, nOwnId
:= eID_Source, aDestIDs := [eID_Histogram]);
    fbSink          : FB_CMA_Sink := (nOwnID := eID_Sink);
    aHistReulst     : ARRAY [1..cMaxBins+2];
END_VAR

The following code snippet shows the method calls in the MAIN program:
fbSource.Input2D(pDataIn := ADR(aBuffer),
                aDataInSize  := SIZEOF(aBuffer),
                eElementType := eMA_TypeCode_LREAL,
                nWorkDim0    := 0,
                nWorkDim1    := 1,
                pStartIndex  := 0,
                nOptionPars  := cCMA_Option_MarkInterruption);

fbSink(pDataOut := ADR(aHistResult),
        nDataOutSize := SIZEOF(aHistResult),
        eElementType := eMA_TypeCode_UINT64,
        nWorkDim0    := 0,
        nWorkDim1    := 1,
        nElements    := 0,
        pStartIndex  := 0,
        nOptionPars  := 0);

Code for the CM task

The variable declaration in the MAIN_CM program:
VAR CONSTANT
    cInitHistArray : ST_CM_HistArray_InitPars := (nChannels := cChannels, nBins := cMaxBins,
fMinBinnded := -cBinLimit_1, fMaxBinned := cBinLimit_1);
END_VAR



Samples

TC3 Condition Monitoring206 Version: 1.4

The method calls in the MAIN_CM program:
fbHistArray.CallEx(nAppendData := cAppendData, bReset := );

IF bConfig then
    fbHistArray.Configure(pArg := ADR(aHisArrayConfig), nArgSize := SIZEOF(aHistArrayConfig)
END_IF

The Configure method is optional, but it enables the fine setting of the parameters fMinBinned and
fMaxBinned at runtime.

Random Number Generator

A histogram is very often used as a visual help in order to understand the underlying distribution of all
measured values, e.g. the peaks in the vibration signal. The function generator contained in the sample code
is extended for this purpose. The function generator can simulate the usual and practically oriented random
numbers and their distributions. Using the variable E_DistributionType you can select a distribution such as
exponential, normal (or Gaussian), Chi-squared or gamma. By default the random numbers are generated
from a uniform distribution.

Note

Please note that every distribution requires one or more parameters in order to determine the prop-
agation of the random numbers or their range. This can be done using the input variable aRange.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4016.12 PC or CX (x86, x64) Tc3_CM  (v1.0.19), Tc3_CM_Base,

Tc3_MultiArray

6.10 Statistical methods
This sample illustrates the options for statistical evaluation of Condition Monitoring Library data. Statistical
evaluations for standard normal and gamma-distributed signal data and a sine signal are processed. The
function blocks FB_CMA_HistArray [} 115], FB_CMA_EmpiricalMean [} 97],
FB_CMA_EmpiricalStandardDeviation [} 105], FB_CMA_EmpiricalSkew [} 101] and FB_CMA_EmpiricalExcess
[} 93] are used.

The sample is available for download from here:

http://infosys.beckhoff.com/content/1033/TF3600_TC3_Condition_Monitoring/Resources/zip/5261532811.zip



Samples

TC3 Condition Monitoring 207Version: 1.4

Block diagram

Program parameters

The table below shows a list of important parameters for the configuration of the function blocks that are
used.

Buffer size 100
Channels 3
Frequency bins 200

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4022 PC or CX (x86, x64) Tc3_CM (>= 1.0.22),

Tc3_CM_Base (>= 1.1.10),
Tc3_MultiArray

6.11 Vibration assessment according to ISO 10816-3
Vibration assessment based on ISO 10816-3 is explained in more detail in section Application concepts, see
Vibration assessment [} 31]. The classification based on the calculated RMS values is done directly in the
MAIN program. Alternatively, the function blocks FB_CMA_WatchUpperThresholds [} 162] or
FB_CMA_DiscreteClassification [} 89] could be used.

The sample is available for download from here:
http://infosys.beckhoff.com/content/1033/TF3600_TC3_Condition_Monitoring/Resources/
zip/18014401903994507.zip



Samples

TC3 Condition Monitoring208 Version: 1.4

Block diagram

Program parameters

The table below shows a list of important parameters for the configuration of the function blocks that are
used.

Buffer size 2000
Channels 2
FFT length 4096
Window size 4000
Sampling rate 10000
Lower frequency bound 10



Samples

TC3 Condition Monitoring 209Version: 1.4

Upper frequency bound 1000
Order (RMS) 2
Window type eCM_HannWindow
Conversion to decibels FALSE

Requirements

Development environment Target system type PLC libraries to include
TwinCAT v3.1.4013 PC or CX (x86, x64) Tc3_CM, Tc3_CM_Base,

Tc3_MultiArray

6.12 Condition Monitoring with frequency analysis
This tutorial configures a complete monitoring application, based on the TwinCAT3 Condition Monitoring API.
It facilitates creation of a workflow for Condition Monitoring applications, including data collection and adding
high-performance analysis algorithms. The block diagram below illustrates the arrangement of the
application. For a better understanding of the programming tasks, the document is subdivided into design
steps.

The sample is available for download from here:
http://infosys.beckhoff.com/content/1033/TF3600_TC3_Condition_Monitoring/Resources/
zip/9007202649312523.zip

It can be modified and extended as required.

Block Diagram

Step 1: Application specification

The first step for the design of a condition monitoring application is to determine the main aims of the
application, e.g. automatic warning in the event of excessive vibrations or in the event of a malfunction in the
bearing, based on frequency analysis. It is also important to consider other technical factors such as
measuring sensors, the sampling rate of the controller and the expected accuracy. The aim of this tutorial is



Samples

TC3 Condition Monitoring210 Version: 1.4

to detect small and large errors in the input signal with the aid of the magnitude spectrum and its quantile
distribution. In addition, a classifier is used for predicting the general state as "normal state", "warning state"
or "alarm state". The table below shows a list of the function blocks used in this tutorial.

Function block
FB_CMA_Souce
FB_CMA_Sink
FB_CMA_MagnitudeSpectrum
FB_CMA_Quantiles
FB_CMA_DiscreteClassification

For a more detailed description of the algorithm selection for specific issues such as bearing analysis [} 39],
gear unit analysis [} 47] or frequency analysis [} 35], we refer to the solutions described elsewhere. Since the
aim of the tutorial is to detect general changes in the input signal, a magnitude spectrum with a resolution of
4098 lines is sufficient. The 50 % and 90 % quantile of the spectral values are calculated, and the result is
classified as "normal state", "warning state" or "alarm state".

Step 2: Configuration of the PLC tasks

Since condition monitoring and analysis is comprised of a data acquisition stage, a calculation stage and an
analysis stage, the task has to be structured according to the calculation requirements for each step. Here
[} 63] you can find additional information on this topic. The aim of this tutorial is to calculate the magnitude
spectrum of 4098 lines, for which approx. 3200 data samples are required. The means that, during the data
collection stage, a source multi-array has to handle 1600 data samples, considering overlapping. With 10x
oversampling, 160 cycles are required, or 160 ms with 1 ms trigger, to fill a single multi-array. The following
setting is therefore recommended for the calculation task:

Calculation cycle time < (data collection cycle time * buffer size / oversampling factor)*0.5

For the tutorial the calculation cycle time is set to 10 ms. For the actual application it is important to consider
the computation load, which is affected by other tasks that run simultaneously on the same controller, such
as visualization or network communication. Further information on task settings can be found here [} 63] in
the task cycle time section. Make sure that adequate router memory capacity [} 62] is allocated before
starting to build a condition monitoring application. This tutorial was set for working with a router memory
capacity adjusted to 32 MB.

Step 3: Configuration of the function blocks

In this step the function blocks listed above are configured according to the application requirements. As
already mentioned, the source multi-array collects 1600 data samples for calculating a spectrum. The
aDimSizes parameter is therefore set to 1600. Since the tutorial only considers one channel, nDims is set to
1.
PROGRAM CM_Worker

VAR CONSTANT
      cInitSourceSpectrum       : ST_MA_MultiArray_InitPars := ( eTypeCode := eMA_TypeCode_LREAL, nD
ims := 1, aDimSizes := [1600]);      
END_VAR

In the calculation task the magnitude spectrum for calculating a spectrum of 4098 lines is configured,
indicated by cFFTLength. A so-called window function is used, since the spectrum calculation is associated
with periodic processing of discrete segments of a continuous signal. A correctly selected window function
improves the signal transformation efficiency, reduces fluctuations thanks to the overlap-add method and
improves the spectral resolution. In practical applications the window function also reduces the leakage
effect near critical frequencies. In the tutorial Hann window was selected. The magnitude spectrum function
block offers a wide range of scaling options as shown here [} 227], out of which the RMS value was
selected. The reason is that for time-varying physical signals, an RMS value is a preferred indicator of the
mean signal power, in contrast to the peak value, for example. In the vibration acceleration spectrum,
individual lines indicate the effective values of the vibrations at the corresponding frequency and can be
expressed directly in the corresponding units such as mm/s² or g.



Samples

TC3 Condition Monitoring 211Version: 1.4

PROGRAM MAIN_CM

VAR CONSTANT
     cInitSpectrum : ST_CM_MagnitudeSpectrum_InitPars := (      nFFT_Length := 4096, 
                                   nWindowLength := 2*1600, 
                                   bTransformToDecibel:= FALSE, 
                                   eWindowType := eCM_HannWindow, 
                                   eScalingType := eCM_RMS);
END_VAR

The result of the magnitude spectrum is copied to an array via a sink function block, with specified array
length of nFFT_Length/2+1. In the next step of the analysis chain, a quantile function block for calculating
the 50 % and 90 % quantiles of the spectral values is configured. In many cases the spectral values fluctuate
strongly, so that an evaluation is difficult if the values are too low or too high. Using the quantiles it is
possible to determine the maximum, minimum or indeed the average value over a specified time interval.
This type of range-based evaluation is often more reliable and easier to handle. A 50 % quantile value (Q0.5)
indicates that almost 50 % of the values in a distribution are smaller than Q0.5. It is also referred to as median
value. Similarly, a 90 % quantile (Q0.9) indicates that 90 % of the values in a distribution are smaller than Q0.9.
VAR CONSTANT
     cInitQuantiles : ST_CM_Quantiles_InitPars := ( nChannels := (4096/2+1), 
                              fMinBinned := -10, 
                              fMaxBinned := 10, 
                              nBins := 100, 
                              nMaxQuantiles := 2);
END_VAR

In the program the quantiles are configured as follows:
(*--------- Configure quantile args ---------*)
IF bConfigureQuantile THEN 
     FOR nChannel := 1 TO (cFFTLength/2+1) DO
          aQuantilesArg[nChannel,1]:= 0.50; // 50% quantile 
          aQuantilesArg[nChannel,2]:= 0.90; // 90% quantile 
     END_FOR
     fbQuantiles.Configure( pArg := ADR(aQuantilesArg), nArgSize := SIZEOF(aQuantilesArg));
     bConfigureQuantile := FALSE;
END_IF

Here [} 148] you can find a more detailed description of the function block. Note that the parameters
fMinBinned and fMaxBinned define the expected input signal range and nBins indicates the number of Bins
into which the signal range is divided. These parameters depend on the respective input signal. The signal
state is classified based on the quantiles information. The discrete function block can process several
channels simultaneously, therefore the quantile output is sent directly to the block. The classifier is set to
distinguish between three states and to display the corresponding state via the nMaxClasses parameter.
VAR CONSTANT
     cInitClassification    : ST_CM_DiscreteClassification_InitPars := (nChannels:= (4096/2+1), 
                                         nMaxClasses := 3);
END_VAR

Remark: The output of the quantiles function block is a 2D array, which in this case is the number of spectral
lines over the number of quantiles. But the discrete classifier only allows a one-dimensional array, which
contains the number of input channels. In order to avoid a dimension conflict, the buffer converter of
FB_CMA_BufferConverting should be used. This function block converts a two-dimensional multi-array to a
one-dimensional array without any data loss. The code snippet describes the corresponding application.
VAR CONSTANT
     cInitBuffer       : ST_MA_MultiArray_InitPars := ( eTypeCode := eMA_TypeCode_LREAL, 
                                   nDims := 1, 
                                   aDimSizes := [(4096/2+1)]);
END_VAR
VAR
     fbBufferConverter : FB_CMA_BufferConverting := (stInitPars := cInitBuffer, nOwnID := eID_Buffer
Converter, aDestIDs := [eID_Classify]); 
END_VAR

The buffer converter calls a method:
fbBufferConverter.Copy1D(nWorkDimIn := 0, 
               nWorkDimOut := 0,
               nElements := 0,
               pStartIndexIn := 0,
               pStartIndexOut := 0,
               nOptionPars := 0);



Samples

TC3 Condition Monitoring212 Version: 1.4

Further information on this function block can be found under FB_CMA_BufferConverting [} 81]. To complete
the function block configuration, each sink function block must be linked to PLC arrays with correct
dimensions.

Step 4: Fine-tuning of the application parameters

Before starting the analysis, it is important to configure the discrete classifier with regard to its limit values. A
classification limit or threshold value enables the discrete classifier to monitor incoming channels
continuously and determine whether one of the input channels exceeds this threshold value. The threshold
values depend on the respective application, the accuracy requirements, the permitted detection tolerances,
etc. The aim of this tutorial is to detect small errors, which are comparable to random noise, and also large-
sized errors, which occur at a specific frequency (e.g. 200 Hz). The threshold values fWarning and fAlarm
are determined. If the amplitude of the input channels exceeds fWarning, the general state switches to
warning state. If fAlarm is exceeded, an alarm message is issued. If the threshold values are not exceeded,
the channel state is in the normal range.
(*--------- Configure classifier args ---------*)
IF bConfigureClassifier THEN
  
   fWarning := (fMonitoringLevel/100)*1.5;
   fAlarm := (fMonitoringLevel/100)*2.5;
  
   fbTeachTimer(IN := TRUE, PT := T#15S);  
   IF fbTeachTimer.Q THEN
    
      fbTeachTimer(IN := FALSE);    
        
      FOR nChannel := 1 TO (cFFTLength/2+1) DO      
     aClassArgs[nChannel, 1] := (fMonitoringLevel/100)*aQuantilesCopy[nChannel,1];
     aClassArgs[nChannel, 2] := fWarning*aQuantilesCopy[nChannel,1];
     aClassArgs[nChannel, 3] := fAlarm*aQuantilesCopy[nChannel,1]; 
      END_FOR  
      
      fbClassification.Configure(pArg := ADR(aClassArgs), nArgSize := SIZEOF(aClassArgs));        
      bConfigureClassifier := FALSE;
      
   END_IF
   
END_IF

The code snippet above describes the configuration of this discrete classifier, so that a timer block allows a
normal operating window to pass through a so-called teaching phase, during which the discrete classifier is
configured. It is assumed that the input signal behaves normally during this time, i.e. within the permissible
range. The warning threshold is 150 % of the “normal” 50 % quantile, the alarm threshold is 250 % of the
normal 50 % quantile. Since the 50% quantile describes the average behavior, this threshold value
configuration is suitable for applications whose inputs only have few outliers. The 90 % quantile can also be
determined as threshold value, if it is assumed that the input signal is likely to fluctuate strongly. It is also
possible to configure another variable, fMonitoringLevel, which can be used to apply a certain tolerance
range around the permissible value, in order to control the number of false alarms. This parameter can be
used to fine-tune the threshold values. Note that the threshold values for the discrete classifier can be
specified individually for all input channels.

Step 5: Starting the application

Compile the code, download it to the target system and start the PLC, in order to execute the tutorial. A small
prepared visualization, referred to as Dashboard, can be found in the Solution Explorer under the VISU
node, which can be used for a quick test. For the simulation the input signal is linked to a function generator,
which was configured for generating a sinusoidal 50 Hz signal with an amplitude of 5. Other available signals
such as pulse, triangle or saw tooth, or indeed a hardware module such as EL3632, can be applied to the
input. Once the application has been started, the display fields show the maximum amplitude, the RMS
amplitude and the frequency at the maximum amplitude of the PLC in real-time.



Samples

TC3 Condition Monitoring 213Version: 1.4

The diagram illustrates that the state of the application is shown in the corresponding display field. A small-
sized error can be simulated by pressing the Add Fault button. You can see how the RMS value of the input
signal slowly increases beyond the threshold value and how the state changes accordingly. To simulate a
large-sized error, press the Small/Large button. Similar to the previous error the RMS value will increase, but
this time the “Fault Frequency” field shows the frequency of the fault signal, in this case 200 Hz.

Step 6: Monitoring

Once the PLC has started, the display fields show the current values. Initially the Reconfigure button is
shown as pressed, and the signal in the right-hand corner is disabled. The means that the limit values are in
the process of being specified for the discrete classifier. Once the configuration is complete, the Reconfigure
button resets itself, and the machine status is shown as “normal state”. The signal switches to green, which
has the same meaning.

To simulate an error, leave the option field at “Small Fault” and press the Activate Disturbance button. The
machine will switch between “Normal” and “Warning” state, and the signal switches between green and
orange. If a large error is simulated by switching the option field, the machine state switches to “Alarm” state,
and the signal switches to red. To prevent the fault, release the Activate Disturbance button. The signal state
returns to green. Note that a change in the signal amplitude also results in an error state. If this is
undesirable, press the Reconfigure button again, in order to adjust the discrete classifier to this new signal
state.

Requirements

Development environment Target system type PLC libraries to include
TwinCAT v3.1.4013 PC or CX (x86, x64) Tc3_CM, Tc3_CM_Base,

Tc3_MultiArray



Samples

TC3 Condition Monitoring214 Version: 1.4

6.13 Threshold value consideration for averaged magnitude
spectra

This sample illustrates an analysis chain for threshold value consideration, as explained in the Frequency
analysis [} 35] application concept. The analysis chain implements the calculation of a magnitude spectrum,
averaging of several magnitude spectra and subsequent threshold value consideration for exemplary
frequency bands. For a better illustration of the threshold value consideration around 50 Hz, the scope is
limited to the frequency range from 0 Hz to 100 Hz.

The sample is available for download from here:
http://infosys.beckhoff.com/content/1033/TF3600_TC3_Condition_Monitoring/Resources/
zip/9007202649236875.zip

Block diagram for the analysis chain:

Program parameters

The table below shows a list of important parameters for the configuration of the function blocks that are
used.

FFT length 8192
Window size 6400
Buffer size 3200
Window type eCM_HannWindow
Scaling type eCM_RMS
Coefficient order eCM_Mean
Maximum number of classes 1



Samples

TC3 Condition Monitoring 215Version: 1.4

Requirements

Development environment Target system type PLC libraries to include
TwinCAT v3.1.4013 PC or CX (x86, x64) Tc3_CM, Tc3_CM_Base,

Tc3_MultiArray

6.14 Crest factor
This sample calculates the crest factor for an input signal. Although the function block FB_CMA_CrestFactor
[} 83] is able to process several channels, for the purpose of illustration only a single channel will be
considered. The block diagram below shows the analysis chain implemented in the program.

The source code for the sample is available for download from here:
http://infosys.beckhoff.com/content/1033/TF3600_TC3_Condition_Monitoring/Resources/
zip/9007202649285259.zip



Samples

TC3 Condition Monitoring216 Version: 1.4

Block Diagram

Program parameters

The table below shows a list with important configuration parameters for the function block for calculating the
crest factor.

Channels 2
Buffer size 1600



Samples

TC3 Condition Monitoring 217Version: 1.4

Global constants

These parameters are defined in the global variable list as constants.
VAR_GLOBAL CONSTANT
    cOversamples  : UDINT := 10;    // oversampling factor
    cChannels          : UDINT := 2;     // number of channels
    cBufferLength      : UDINT := 2000;  // size of buffer 
END_VAR

Code for Control Task

Following code snippet shows the declaration in MAIN program:
VAR CONSTANT 
     cInitSource       : ST_MA_MultiArray_InitPars := ( eTypeCode := eMA_TypeCode_LREAL, nDims := 2,
 aDimSizes := [cChannels, cBufferLength]);
END_VAR

VAR 
     nInputSelection : UDINT := 1;
     aCrestFactor      : ARRAY[1..cChannels] OF LREAL; 
     nSampleIdx    : UDINT;
     nChannelIdx       : UDINT; 
     aEl3632 AT %I*    : ARRAY[1..cChannels] OF ARRAY[1..cOversamples] OF INT; // input from hardwar
e e.g. EL3632
     aBuffer  : ARRAY[1..cChannels] OF ARRAY[1..cOversamples] OF LREAL; 
     fbSource      : FB_CMA_Source := (stInitPars := cInitSource, nOwnID := eID_Source, aDestIDs :=
[eID_Crest]); // Initialize source 
     fbSink        : FB_CMA_Sink := (nOwnID := eID_Sink);    
END_VAR

Method calls in Main program:
// Collect data in a source 
fbSource.Input2D(pDataIn := ADR(aBuffer),
          nDataInSize := SIZEOF(aBuffer), 
          eElementType := eMA_TypeCode_LREAL,
          nWorkDim0 := 0,
          nWorkDim1 := 1,
          pStartIndex := 0,
          nOptionPars := 0 ); 

// Push results to sink
fbSink.Output1D(pDataOut := ADR(aCrestFactor), 
          nDataOutSize := SIZEOF(aCrestFactor), 
          eElementType := eMA_TypeCode_LREAL, 
          nWorkDim := 0, 
          nElements := 0,
          pStartIndex := 0,
          nOptionPars := 0,
          bNewResult => bNewResult);

Code for CM Task 

Declaration in MAIN_CM program:
VAR CONSTANT 
     cInitCrest : ST_CM_CrestFactor_InitPars := ( nChannels := cChannels, nBufferLength := cBufferLe
ngth );
END_VAR

VAR 
     fbCrest : FB_CMA_CrestFactor := (stInitPars := cInitCrest, nOwnID:= eID_Crest, aDestIDs:= [eID_
Sink]); // Initialize crest   
END_VAR

Method calls in MAIN_CM program:
fbCrest.Call();

The result of the sample code can be checked for a sinusoidal signal of arbitrary amplitude and frequency as
the input signal. The crest factor, in this case first element of aCrestFactor, must be equal to 3.01 dB.



Samples

TC3 Condition Monitoring218 Version: 1.4

Requirements

Development environment Target system type PLC libraries to include
TwinCAT v3.1.4013 PC or CX (x86, x64) Tc3_CM, Tc3_CM_Base,

Tc3_MultiArray

6.15 Envelope spectrum
The sample illustrates a calculation implementation for an envelope spectrum with the function block
FB_CMA_EnvelopeSpectrum [} 112]. The input signal is generated with a function generator. It corresponds
to the superposition of two sine waves with 120 Hz and 230 Hz. For a better illustration of the result, the
scope is limited to the frequency range from 0 Hz to 300 Hz.

The sample is available for download from here:
http://infosys.beckhoff.com/content/1033/TF3600_TC3_Condition_Monitoring/Resources/
zip/9007202649235211.zip



Samples

TC3 Condition Monitoring 219Version: 1.4

Block diagram

Program parameters

The table below shows a list with important configuration parameters for the function block for calculating the
envelope spectrum.

FFT length envelope 2048
FFT length spectrum 2048
Window size 2048
Conversion to decibels FALSE
Window type eCM_HannWindow
Scaling type eCM_RMS



Samples

TC3 Condition Monitoring220 Version: 1.4

Requirements

Development environment Target system type PLC libraries to include
TwinCAT v3.1.4013 PC or CX (x86, x64) Tc3_CM, Tc3_CM_Base,

Tc3_MultiArray

6.16 Power cepstrum
This sample implements the calculation of power cepstrum and power spectrum. The signal under
consideration is generated by amplitude modulation based on two sine waves, a carrier frequency and a
modulation frequency.

The source code for the sample is available for download from here:

http://infosys.beckhoff.com/content/1033/TF3600_TC3_Condition_Monitoring/Resources/zip/5261531147.zip

Block diagram

Program parameters

The table below shows a list of important parameters for the configuration of the function blocks that are
used.

FFT length 4096
Window size 4096
Buffer size 2048



Samples

TC3 Condition Monitoring 221Version: 1.4

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4018 PC or CX (x86, x64) Tc3_CM, Tc3_CM_Base,

Tc3_MultiArray

6.17 Event-based frequency analysis
This sample implements an event based frequency analysis. The generated signal consists of a noisy sine
signal with a frequency of 200 Hz and pure noise, which alternate every two seconds. Buffering of the signal
begins when a rising edge is detected in the (generated) input signal. The collected data are then relayed via
FB_CMA_Source [} 158] to the function block FB_CMA_MagnitudeSpectrum [} 127].

The source code for the sample is available for download from here:

http://infosys.beckhoff.com/content/1033/TF3600_TC3_Condition_Monitoring/Resources/zip/5261425419.zip

Block diagram



Samples

TC3 Condition Monitoring222 Version: 1.4

Program parameters

The table below shows a list of important parameters for the configuration of the magnitude spectrum
function block.

FFT length 16384
Window size 16000
Buffer size 8000
Window type eCM_HannWindow
Scaling type eCM_ PeakAmplitude

Event-based buffering of the input signal

The program block CollectData controls the event-based sampling of the input signal. The input
parameters are defined as follows:
PROGRAM CollectData
VAR_INPUT
    bTrigger     : BOOL;     // Trigger signal, start with rising edge
END_VAR
VAR_IN_OUT
    aInputSignal : ARRAY[1..cOversamples] OF LREAL;  // input time signal
END_VAR

The inverse of the trigger signal bTrigger_ and the current state of buffer are stored locally.
VAR
    bTrigger_          : BOOL := FALSE;
    nSourceState       : UINT := 0;
    nActualBuffersSent : ULINT := 0;
    nBuffersToSent     : ULINT := 2;

    // ...

END_VAR

Event-controlled sampling of the signal takes place when the trigger signal has a rising edge and the buffer
is ready, i.e. state 0.
IF (bTrigger AND NOT bTrigger_) AND nSourceState = 0 THEN
    nActualBuffersSent := fbSource.nCntResults;  // check number of sent MultiArrays from fbSource
    fbSourceState := 1;
END_IF
bTrigger_ := bTrigger;

The following code shows the actual event-based buffering of the signal via the source function block.
CASE nSourceState OF

    1: // if <nBuffersToSent> MultiArrays has been sent, stop buffering

       fbSource.Input1D( pDataIn      := ADR(aInputSignal),
                         nDataInSize  := SIZEOF(aInputSignal),
                         eElementType := eMA_TypeCode_LREAL,
                         nWorkDim     := 0,
                         pStartIndex  := 0,
                         nOptionPars := cCMA_Option_MarkInterruption );

       IF (fbSource.nCntResults-nActualBuffersSent) = nBuffersToSent THEN
           nSourceState := 2;
       END_IF

    2: // reset Source Buffer and wait for next trigger hit

       fbSource.ResetData();
       nSourceState := 0;

END_CASE;

The buffered signal data is subsequently relayed to the magnitude spectrum function block. The buffered
signal is processed in the same way as shown in the Magnitude spectrum: [} 192] sample.



Samples

TC3 Condition Monitoring 223Version: 1.4

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4018 PC or CX (x86, x64) Tc3_CM, Tc3_CM_Base,

Tc3_MultiArray



Appendix

TC3 Condition Monitoring224 Version: 1.4

7 Appendix

7.1 Error Codes Overview
The following error codes may occur.

16#9811_0000 - 16#9811_FFFF listed in TwinCAT (ADS) Error Codes [} 225] (there
without high-order WORD). Further notes below on
this page.

16#9851_0000 - 16#9851_FFFF Condition Monitoring Error Codes are listed under
E_CM_ErrorCode [} 167]

16#9852_0000 - 16#9852_0FFF Condition Monitoring Analysis Error Codes are listed
in E_CMA_ErrorCodes [} 171]

16#9871_0000 - 16#9871_FFFF MultiArray Error Codes can be found in
E_MA_ErrorCode [} 172]

If an error occurs during initialization, the function block cannot be used.

Further information on standard TwinCAT Error Codes:

error value symbol Error description Remedy option
16#9811_070A NOMEMORY No memory Incorrect memory settings

=> increase router memory (see
chapter Memory Management [} 62])

16#9811_0719 TIMEOUT Device has a timeout A timeout may occur during buffer
memory transfers. Usually this is non-
critical for the CM analysis chain. The
response to the error depends on the
type of algorithm and the precise
location where the error occurred. The
timeout input should only be increased
if it matches the task cycle time.
See section Parallel processing [} 66].

Error handling

Error codes are returned by type HRESULT.

declaration error ok ok but with info check functions
hrErrorCode :HRES
ULT;

< 0 >= 0 > 0 SUCCEEDED(),FAI
LED()

A test for non-zero value is insufficient for values of type HRESULT.

In some cases error handling with error codes is not the best choice, particularly if the actions result in an
undefined value with regard to non-standard, but possible input data. Or if values were excluded from the
process. In this case missing values and partially undefined results can be described by the special constant
NaN (see chapter NaN values [} 65]). This is used in case of errors whose appearance does not depend on
the program logic, but on certain input data.



Appendix

TC3 Condition Monitoring 225Version: 1.4

7.2 ADS Return Codes
Error codes: 0x000 [} 225]..., 0x500 [} 225]..., 0x700 [} 225]..., 0x1000 [} 227]...

Global Error Codes

Hex Dec Description
0x0 0 no error
0x1 1 Internal error
0x2 2 No Rtime
0x3 3 Allocation locked memory error
0x4 4 Insert mailbox error
0x5 5 Wrong receive HMSG
0x6 6 target port not found
0x7 7 target machine not found
0x8 8 Unknown command ID
0x9 9 Bad task ID
0xA 10 No IO
0xB 11 Unknown ADS command
0xC 12 Win 32 error
0xD 13 Port not connected
0xE 14 Invalid ADS length
0xF 15 Invalid ADS Net ID
0x10 16 Low Installation level
0x11 17 No debug available
0x12 18 Port disabled
0x13 19 Port already connected
0x14 20 ADS Sync Win32 error
0x15 21 ADS Sync Timeout
0x16 22 ADS Sync AMS error
0x17 23 ADS Sync no index map
0x18 24 Invalid ADS port
0x19 25 No memory
0x1A 26 TCP send error
0x1B 27 Host unreachable
0x1C 28 Invalid AMS fragment

Router Error Codes

Hex Dec Name Description
0x500 1280 ROUTERERR_NOLOCKEDMEMORY No locked memory can be allocated
0x501 1281 ROUTERERR_RESIZEMEMORY The size of the router memory could not be changed
0x502 1282 ROUTERERR_MAILBOXFULL The mailbox has reached the maximum number of possible

messages. The current sent message was rejected
0x503 1283 ROUTERERR_DEBUGBOXFULL The mailbox has reached the maximum number of possible

messages.
The sent message will not be displayed in the debug monitor

0x504 1284 ROUTERERR_UNKNOWNPORTTYPE Unknown port type
0x505 1285 ROUTERERR_NOTINITIALIZED Router is not initialized
0x506 1286 ROUTERERR_PORTALREADYINUSE The desired port number is already assigned
0x507 1287 ROUTERERR_NOTREGISTERED Port not registered
0x508 1288 ROUTERERR_NOMOREQUEUES The maximum number of Ports reached
0x509 1289 ROUTERERR_INVALIDPORT Invalid port
0x50A 1290 ROUTERERR_NOTACTIVATED TwinCAT Router not active

General ADS Error Codes

Hex Dec Name Description
0x700 1792 ADSERR_DEVICE_ERROR error class <device error>
0x701 1793 ADSERR_DEVICE_SRVNOTSUPP Service is not supported by server



Appendix

TC3 Condition Monitoring226 Version: 1.4

Hex Dec Name Description
0x702 1794 ADSERR_DEVICE_INVALIDGRP invalid index group
0x703 1795 ADSERR_DEVICE_INVALIDOFFSET invalid index offset
0x704 1796 ADSERR_DEVICE_INVALIDACCESS reading/writing not permitted
0x705 1797 ADSERR_DEVICE_INVALIDSIZE parameter size not correct
0x706 1798 ADSERR_DEVICE_INVALIDDATA invalid parameter value(s)
0x707 1799 ADSERR_DEVICE_NOTREADY device is not in a ready state
0x708 1800 ADSERR_DEVICE_BUSY device is busy
0x709 1801 ADSERR_DEVICE_INVALIDCONTEXT invalid context (must be in Windows)
0x70A 1802 ADSERR_DEVICE_NOMEMORY out of memory
0x70B 1803 ADSERR_DEVICE_INVALIDPARM invalid parameter value(s)
0x70C 1804 ADSERR_DEVICE_NOTFOUND not found (files, ...)
0x70D 1805 ADSERR_DEVICE_SYNTAX syntax error in command or file
0x70E 1806 ADSERR_DEVICE_INCOMPATIBLE objects do not match
0x70F 1807 ADSERR_DEVICE_EXISTS object already exists
0x710 1808 ADSERR_DEVICE_SYMBOLNOTFOUND symbol not found
0x711 1809 ADSERR_DEVICE_SYMBOLVERSIONINVAL symbol version invalid

0x712 1810 ADSERR_DEVICE_INVALIDSTATE server is in invalid state
0x713 1811 ADSERR_DEVICE_TRANSMODENOTSUPP AdsTransMode not supported
0x714 1812 ADSERR_DEVICE_NOTIFYHNDINVALID Notification handle is invalid

0x715 1813 ADSERR_DEVICE_CLIENTUNKNOWN Notification client not registered
0x716 1814 ADSERR_DEVICE_NOMOREHDLS no more notification handles
0x717 1815 ADSERR_DEVICE_INVALIDWATCHSIZE size for watch too big
0x718 1816 ADSERR_DEVICE_NOTINIT device not initialized
0x719 1817 ADSERR_DEVICE_TIMEOUT device has a timeout
0x71A 1818 ADSERR_DEVICE_NOINTERFACE query interface failed
0x71B 1819 ADSERR_DEVICE_INVALIDINTERFACE wrong interface required
0x71C 1820 ADSERR_DEVICE_INVALIDCLSID class ID is invalid
0x71D 1821 ADSERR_DEVICE_INVALIDOBJID object ID is invalid
0x71E 1822 ADSERR_DEVICE_PENDING request is pending
0x71F 1823 ADSERR_DEVICE_ABORTED request is aborted
0x720 1824 ADSERR_DEVICE_WARNING signal warning
0x721 1825 ADSERR_DEVICE_INVALIDARRAYIDX invalid array index
0x722 1826 ADSERR_DEVICE_SYMBOLNOTACTIVE symbol not active
0x723 1827 ADSERR_DEVICE_ACCESSDENIED access denied
0x724 1828 ADSERR_DEVICE_LICENSENOTFOUND missing license
0x725 1829 ADSERR_DEVICE_LICENSEEXPIRED license expired
0x726 1830 ADSERR_DEVICE_LICENSEEXCEEDED license exceeded
0x727 1831 ADSERR_DEVICE_LICENSEINVALID license invalid
0x728 1832 ADSERR_DEVICE_LICENSESYSTEMID license invalid system id
0x729 1833 ADSERR_DEVICE_LICENSENOTIMELIMIT license not time limited
0x72A 1834 ADSERR_DEVICE_LICENSEFUTUREISSUE license issue time in the future
0x72B 1835 ADSERR_DEVICE_LICENSETIMETOLONG license time period to long
0x72c 1836 ADSERR_DEVICE_EXCEPTION exception occured during system start
0x72D 1837 ADSERR_DEVICE_LICENSEDUPLICATED License file read twice
0x72E 1838 ADSERR_DEVICE_SIGNATUREINVALID invalid signature
0x72F 1839 ADSERR_DEVICE_CERTIFICATEINVALID public key certificate
0x740 1856 ADSERR_CLIENT_ERROR Error class <client error>
0x741 1857 ADSERR_CLIENT_INVALIDPARM invalid parameter at service
0x742 1858 ADSERR_CLIENT_LISTEMPTY polling list is empty
0x743 1859 ADSERR_CLIENT_VARUSED var connection already in use
0x744 1860 ADSERR_CLIENT_DUPLINVOKEID invoke ID in use
0x745 1861 ADSERR_CLIENT_SYNCTIMEOUT timeout elapsed
0x746 1862 ADSERR_CLIENT_W32ERROR error in win32 subsystem
0x747 1863 ADSERR_CLIENT_TIMEOUTINVALID Invalid client timeout value
0x748 1864 ADSERR_CLIENT_PORTNOTOPEN ads-port not opened
0x750 1872 ADSERR_CLIENT_NOAMSADDR internal error in ads sync



Appendix

TC3 Condition Monitoring 227Version: 1.4

Hex Dec Name Description
0x751 1873 ADSERR_CLIENT_SYNCINTERNAL hash table overflow
0x752 1874 ADSERR_CLIENT_ADDHASH key not found in hash
0x753 1875 ADSERR_CLIENT_REMOVEHASH no more symbols in cache
0x754 1876 ADSERR_CLIENT_NOMORESYM invalid response received
0x755 1877 ADSERR_CLIENT_SYNCRESINVALID sync port is locked

RTime Error Codes

Hex Dec Name Description
0x1000 4096 RTERR_INTERNAL Internal fatal error in the TwinCAT real-time system
0x1001 4097 RTERR_BADTIMERPERIODS Timer value not vaild
0x1002 4098 RTERR_INVALIDTASKPTR Task pointer has the invalid value ZERO
0x1003 4099 RTERR_INVALIDSTACKPTR Task stack pointer has the invalid value ZERO
0x1004 4100 RTERR_PRIOEXISTS The demand task priority is already assigned
0x1005 4101 RTERR_NOMORETCB No more free TCB (Task Control Block) available. Maximum

number of TCBs is 64
0x1006 4102 RTERR_NOMORESEMAS No more free semaphores available. Maximum number of

semaphores is 64
0x1007 4103 RTERR_NOMOREQUEUES No more free queue available. Maximum number of queue is

64
0x100D 4109 RTERR_EXTIRQALREADYDEF An external synchronization interrupt is already applied
0x100E 4110 RTERR_EXTIRQNOTDEF No external synchronization interrupt applied
0x100F 4111 RTERR_EXTIRQINSTALLFAILED The apply of the external synchronization interrupt failed
0x1010 4112 RTERR_IRQLNOTLESSOREQUAL Call of a service function in the wrong context
0x1017 4119 RTERR_VMXNOTSUPPORTED Intel VT-x extension is not supported
0x1018 4120 RTERR_VMXDISABLED Intel VT-x extension is not enabled in system BIOS
0x1019 4121 RTERR_VMXCONTROLSMISSING Missing function in Intel VT-x extension
0x101A 4122 RTERR_VMXENABLEFAILS Enabling Intel VT-x fails

TCP Winsock Error Codes

Hex Dec Description
0x274d 10061 A connection attempt failed because the connected party did not properly respond after a period of time,

or established connection failed because connected host has failed to respond.
0x2751 10065 No connection could be made because the target machine actively refused it. This error normally occurs when

you try to connect to a service which is inactive on a different host - a service without a server application.
0x274c 10060 No route to a host. 

A socket operation was attempted to an unreachable host
Further Winsock error codes: Win32 Error Codes

7.3 Spectrum Scaling Options
This page provides an overview of the scaling options for spectral calculations. The following table shows
symbols and important parameters for the scaling.

Symbol Function block parame-
ters

Meaning

N nFFT_Length Number of input values of the FFT
Fs Sampling frequency
Ʃwn eWindowFunction,

nWindowLength
Sum of the values of the window function

Ʃwn
2 eWindowFunction,

nWindowLength
Sum of the squared values of the window
function

SQRT(x) Square root of X
MAX(|Xn|) Maximum of the spectral values Xn

RMS(xn) = SQRT([Ʃ (xn)2] / N) Root mean square (effective) value of a
signal



Appendix

TC3 Condition Monitoring228 Version: 1.4

Symbol Function block parame-
ters

Meaning

PSD(Xn) Power Spectral Density
LSD(Xn) Linear Spectral Density
A Amplitude of a reference sine signal

The following table lists default scaling options (of type E_CM_ScalingType [} 165]), which can be selected by
the blocks FB_CM_PowerSpectrum [} 142] and FB_CMA_MagnitudeSpectrum [} 127] and blocks derived from
these. The resulting factors do not have to be evaluated by the user. They are given in the second column in
order to be able to include further parameters if necessary. The values xn denote the input values of the
function block and the values Xk the spectral value for the frequency channel k resulting from the scaling.

Scaling option Contained factor Description
Deterministic signals
eCM_PeakAmplitude 2 / Ʃwn This scaling adapts the magnitude values in such a

way that an input sine signal with the amplitude A
reaches a maximum value of A. The result is
independent of the type of window function. The unit
of the magnitude value is the same as the unit of the
input signal.
MAX(|Xk|) = A
However, the maximum values of the spectrum do
not enable a robust estimation of the amplitude, since
so-called Scalloping Losses may occur.

eCM_ROOT_POWER_SUM 2 / SQRT(N * Ʃwn 2) This scaling adapts the spectral values in such a way
that for an input sine signal with the amplitude A, the
square of the sum of the power values has the value
A. Accordingly the square root of the sum of the
squares of the magnitude values can also be used.
The result is thus equal to the RMS value of the input
signal multiplied by SQRT(2).
SQRT(Ʃ|Xk|2) = A
This scaling is suitable for the evaluation of narrow-
band signals. Since the summing via neighboring
frequency bands reduces scalloping losses, it is
considerably more robust than
eCM_PeakAmplitude.

eCM_RMS SQRT(2/N * Ʃwn 2) This scaling results in power values and the square
root of their sum is equal to the RMS value of the
input signal. A sine signal with the amplitude A results
in a value of A/SQRT(2):
SQRT(Ʃ|X(k)|2) = RMS(xn) = A * SQRT(1/2)
Like eCM_ROOT_POWER_SUM this scaling is also
robust and suitable for the evaluation of narrow-band
signals. In addition the RMS value is also well-
defined for broadband signals.

Stochastic and broadband signals



Appendix

TC3 Condition Monitoring 229Version: 1.4

Scaling option Contained factor Description
eCM_PowerSpectralDen
sity

SQRT(2 / Ʃwn
2) This scaling determines the Power Spectral Density

(PSD). For broadband and stochastic signals this is
independent of the parameters of the FFT and
window function.
PSD(Xk) = |Xk|2/FS

In order to determine a physically correct power
spectral density, the result must additionally be
divided by the sampling rate of the input signal in
Hertz. If the input signal has the unit Volt, then the
unit 1 V/Hz is obtained for the magnitude and the unit
1 V2/Hz for the power density. Division by the root of
the sampling rate must take place for the Linear
Spectral Density; the unit is then 1 V/(1 Hz)1/2:
LSD(Xk) = |Xk|/ SQRT(FS)

eCM_UnitaryScaling SQRT(1 / Ʃwn 2) This scaling determines power densities similar to an
FFT, which is divided by the value SQRT(N). It
therefore corresponds to a so-called unitary FFT, for
which the same factors apply for the transformation
and inverse transformation.

Elementary
eCM_DiracScaling sqrt(N / Ʃwn 2 ) This scaling normalizes the power spectrum in such a

way that the broadband signal is equal to the
unscaled FFT (with the definition given above). The
influence of window type and window length is thus
eliminated. However, the effect of the FFT length N
exists just as it does with the unscaled FFT.

eCM_NoScaling 1 No scaling. The result consists of the application of
the window function (which always has a maximum of
one in accordance with convention) followed by the
FFT.

eCM_GainCorrection SQRT(Ʃwn 2 / (Ʃwn)2) This scaling divides the signal by the processing gain
of the window function, which is the reciprocal value
of the Effective Noise Bandwidth.



Glossary

TC3 Condition Monitoring230 Version: 1.4

Glossary
Acceleration Spectral Density (ASD)

is the name given to the physical variable rep-
resented by the output values of the Fourier
transformation if the input signal is an accelera-
tion signal such as is measured, for example,
by a piezoelectric vibration pick-up. If inte-
grated over a frequency interval, the accelera-
tion density produces a frequency-specific ac-
celeration in much the same way as the power
density. The usual unit is 1 millimetre per sec-
ond squared per Hertz = 1 mm ⁄ s2 ⁄ Hz.

Aliasing
is an error that occurs if frequencies occur in a
signal that are higher than half the sampling
rate. In this case the signal from the sampling
can no longer be clearly reconstructed (Nyquist
theorem). These frequencies are reflected in
the spectrum as so-called image frequencies.

Angle of contact
is the angle between the line along which the
balls of a ball bearing touch the running sur-
face and the plane that is perpendicular to the
axis of the bearing. While the angle of contact
is always close to zero in the case of bearings
designed exclusively for radial loads, it can be
significantly larger with bearings that also bear
axial loads. It therefore depends both on the
geometry and on the current load on the bear-
ing and has an effect on the observable dam-
age frequencies due to the pitch diameter.
These are therefore not constant in the case of
bearings for axial loads.

Artefacts
unwanted changes in the signal that result from
errors in the processing, for example due to
aliasing.

Bessel’s correction
correction that takes into account the number
of the degrees of freedom when estimating sta-
tistical moment coefficients from a series of
data. Specifically, for example, the standard
deviation is corrected by multiplying it by the
factor sqrt(n/(n-1)), the skew by sqrt(n*(n-1)/
(n-2)) and so on. The factor is generally negli-
gible if n is a larger number.

Bin
designates one channel of a multi-channel sig-
nal output. The designation is used in particular
with transformations that convert signals, such
as the FFT or the formation of the histogram.

Cepstrum
is a transformation based on frequency analy-
sis that emphasises periodic elements in the
spectrum due to harmonics or amplitude modu-
lations. Distinction is made between the power
cepstrum and the complex cepstrum.

Circular aliasing
is an artefact that can occur when signals are
modified in the frequency domain and then
transformed back into the time domain by
means of an inverse FFT (Overlap-Add
method). The modification can be described as
a multiplication in the frequency domain, which
generally corresponds to filtering in the time
domain. This is equivalent to a cyclically de-
fined folding with the pulse response of the fil-
tering. If the pulse response is too long, then
signal portions belonging to the beginning of
the time period appear at the end of the section
and vice versa. The reason for this is the cyclic
definition of the discrete Fourier transformation.
Extensive modifications in the frequency do-
main can thus lead to artefacts. As counter-
measure the time signal can be supplemented
by zeros before processing (zero padding), so
that a reserve is created for the extension of
the signal.

Complexity
in this case: specification of the required re-
sources of an algorithm (computing time and, if
necessary, memory space). Condition Monitor-
ing functions are called with vastly different
data quantities; while a short-term FFT may be
called with only 32 values, it may be useful, for
example, to calculate a cepstrum for 16000
values. Therefore, in the case of a variable
number of input data n, the algorithm is ob-
served to see how it behaves with an increas-
ing amount of data; in computer science this is
normally described by the notation O(f(n)) (also
called ‘Landau Notation’). This notation states
that the complexity does not grow significantly
faster than a function f(n) as n increases. An
algorithm with the computing time complexity
O(n) thus requires, for example, eight times the
computing time for eight times the data amount
n, while an algorithm with the complexity O(n2)
already requires sixty-four times the computing
time. An FFT of the complexity O(n * log2 n)
conversely requires 112 times the computing
time for n=16384 compared to n=256. With
small amounts of data the computing time is
usually dominated by a portion that is indepen-
dent of the number of input data.



Glossary

TC3 Condition Monitoring 231Version: 1.4

Crest factor
relationship between the peak value and the
RMS value of a signal, normally expressed in
decibels.

Damage frequencies
are characteristic frequencies that occur when
certain machine elements are damaged. For
example, certain frequencies are assigned to
damage to the rolling elements, inner race,
outer race and cage in roller bearings and
these frequencies are proportional to the speed
of rotation of the axis, depending on the angle
of contact.

Decibel or dB
logarithmic scale for evaluating the intensity of
oscillations or of intensity ratios. A decibel
(symbol dB) is defined as one tenth of the aux-
iliary unit of measurement Bel. If x is a power
value, then the value y in decibels = 20 *
log10(x/x0). The value 1 or a defined reference
value is used for x0.

FFT
or Fast Fourier Transformation: Fast Fourier
Transformation, a calculation method for calcu-
lating the discrete Fourier transformation.
Strictly speaking several such calculation
methods exist, wherein the common implemen-
tations permit only power-of-two numbers as
the input length (Cooley-Tukey algorithm). The
common feature is a complexity of the order
O(n * nlog(n)), i.e. the calculation of an FFT
with 2048 points is a little more than four times
as complex as for 512 points.

Fourier transformation
is a transformation that enables a time signal to
be decomposed into different frequency por-
tions, thus forming the basis for many fre-
quency analysis methods. Instead of the con-
tinuous Fourier transformation, which repre-
sents a continuous function of an infinite signal,
the discrete Fourier transformation (DFT) is
normally used in practice as it is defined for a
discrete, periodic signal. An efficient implemen-
tation of the discrete Fourier transformation,
which is of great practical importance, is the
Fast Fourier Transformation (FFT).

Frequency domain
or frequency space is the name given to the
representation of a signal on the basis of the
values of the FFT. Since the complex Fourier
spectrum of every signal can be clearly repre-
sented and can be transformed back into an
equivalent time signal without losses, fre-
quency domain and time domain (as so-called
‘orthonormal bases’ in the function space) rep-

resent equivalent representations of the same
signal. Many operations for the analysis of sig-
nals can be performed more simply and effi-
ciently in the frequency domain than in the time
domain.

Harmonics
are oscillations that occur as integer multiples
of a basic frequency. They are characteristic of
pulse-type excitations and non-linear effects at
the origin of the oscillation and in this case can
typically be recognised by groups of lines in the
spectrum with a constant distance between
one another.

Hilbert Transformation
transformation that efficiently determines the
ninety-degree phase-shifted signal from an os-
cillation signal. The Hilbert Transformation is
used, for example, for the calculation of the an-
alytical signal.

Kurtosis
(sometimes also curtosis or curvature): indica-
tor of the ‘impulsiveness’ or ‘peakness’ of a
statistical distribution of values, determined
from the fourth central statistical moment. For
better evaluation of distributions, often the dis-
tance between curtosis of the measured distri-
bution and curtosis of the normal distribution
(value is 3) is used. This is then called excess
curtosis. A Gaussian distribution accordingly
has the excess curtosis zero, a distribution with
many outliers achieves a value much greater
than zero.

Machine protection
is the name given to methods that aim to auto-
matically switch a plant off as quickly as possi-
ble if monitoring parameters exceed a critical
threshold. In this way accidents and damage
can be avoided.

Moment coefficients
is a collective term for statistical values such as
mean value, standard deviation, skew and kur-
tosis of statistical variables. They are called
that because they can be calculated from the
central statistical moments of the probability
distributions or histograms of these variables.

NaN (Not a Number)
is a symbolic constant that marks invalid or
missing values according to the IEC 745 stan-
dard. The following points rank among the
main characteristics of NaN values: All arith-
metic operations that use NaN as input data re-
turn NaN as the result. All relational operators
=, !=, > < >= <= always return the value False if
at least one of the operands is NaN. The stan-



Glossary

TC3 Condition Monitoring232 Version: 1.4

dard function isnan or _isnan returns the value
True if the argument has the value NaN. The
expression isnan(a) is equivalent to the expres-
sion !(a == a) or NOT(a = a). The fact that NaN
values reproduce themselves when used in fur-
ther calculations is advantageous in that invalid
values cannot be overlooked

Nyquist theorem or sampling theorem
a theorem from communication technology and
signal processing that states, slightly simplified,
that a continuous signal must be sampled with
a frequency greater than double that of the
highest frequency contained in the signal so
that the original signal can be reconstructed
without loss of information or ambiguity from
the time-discrete signal obtained in this way.
This maximum frequency is called the Nyquist
frequency. In practice filters are integrated into
most D/A convertors that limit the maximum
frequency of the input signal to a value smaller
than half the sampling rate.

Overlap-Add method
a method that enables a signal to be decom-
posed initially into short-term spectra without
loss of information, then to process it further
(e.g. to filter it) in the frequency domain and
then to reconstruct it as a continuous time sig-
nal again.

Quantile or percentile
is the designation of a value that is determined
from a statistical variable. First of all its empiri-
cal frequency distribution (density function) is
determined and from this the cumulative fre-
quency distribution (also called cumulative dis-
tribution function) is calculated. The value of
the percentile q is the maximum value which
the random variable reaches in q percent of all
cases, but does not exceed. This value is de-
termined by the formation of the inverse func-
tion of the cumulative frequency distribution.
The only difference between quantiles and per-
centiles is that quantiles use the decimal frac-
tion instead of the corresponding percentages.
The value of the 50-percent percentile is also
called the median.

Quefrency
is the name given to the time axis that results
from the calculation of the cepstrum. As a
‘scrambled’ reversal of the term ‘Frequency’,
the name suggests the operations ‘inversion’
and ‘re-sorting’ which are characteristic of the
cepstrum. As a result of two successive Fourier
transformations, a transformation into the fre-
quency domain initially results, with the as-
signed unit 1 Hertz. The second transformation
leads in turn to a time domain in which, how-
ever, it is no longer the absolute time that lies

on the axis, but the periodic durations deter-
mined by means of the cepstrum. The unit of
quefrency is a second.

RCFA or Root Cause Failure Analysis
name for the analysis for the determination of
primary causes of damage. This is of particular
importance in the case of roller bearings, since
primary damage leads to more complex conse-
quential damage. Determination of the causes
allows the emergence of damage to be effec-
tively reduced.

Sampling frequency
is the frequency with which the analog signal is
originally sampled and converted into digital
values. This conversion takes place in steps of
a constant length of time called the sampling
period. The inverse value of the sampling pe-
riod is called the sampling frequency and is ex-
pressed in Hertz. See also ‘Nyquist theorem’.

Scalloping
is the effect that the precise spectral value of
narrow-band signals (for instance a sine signal
or that of a calibrator) depends on which part of
the FFT channel the frequency of the channel
lies. The extent of the effect depends on the
window function.

Skew
measurement of the asymmetry of a statistical
distribution, determined from the third central
statistical moment. A symmetrical distribution
has a skew of zero.

Time domain
denotes the representation of a signal using
the temporally sampled values, as is originally
available following a measurement. Since the
Fourier spectrum of every signal can also be
clearly represented and can be transformed
back into an equivalent time signal without
losses, the time domain and frequency domain
(as so-called ‘orthonormal bases’ in the func-
tion space) represent equivalent representa-
tions of the same signal.

Tooth engagement frequencies
or meshing frequencies denotes the frequency
with which the pairs of teeth in a gearbox touch
each other. This contact causes the so-called
meshing oscillation.

Window functions
functions that are used, for example, in con-
junction with a frequency analysis ( Welch
method) to decompose long input signals with-
out the addition of artificial jumps. As standard



Glossary

TC3 Condition Monitoring 233Version: 1.4

the Hann window can be used in almost all
cases. The choice of window function affects
the frequency and time resolution of the fre-
quency analysis.

Windowing
is the name given to the calculation step of the
multiplication by a window function (see
above).

Zero Padding
denotes a processing step that is applied when
an FFT with a certain length is to be calculated
from a smaller number of samples. To do this
the values of the time series are filled at the
front and rear with zeros until the desired num-
ber of the values is attained. This usually re-
quires the windowing of the signal e.g. accord-
ing to the Welch method, so that no false
jumps are created in the time series. Zero pad-
ding increases the frequency resolution of an
FFT, which is equal to the sampling rate di-
vided by the number of FFT points, but the in-
formation content of the original signal is, of
course, not increased.


	 Table of contents
	1 Foreword
	1.1 Notes on the documentation
	1.2 Safety instructions

	2 Overview
	2.1 Introduction
	2.1.1 Fourier analysis
	2.1.2 Analysis of data streams
	2.1.3 Triggered analysis of a time period
	2.1.4 Scaling of spectra
	2.1.5 Statistical analysis

	2.2 Application concepts
	2.2.1 Vibration assessment
	2.2.2 Frequency analysis
	2.2.3 Bearing monitoring
	2.2.4 Gearbox monitoring

	2.3 Literature notes

	3 Installation
	3.1 System requirements
	3.2 Installation
	3.3 Licensing

	4 Technical introduction
	4.1 Memory Management
	4.2 Task Setting
	4.3 NaN values
	4.4 Parallel processing with Transfer Tray
	4.5 MultiArray Handling

	5 PLC API
	5.1 Function blocks
	5.1.1 FB_CMA_AnalyticSignal
	5.1.2 FB_CMA_ArgSort
	5.1.3 FB_CMA_BufferConverting
	5.1.4 FB_CMA_CrestFactor
	5.1.5 FB_CMA_ComplexFFT
	5.1.6 FB_CMA_DiscreteClassification
	5.1.7 FB_CMA_Downsampling
	5.1.8 FB_CMA_EmpiricalExcess
	5.1.9 FB_CMA_EmpiricalMean
	5.1.10 FB_CMA_EmpiricalSkew
	5.1.11 FB_CMA_EmpiricalStandardDeviation
	5.1.12 FB_CMA_Envelope
	5.1.13 FB_CMA_EnvelopeSpectrum
	5.1.14 FB_CMA_HistArray
	5.1.15 FB_CMA_InstantaneousFrequency
	5.1.16 FB_CMA_InstantaneousPhase
	5.1.17 FB_CMA_IntegratedRMS
	5.1.18 FB_CMA_MagnitudeSpectrum
	5.1.19 FB_CMA_MomentCoefficients
	5.1.20 FB_CMA_MultiBandRMS
	5.1.21 FB_CMA_PowerCepstrum
	5.1.22 FB_CMA_PowerSpectrum
	5.1.23 FB_CMA_RealFFT
	5.1.24 FB_CMA_Quantiles
	5.1.25 FB_CMA_RMS
	5.1.26 FB_CMA_Sink
	5.1.27 FB_CMA_Source
	5.1.28 FB_CMA_WatchUpperThresholds

	5.2 Functions
	5.2.1 F_MA_IsNAN

	5.3 Data types
	5.3.1 E_CM_MCoefOrder
	5.3.2 E_CM_ScalingType
	5.3.3 E_CM_WindowType
	5.3.4 E_MA_ElementTypeCode
	5.3.5 Error codes
	5.3.5.1 E_CM_ErrorCode
	5.3.5.2 E_CMA_ErrorCode
	5.3.5.3 E_MA_ErrorCode

	5.3.6 InitPars structures
	5.3.6.1 ST_CM_AnalyticSignal_InitPars
	5.3.6.2 ST_CM_ArgSort_InitPars
	5.3.6.3 ST_CM_CrestFactor_InitPars
	5.3.6.4 ST_CM_ComplexFFT_InitPars
	5.3.6.5 ST_CM_DiscreteClassification_InitPars
	5.3.6.6 ST_CM_EmpiricalMoments_InitPars
	5.3.6.7 ST_CM_Envelope_InitPars
	5.3.6.8 ST_CM_EnvelopeSpectrum_InitPars
	5.3.6.9 ST_CM_HistArray_InitPars
	5.3.6.10 ST_CM_InstantaneousFrequency_InitPars
	5.3.6.11 ST_CM_InstantaneousPhase_InitPars
	5.3.6.12 ST_CM_IntegratedRMS_InitPars
	5.3.6.13 ST_CM_MagnitudeSpectrum_InitPars
	5.3.6.14 ST_CM_MomentCoefficients_InitPars
	5.3.6.15 ST_CM_MultiBandRMS_InitPars
	5.3.6.16 ST_CM_PowerCepstrum_InitPars
	5.3.6.17 ST_CM_PowerSpectrum_InitPars
	5.3.6.18 ST_CM_Quantiles_InitPars
	5.3.6.19 ST_CM_RealFFT_InitPars
	5.3.6.20 ST_CM_RMS_InitPars
	5.3.6.21 ST_CM_WatchUpperThresholds_InitPars
	5.3.6.22 ST_MA_MultiArray_InitPars
	5.3.6.23 ST_MA_TransferTray_InitPars


	5.4 Global constants
	5.4.1 GVL_CM
	5.4.2 GVL_CM_Base
	5.4.3 Global_Version


	6 Samples
	6.1 FFT with real-value input signal
	6.2 FFT with complex-value input signal
	6.3 Magnitude spectrum:
	6.4 Multi-channel magnitude spectrum
	6.5 Window functions
	6.6 Scaling of spectra
	6.7 Time-based RMS
	6.8 Multi-band RMS
	6.9 Histogram
	6.10 Statistical methods
	6.11 Vibration assessment according to ISO 10816-3
	6.12 Condition Monitoring with frequency analysis
	6.13 Threshold value consideration for averaged magnitude spectra
	6.14 Crest factor
	6.15 Envelope spectrum
	6.16 Power cepstrum
	6.17 Event-based frequency analysis

	7 Appendix
	7.1 Error Codes Overview
	7.2 ADS Return Codes
	7.3 Spectrum Scaling Options

	 Glossary

