
Manual

TC3 Modbus RTU

TwinCAT 3

1.0
2014-06-17
TF6255

Version
Date
Order No.

Table of contents

Table of contents
1 Foreword .. 4

1.1 Notes on the documentation... 4
1.2 Safety instructions .. 5

2 Overview... 6

3 Installation.. 7
3.1 System Requirements .. 7
3.2 Installation... 7
3.3 Licensing... 10

4 Configuration ... 15
4.1 Terminal configuration .. 15
4.2 Modbus address arrays .. 15

5 PLC libraries .. 18
5.1 Function blocks... 18

5.1.1 ModbusRtuMaster_PcCom... 18
5.1.2 ModbusRtuSlave_PcCom... 20
5.1.3 ModbusRtuMaster_KL6x5B .. 21
5.1.4 ModbusRtuSlave_KL6x5B .. 23
5.1.5 ModbusRtuMaster_KL6x22B .. 24
5.1.6 ModbusRtuSlave_KL6x22B .. 27

5.2 Datatypes.. 28
5.2.1 Modbus station address.. 28

5.3 Global Constants .. 28
5.3.1 Library Version.. 28

6 Samples.. 30
6.1 Modbus RTU Master PC COM port .. 30
6.2 Modbus RTU slave via PC COM port ... 32

7 Appendix .. 34
7.1 Modbus RTU Error Codes .. 34

TC3 Modbus RTU 3Version 1.0

Foreword

1 Foreword

1.1 Notes on the documentation
This description is only intended for the use of trained specialists in control and automation engineering who
are familiar with the applicable national standards.
It is essential that the following notes and explanations are followed when installing and commissioning
these components.

The responsible staff must ensure that the application or use of the products described satisfy all the
requirements for safety, including all the relevant laws, regulations, guidelines and standards.

Disclaimer
The documentation has been prepared with care. The products described are, however, constantly under
development.
For that reason the documentation is not in every case checked for consistency with performance data,
standards or other characteristics.
In the event that it contains technical or editorial errors, we retain the right to make alterations at any time
and without warning.
No claims for the modification of products that have already been supplied may be made on the basis of the
data, diagrams and descriptions in this documentation.

Trademarks
Beckhoff®, TwinCAT®, EtherCAT®, Safety over EtherCAT®, TwinSAFE®, XFC®and XTS® are registered
trademarks of and licensed by Beckhoff Automation GmbH.
Other designations used in this publication may be trademarks whose use by third parties for their own
purposes could violate the rights of the owners.

Patent Pending
The EtherCAT Technology is covered, including but not limited to the following patent applications and
patents:
EP1590927, EP1789857, DE102004044764, DE102007017835
with corresponding applications or registrations in various other countries.

The TwinCAT Technology is covered, including but not limited to the following patent applications and
patents:
EP0851348, US6167425 with corresponding applications or registrations in various other countries.

EtherCAT® is registered trademark and patented technology, licensed by Beckhoff Automation GmbH,
Germany

Copyright
© Beckhoff Automation GmbH & Co. KG, Germany.
The reproduction, distribution and utilization of this document as well as the communication of its contents to
others without express authorization are prohibited.
Offenders will be held liable for the payment of damages. All rights reserved in the event of the grant of a
patent, utility model or design.

TC3 Modbus RTU4 Version 1.0

Foreword

1.2 Safety instructions

Safety regulations
Please note the following safety instructions and explanations!
Product-specific safety instructions can be found on following pages or in the areas mounting, wiring,
commissioning etc.

Exclusion of liability
All the components are supplied in particular hardware and software configurations appropriate for the
application. Modifications to hardware or software configurations other than those described in the
documentation are not permitted, and nullify the liability of Beckhoff Automation GmbH & Co. KG.

Personnel qualification
This description is only intended for trained specialists in control, automation and drive engineering who are
familiar with the applicable national standards.

Description of symbols
In this documentation the following symbols are used with an accompanying safety instruction or note. The
safety instructions must be read carefully and followed without fail!

DANGER

Serious risk of injury!
Failure to follow the safety instructions associated with this symbol directly endangers the
life and health of persons.

WARNING

Risk of injury!
Failure to follow the safety instructions associated with this symbol endangers the life and
health of persons.

CAUTION

Personal injuries!
Failure to follow the safety instructions associated with this symbol can lead to injuries to
persons.

Attention

Damage to the environment or devices
Failure to follow the instructions associated with this symbol can lead to damage to the en-
vironment or equipment.

Note

Tip or pointer
This symbol indicates information that contributes to better understanding.

TC3 Modbus RTU 5Version 1.0

Overview

2 Overview
The TwinCAT 3 Modbus RTU offers function blocks for serial communication with Modbus end devices.

Modbus RTU devices can be connected to a TwinCAT controller via a serial interface. The TwinCAT PLC
uses the slave function blocks of the Modbus RTU library to communicate with the Modbus master (Slave
Mode). Alternatively, Modbus master functions are available, which can address one or several Modbus
slaves (Master Mode).

Supported devices
• Serial COM-Port of a PC or CX
• Serial COM-Port of a Beckhoff BX Controller
• Serial KL-Terminals KL60xx
• Serial EtherCAT-Terminal EL60xx

Further documentation

Technical details and specification about Modbus can be found under: http://www.modbus.org

TC3 Modbus RTU6 Version 1.0

http://www.modbus.org

Installation

3 Installation

3.1 System Requirements
Technical Data TF6255 TC3 Modbus-RTU
Target System Windows XP / 7

PC or CX (x86)
Min. TwinCAT-Version 3.0.3101
Min. TwinCAT-Level TC1200 TC3 PLC

3.2 Installation
Description of the installation procedure of a TwinCAT 3 Function for Windows-based operating Systems.

1. Double-click the downloaded setup file "TFxxxx".
Please note: Under Windows 32-bit/64-bit, please start the installation with "Run as Administrator" by
right-clicking the setup file and selecting the corresponding option in the context menu.

2. Click on "Next" and accept the license Agreement.

TC3 Modbus RTU 7Version 1.0

Installation

3. Enter your user information in the specified area.

4. To install the full product, including all sub-components, please choose "Complete" as the Setup
Type.Alternatively you can also install each component seperately by choosing "Custom".

TC3 Modbus RTU8 Version 1.0

Installation

5. Click on "Install"after pressing the "Next" to start the Installation.

The TwinCAT system has to be stopped before proceeding with installation
6. Confirm the Dialog with "Yes".

TC3 Modbus RTU 9Version 1.0

Installation

7. Select "Finish" to end the installation process.

ð The installation is complete now.

After a successful installation the TC 3Function needs to be licensed [} 10].

3.3 Licensing
The TwinCAT 3 functions are available both as a full and as a 7-Day trial version. Both license types can be
activated via TwinCAT XAE.For more information about TwinCAT 3 licensing, please consult the TwinCAT 3
Help System.The following document describes both licensing scenarios for a TwinCAT 3 function on
TwinCAT 3 and is divided into the following sections:

• Licensing a 7-Day trial version [} 10]

• Licensing a full version [} 11]

Licensing a 7-Day trial version
1. Start TwinCAT XAE
2. Open an existing TwinCAT 3 project or create a new project
3. In “Solution Explorer”, please navigate to the entry “System\License”

TC3 Modbus RTU10 Version 1.0

Installation

4. Open the tab "Manage Licenses" and add a "Runtime License" for your product (in this screenshot
“TE1300: TC3 Scope View Professional”)

5. Optional: If you would like to add a license for a remote device, you first need to connect to the remote
device via TwinCAT XAE toolbar

6. Switch to the tab "Order Information" and click the button "Activate 7 Days Trial License..."to
activate a test version

7. Please restart TwinCAT 3 afterwards.

Licensing a full version
8. Start TwinCAT XAE
9. Open an existing TwinCAT 3 project or create a new project

TC3 Modbus RTU 11Version 1.0

Installation

10. In "Solution Explorer", please navigate to the entry "SYSTEM\License"

11. Open the tab "Manage Licenses" and add a "Runtime License" for your product (in this screenshot "
TE1300: TC3 Scope View Professional”).

12. Optional:If you would like to add a license for a remote device, you first need to connect to the remote
device via TwinCAT XAE toolbar

13. Navigate to the "Order Information" tab
The fields "System-ID" and "HW Platform" cannot be changed and just describe the platform for the
licensing process in general a TwinCAT 3 license is always bound to these two identifiers:
the "System-ID" uniquely identifies your system.
The "HW Platform" is an indicator for the performance of the device.

14. Optionally, you may also enter an own order number and description for your convenience

TC3 Modbus RTU12 Version 1.0

Installation

15. enter the "Beckhoff License ID" and click on "Generate License Request File...". If you are not aware
of your "Beckhoff License ID" please contact your local sales representative.

16. After the license request file has been saved, the system asks whether to send this file via E-Mail to the
Beckhoff Activation Server

17. After clicking "Yes", the standard E-Mail client opens and creates a new E-Mail message to
"tclicense@beckhoff.com" which contains the "License Request File"

18. Send this Activation Request to Beckhoff
NOTE! The “License Response File“ will be sent to the same E-Mail address used for sending

out the ”License Request File”
19. After receiving the activation file, please click on the button "Activate License Response File..."in the

TwinCAT XAE license Interface.

TC3 Modbus RTU 13Version 1.0

mailto:tclicense@beckhoff.com

Installation

20. Select the received "Licnse response file" and click on "Open"

21. The "License Response File" will be imported and all included licenses will be activated. If there have
been any trial licenses, these will be removed accordingly.

22. Please restart TwinCAT to activate licenses..

NOTE! The license file will be automatically copied to "..\TwinCAT\3.1\Target\License" on the
local device.

TC3 Modbus RTU14 Version 1.0

Configuration

4 Configuration

4.1 Terminal configuration
The Bus Terminals KL6001, KL6011, KL6021, KL6031 and KL6041 can be parameterized with the KS2000
configuration software. Alternatively, the system can be configured via PLC blocks included in the serial
communication library ComLib.lib. If the serial communication library is not used in conjunction with the
Modbus RTU library, the basic library KL6Config.lib, which is supplied with the Modbus RTU library, can be
integrated. This library contains the following blocks from the serial communication library.

• KL6configuration
• KL6ReadRegisters
• KL6WriteRegisters
• ComReset

4.2 Modbus address arrays
Modbus defines access functions for different data arrays. These data arrays are declared as variables in a
TwinCAT PLC program, e.g. as word arrays, and transferred to the Modbus slave function block as input
parameters. Each array has a different Modbus start address, so that the arrays can be distinguished
unambiguously. This offset has to be taken account of for addressing.

Inputs
The Inputs data array usually describes the physical input data with read-only access. They can be digital
inputs (bit) or analog inputs (word). The PLC programmer can decide whether or not to grant the
communication partner direct access to the physical inputs. It is also possible to define an input array for
Modbus communication that is not identical with the physical inputs:

Definition of the Modbus input data as direct image of the physical inputs. Start and size of the data array
can be specified freely. They are limited by the actual size of the input process image of the controller used.
VAR
Inputs AT%IW0 : ARRAY[0..255] OF WORD;
END_VAR

Definition of the Modbus input data as a separate Modbus data array independent of the physical inputs
VAR
Inputs : ARRAY[0..255] OF WORD;
END_VAR

Access to the Input array via a Modbus master is possible with the following Modbus functions:
2 : Read Input Status
4 : Read Input Registers

Addressing

The Input array is addressed with a 0 offset, i.e. address 0 as transferred in the telegram addresses the first
element in the input data array.

Examples:

TC3 Modbus RTU 15Version 1.0

Configuration

PLC variable Access type Address in the
Modbus telegram

Address in the end de-
vice
(device-dependent)

Inputs[0] Word 16#0 30001
Inputs[1] Word 16#1 30002
Inputs[0], Bit 0 Bit 16#0 10001
Inputs[1], Bit 14 Bit 16#1E 1001F

Outputs
The Outputs data array usually describes the physical output data with read and write access. Outputs can
be digital outputs (coils) or analog outputs (output registers). Like for the Inputs, the array can be declared as
a physical output variable or as a simple variable.

Definition of the Modbus output data as direct image of the physical outputs. Start and size of the data array
can be specified freely. They are limited by the actual size of the output process image of the controller used.
VAR
Outputs AT%QW0 : ARRAY[0..255] OF WORD;
END_VAR

Definition of the Modbus output data as a separate Modbus data array independent of the physical outputs
VAR
Outputs : ARRAY[0..255] OF WORD;
END_VAR

Access to the Output array via a Modbus master is possible with the following Modbus functions:
1 : Read Coil Status
3 : Read Holding Registers
5 : Force Single Coil
6 : Preset Single Register
15 : Force Multiple Coils
16 : Preset Multiple Registers

Addressing

The Output array is addressed with a 16#800 offset, i.e. address 16#800 as transferred in the telegram
addresses the first element in the output data array.

Examples:

PLC variable Access type Address in the
Modbus telegram

Address in the end de-
vice
(device-dependent)

Outputs[0] Word 16#800 40801
Outputs[1] Word 16#801 40802
Outputs[0], Bit 0 Bit 16#800 00801
Outputs[1], Bit 14 Bit 16#81E 0081F

Memory
The Memory data array describes a PLC variable array without physical I/O assignment.

Definition of the Modbus memory data as PLC flags. Start and size of the data array can be specified freely.
VAR
Memory AT%MW0 : ARRAY[0..255] OF WORD;
END_VAR

Definition of the Modbus memory data as variable without flag address

TC3 Modbus RTU16 Version 1.0

Configuration

VAR
Memory : ARRAY[0..255] OF WORD;
END_VAR

Access to the Memory array via a Modbus master is possible with the following Modbus functions:
3 : Read Holding Registers
6 : Preset Single Register
16 : Preset Multiple Registers

Addressing

The Memory array is addressed with a 16#4000 offset, i.e. address 16#4000 as transferred in the telegram
addresses the first word in the output data array.

Examples:

PLC variable Access type Address in the
Modbus telegram

Address in the end de-
vice
(device-dependent)

Memory[0] Word 16#4000 44001
Memory[1] Word 16#4001 44002

TC3 Modbus RTU 17Version 1.0

PLC libraries

5 PLC libraries

5.1 Function blocks

5.1.1 ModbusRtuMaster_PcCom

The function block ModbusRtuMaster_PcCom implements a Modbus master that communicates via a serial
PC interface (COM port). The block is not called in its basic form, but individual actions of that block are used
within a PLC program. Each Modbus function is implemented as an action.

The function block ModbusRtuMaster_KL6x5B [} 21] is available for communication via a serial Bus
Terminal KL6001, KL6011 or KL6021.

Supported Modbus functions (actions)
• ModbusMaster.ReadCoils

Modbus function 1 = Read Coils
Reads binary outputs (coils) from a connected slave. The data is stored in compressed form (8 bits
per byte) from the specified address pMemoryAddr.

• ModbusMaster.ReadInputStatus
Modbus function 2 = Read Input Status

Reads binary inputs from a connected slave. The data is stored in compressed form (8 bits per
byte) from the specified address pMemoryAddr.

• ModbusMaster.ReadRegs
Modbus function 3 = Read Holding Registers

Reads data from a connected slave.
• ModbusMaster.ReadInputRegs

Modbus function 4 = Read Input Registers
Reads input registers from a connected slave.

• ModbusMaster.WriteSingleCoil
Modbus function 5 = Write Single Coil
Sends a binary output (coil) to a connected slave. The data must be ready to send in compressed form
(8 bits per byte) from the specified address pMemoryAddr.

• ModbusMaster.WriteSingleRegister
Modbus function 6 = Write Single Register
Sends a single data word to a connected slave

• ModbusMaster.WriteMultipleCoils
Modbus function 15 = Write Multiple Coils
Sends binary outputs (coils) to a connected slave. The data must be ready to send in compressed form
(8 bits per byte) from the specified address pMemoryAddr.

• ModbusMaster.WriteRegs
Modbus function 16 = Preset Multiple Registers
Sends data to a connected slave

TC3 Modbus RTU18 Version 1.0

PLC libraries

• ModbusMaster.Diagnostics
Modbus function 8 = Diagnostics
Sends a diagnostic request to the slave with a user-specified function code (subfunction code). Since
this function does not address a memory, the function code is transferred in the data word MBAddr.
Any data required for the function is included in pMemoryAddr.

VAR_INPUT

VAR_INPUT
UnitID : UINT;
Quantity: WORD;
MBAddr : WORD;
cbLength: UINT;
pMemoryAddr : DWORD;
Execute : BOOL;
Timeout : TIME;
END_VAR

UnitID [} 28]

UnitID: Modbus station address [} 28] (1..247). The Modbus slave will only answer if it receives telegrams
containing its own station address. Optionally, collective addresses can be used for replying to any requests.
Address 0 is reserved for broadcast telegrams and is therefore not a valid station address.

Quantity: Number of data words to be read or written for word-oriented Modbus functions. For bit-oriented
Modbus functions, Quantity specifies the number of bits (inputs or coils).

MBAddr: Modbus data address, from which the data are read from the end device (slave). This address is
transferred to the slave unchanged and interpreted as a data address.
In the Diagnostics function (8), the function code (subfunction code) is transferred here.

cbLength : Size of the data variable used for send or read actions in bytes. cbLength must be greater than
or equal to the transferred data quantity as specified by Quantity. Example for word access: [cbLength >=
Quantity * 2]. cbLength can be calculated via SIZEOF (Modbus data).

pMemoryAddr: Memory address in the PLC, calculated with ADR (Modbus data). For read actions, the read
data are stored in the addressed variable. For send actions, the data are transferred from the addressed
variable to the end device.

Execute : Start signal. The action is initiated via a rising edge at the Execute input.

Timeout: Timeout value for waiting for a response from the addressed slave.

VAR_OUTPUT

VAR_OUTPUT
BUSY : BOOL;
Error : BOOL;
ErrorId : MODBUS_ERRORS;
cbRead : UINT;
END_VAR

Busy: Indicates that the function block is active. Busy becomes TRUE with a rising edge at Execute and
becomes FALSE again once the started action is completed. At any one time, only one action can be active.

Error: Indicates that an error occurred during execution of an action.

ErrorId: Indicates an error number [} 34] in the event of disturbed or faulty communication.

cbRead: Provides the number of read data bytes for a read action

Hardware connection
The data structures required for the link with the communication port are included in the function block. They
are displayed in the TwinCAT System Manager once the PLC program has been integrated and can be
connected with a COM port. The procedure is as described in Chapter Serial PC Interface.

TC3 Modbus RTU 19Version 1.0

PLC libraries

Prerequisites

Development environment Target platform PLC libraries to include
TwinCAT V3.0.0 PC or CX (x86) Tc2_Modbus_RTU

5.1.2 ModbusRtuSlave_PcCom

The function block ModbusRTUslave_PcCom implements a Modbus slave that communicates via a serial
PC interface (COM port). The block is passive until it receives telegrams from a connected Modbus master.

An example program [} 32] explains the operating principle.

The function block ModbusRTUslave_KL6x5B [} 23] is available for communication via a serial Bus Terminal
KL6001, KL6011 or KL6021.

VAR_INPUT

VAR_INPUT
UnitID : UINT;
AdrInputs : POINTER TO BYTE; (* Pointer to the Modbus input area *)
SizeInputBytes : UINT;
AdrOutputs : POINTER TO BYTE; (* Pointer to the Modbus output area *)
SizeOutputBytes : UINT;
AdrMemory : POINTER TO BYTE; (* Pointer to the Modbus memory area *)
SizeMemoryBytes : UINT;
END_VAR

UnitID: Modbus station address [} 28] (1..247). The Modbus slave will only answer if it receives telegrams
containing its own station address. Optionally, collective addresses can be used for replying to any requests.
Address 0 is reserved for broadcast telegrams and is therefore not a valid station address.

AdrInputs: Start address of the Modbus input array [} 15]. The data array is usually declared as a PLC
array, and the address can be calculated with ADR (input variable).

SizeInputBytes: Size of the Modbus input array in bytes. The size can be calculated with SIZEOF (input
variable).

AdrOutputs : Start address of the Modbus output array [} 15]. The data array is usually declared as a PLC
array, and the address can be calculated with ADR (output variable).

SizeOutputBytes: Size of the Modbus output array in bytes. The size can be calculated with SIZEOF (output
variable.

AdrMemory : Start address of the Modbus memory array [} 15]. The data array is usually declared as a PLC
array, and the address can be calculated with ADR (memory variable).

TC3 Modbus RTU20 Version 1.0

PLC libraries

SizeMemoryBytes : Size of the Modbus memory array in bytes. The size can be calculated with SIZEOF
(memory variable).

VAR_OUTPUT

VAR_OUTPUT
ErrorId : Modbus_ERRORS;
END_VAR

ErrorId: Indicates an error number [} 34] in the event of disturbed or faulty communication.

Hardware connection
The data structures required for the link with the communication port are included in the function block. They
are displayed in the TwinCAT System Manager once the PLC program has been integrated and can be
connected with a COM port. The procedure is as described in Chapter Serial PC Interface.

Prerequisites

Development environment Target platform PLC libraries to include
TwinCAT V3.0.0 PC or CX (x86) Tc2_Modbus_RTU

5.1.3 ModbusRtuMaster_KL6x5B

The function block ModbusRtuMaster_KL6x5B implements a Modbus master that communicates via a serial
Bus Terminal KL6001, KL6011 or KL6021. The block is not called in its basic form, but individual actions of
that block are used within a PLC program. Each Modbus function is implemented as an action.

Supported Modbus functions (actions)
• ModbusMaster.ReadCoils

Modbus function 1 = Read Coils
Reads binary outputs (coils) from a connected slave. The data is stored in compressed form (8 bits
per byte) from the specified address pMemoryAddr.

• ModbusMaster.ReadInputStatus
Modbus function 2 = Read Input Status

Reads binary inputs from a connected slave. The data is stored in compressed form (8 bits per
byte) from the specified address pMemoryAddr.

• ModbusMaster.ReadRegs
Modbus function 3 = Read Holding Registers

Reads data from a connected slave.
• ModbusMaster.ReadInputRegs

Modbus function 4 = Read Input Registers

TC3 Modbus RTU 21Version 1.0

PLC libraries

Reads input registers from a connected slave.
• ModbusMaster.WriteSingleCoil

Modbus function 5 = Write Single Coil
Sends a binary output (coil) to a connected slave. The data must be ready to send in compressed form
(8 bits per byte) from the specified address pMemoryAddr.

• ModbusMaster.WriteSingleRegister
Modbus function 6 = Write Single Register
Sends a single data word to a connected slave

• ModbusMaster.WriteMultipleCoils
Modbus function 15 = Write Multiple Coils
Sends binary outputs (coils) to a connected slave. The data must be ready to send in compressed form
(8 bits per byte) from the specified address pMemoryAddr.

• ModbusMaster.WriteRegs
Modbus function 16 = Preset Multiple Registers
Sends data to a connected slave

• ModbusMaster.Diagnostics
Modbus function 8 = Diagnostics
Sends a diagnostic request to the slave with a user-specified function code (subfunction code). Since
this function does not address a memory, the function code is transferred in the data word MBAddr.
Any data required for the function is included in pMemoryAddr.

VAR_INPUT

VAR_INPUT
UnitID : UINT;
Quantity: WORD;
MBAddr : WORD;
cbLength: UINT;
pMemoryAddr : DWORD;
Execute : BOOL;
Timeout : TIME;
END_VAR

UnitID [} 28]

UnitID: Modbus station address [} 28] (1..247). The Modbus slave will only answer if it receives telegrams
containing its own station address. Optionally, collective addresses can be used for replying to any requests.
Address 0 is reserved for broadcast telegrams and is therefore not a valid station address.

Quantity: Number of data words to be read or written for word-oriented Modbus functions. For bit-oriented
Modbus functions, Quantity specifies the number of bits (inputs or coils).

MBAddr: Modbus data address, from which the data are read from the end device (slave). This address is
transferred to the slave unchanged and interpreted as a data address.
In the Diagnostics function (8), the function code (subfunction code) is transferred here.

cbLength : Size of the data variable used for send or read actions in bytes. cbLength must be greater than
or equal to the transferred data quantity as specified by Quantity. Example for word access: [cbLength >=
Quantity * 2]. cbLength can be calculated via SIZEOF (Modbus data).

pMemoryAddr: Memory address in the PLC, calculated with ADR (Modbus data). For read actions, the read
data are stored in the addressed variable. For send actions, the data are transferred from the addressed
variable to the end device.

Execute : Start signal. The action is initiated via a rising edge at the Execute input.

Timeout: Timeout value for waiting for a response from the addressed slave.

VAR_OUTPUT

VAR_OUTPUT
BUSY : BOOL;
Error : BOOL;
ErrorId : MODBUS_ERRORS;

TC3 Modbus RTU22 Version 1.0

PLC libraries

cbRead : UINT;
ND_VAR

Busy: Indicates that the function block is active. Busy becomes TRUE with a rising edge at Execute and
becomes FALSE again once the started action is completed. At any one time, only one action can be active.

Error: Indicates that an error occurred during execution of an action.

ErrorId: Indicates an error number [} 34] in the event of disturbed or faulty communication.

cbRead: Provides the number of read data bytes for a read action

Hardware connection
The data structures required for the link with the communication port are included in the function block. The
allocation in the TwinCAT System Manager on a PC is carried out according to the description in Chapter
Serial Bus Terminal. On a BC Bus Controller, the I/O addresses have to be assigned manually. See
Hardware assignment at the BC Bus Controller.

Prerequisites

Development environment Target platform PLC libraries to include
TwinCAT V3.0.0 PC or CX (x86) Tc2_Modbus_RTU

5.1.4 ModbusRtuSlave_KL6x5B

The function block ModbusRtuSlave_KL6x5B implements a Modbus slave that communicates via a serial
Bus Terminal KL6001, KL6011 or KL6021. The block is passive until it receives telegrams from a connected
Modbus master.

An example program for a Bus Controller (BC) illustrates the functionality.

VAR_INPUT

VAR_INPUT
UnitID : UINT;
AdrInputs : POINTER TO BYTE; (* Pointer to the Modbus input area *)
SizeInputBytes : UINT;
AdrOutputs : POINTER TO BYTE; (* Pointer to the Modbus output area *)
SizeOutputBytes : UINT;
AdrMemory : POINTER TO BYTE; (* Pointer to the Modbus memory area *)
SizeMemoryBytes : UINT;
END_VAR

UnitID [} 28]

TC3 Modbus RTU 23Version 1.0

PLC libraries

UnitID: Modbus station address [} 28] (1..247). The Modbus slave will only answer if it receives telegrams
containing its own station address. Optionally, collective addresses can be used for replying to any requests.
Address 0 is reserved for broadcast telegrams and is therefore not a valid station address.

AdrInputs: Start address of the Modbus input array [} 15]. The data array is usually declared as a PLC
array, and the address can be calculated with ADR (input variable).

SizeInputBytes: Size of the Modbus input array in bytes. The size can be calculated with SIZEOF (input
variable).

AdrOutputs : Start address of the Modbus output array [} 15]. The data array is usually declared as a PLC
array, and the address can be calculated with ADR (output variable).

SizeOutputBytes: Size of the Modbus output array in bytes. The size can be calculated with SIZEOF (output
variable.

AdrMemory : Start address of the Modbus memory array [} 15]. The data array is usually declared as a PLC
array, and the address can be calculated with ADR (memory variable).

SizeMemoryBytes : Size of the Modbus memory array in bytes. The size can be calculated with SIZEOF
(memory variable).

VAR_OUTPUT

VAR_OUTPUT
ErrorId : Modbus_ERRORS;
ND_VAR

ErrorId: Indicates an error number [} 34] in the event of disturbed or faulty communication.

Hardware connection
The data structures required for the link with the communication port are included in the function block. The
allocation in the TwinCAT System Manager on a PC is carried out according to the description in Chapter
Serial Bus Terminal. On a BC Bus Controller, the I/O addresses have to be assigned manually. See
Hardware assignment at the BC Bus Controller.

Prerequisites

Development environment Target platform PLC libraries to include
TwinCAT V3.0.0 PC or CX (x86) Tc2_Modbus_RTU

5.1.5 ModbusRtuMaster_KL6x22B

TC3 Modbus RTU24 Version 1.0

PLC libraries

The function block ModbusRtuMaster_KL6x22B realizes a Modbus master, which communicates via a serial
Bus Terminal KL6031 or KL6041. The function block is not called in its basic form, but individual actions of
that block are used within a PLC program. Each Modbus function is implemented as an action.

The function block ModbusRtuMaster_PcCom [} 18] is available for communication via a serial PC Interface
(COM port).

Supported Modbus functions (actions)
• ModbusMaster.ReadCoils

Modbus function 1 = Read Coils
Reads binary outputs (coils) from a connected slave. The data is stored in compressed form (8 bits
per byte) from the specified address pMemoryAddr.

• ModbusMaster.ReadInputStatus
Modbus function 2 = Read Input Status

Reads binary inputs from a connected slave. The data is stored in compressed form (8 bits per
byte) from the specified address pMemoryAddr.

• ModbusMaster.ReadRegs
Modbus function 3 = Read Holding Registers

Reads data from a connected slave.
• ModbusMaster.ReadInputRegs

Modbus function 4 = Read Input Registers
Reads input registers from a connected slave.

• ModbusMaster.WriteSingleCoil
Modbus function 5 = Write Single Coil
Sends a binary output (coil) to a connected slave. The data must be ready to send in compressed form
(8 bits per byte) from the specified address pMemoryAddr.

• ModbusMaster.WriteSingleRegister
Modbus function 6 = Write Single Register
Sends a single data word to a connected slave

• ModbusMaster.WriteMultipleCoils
Modbus function 15 = Write Multiple Coils
Sends binary outputs (coils) to a connected slave. The data must be ready to send in compressed form
(8 bits per byte) from the specified address pMemoryAddr.

• ModbusMaster.WriteRegs
Modbus function 16 = Preset Multiple Registers
Sends data to a connected slave

• ModbusMaster.Diagnostics
Modbus function 8 = Diagnostics
Sends a diagnostic request to the slave with a user-specified function code (subfunction code). Since
this function does not address a memory, the function code is transferred in the data word MBAddr.
Any data required for the function is included in pMemoryAddr.

VAR_INPUT

VAR_INPUT
UnitID : UINT;
Quantity: WORD;
MBAddr : WORD;
cbLength: UINT;
pMemoryAddr : DWORD;
Execute : BOOL;
Timeout : TIME;
END_VAR

UnitID [} 28]

TC3 Modbus RTU 25Version 1.0

PLC libraries

UnitID: Modbus station address [} 28] (1..247). The Modbus slave will only answer if it receives telegrams
containing its own station address. Optionally, collective addresses can be used for replying to any requests.
Address 0 is reserved for broadcast telegrams and is therefore not a valid station address.

Quantity: Number of data words to be read or written for word-oriented Modbus functions. For bit-oriented
Modbus functions, Quantity specifies the number of bits (inputs or coils).

MBAddr: Modbus data address, from which the data are read from the end device (slave). This address is
transferred to the slave unchanged and interpreted as a data address.
In the Diagnostics function (8), the function code (subfunction code) is transferred here.

cbLength : Size of the data variable used for send or read actions in bytes. cbLength must be greater than
or equal to the transferred data quantity as specified by Quantity. Example for word access: [cbLength >=
Quantity * 2]. cbLength can be calculated via SIZEOF (Modbus data).

pMemoryAddr: Memory address in the PLC, calculated with ADR (Modbus data). For read actions, the read
data are stored in the addressed variable. For send actions, the data are transferred from the addressed
variable to the end device.

Execute : Start signal. The action is initiated via a rising edge at the Execute input.

Timeout: Timeout value for waiting for a response from the addressed slave.

VAR_OUTPUT

VAR_OUTPUT
BUSY : BOOL;
Error : BOOL;
ErrorId : MODBUS_ERRORS;
cbRead : UINT;
ND_VAR

Busy: Indicates that the function block is active. Busy becomes TRUE with a rising edge at Execute and
becomes FALSE again once the started action is completed. At any one time, only one action can be active.

Error: Indicates that an error occurred during execution of an action.

ErrorId: Indicates an error number [} 34] in the event of disturbed or faulty communication.

cbRead: Provides the number of read data bytes for a read action

Hardware connection
The data structures required for the link with the communication port are included in the function block. The
allocation in the TwinCAT System Manager on a PC is carried out according to the description in Chapter
Serial Bus Terminal. On a BC Bus Controller, the I/O addresses have to be assigned manually. See
Hardware assignment at the BC Bus Controller.

Prerequisites

Development environment Target platform PLC libraries to include
TwinCAT V3.0.0 PC or CX (x86) Tc2_Modbus_RTU

TC3 Modbus RTU26 Version 1.0

PLC libraries

5.1.6 ModbusRtuSlave_KL6x22B

The function block ModbusRTUslave_KL6x22B realizes a Modbus slave, which communicates via a serial
Bus Terminal KL6031 or KL6041. The block is passive until it receives telegrams from a connected Modbus
master.

An example program for PC or CX1000 or for a BC Bus Controller explains the operating principle.

The function block ModbusRTUslave_PcCom [} 20] is available for communication via a serial PC Interface
(COM port).

VAR_INPUT

VAR_INPUT
UnitID : UINT;
AdrInputs : POINTER TO BYTE; (* Pointer to the Modbus input area *)
SizeInputBytes : UINT;
AdrOutputs : POINTER TO BYTE; (* Pointer to the Modbus output area *)
SizeOutputBytes : UINT;
AdrMemory : POINTER TO BYTE; (* Pointer to the Modbus memory area *)
SizeMemoryBytes : UINT;
END_VAR

UnitID [} 28]

UnitID: Modbus station address [} 28] (1..247). The Modbus slave will only answer if it receives telegrams
containing its own station address. Optionally, collective addresses can be used for replying to any requests.
Address 0 is reserved for broadcast telegrams and is therefore not a valid station address.

AdrInputs: Start address of the Modbus input array [} 15]. The data array is usually declared as a PLC
array, and the address can be calculated with ADR (input variable).

SizeInputBytes: Size of the Modbus input array in bytes. The size can be calculated with SIZEOF (input
variable).

AdrOutputs : Start address of the Modbus output array [} 15]. The data array is usually declared as a PLC
array, and the address can be calculated with ADR (output variable).

SizeOutputBytes: Size of the Modbus output array in bytes. The size can be calculated with SIZEOF (output
variable.

AdrMemory : Start address of the Modbus memory array [} 15]. The data array is usually declared as a PLC
array, and the address can be calculated with ADR (memory variable).

SizeMemoryBytes : Size of the Modbus memory array in bytes. The size can be calculated with SIZEOF
(memory variable).

VAR_OUTPUT

VAR_OUTPUT
ErrorId : Modbus_ERRORS;
END_VAR

TC3 Modbus RTU 27Version 1.0

PLC libraries

ErrorId: Indicates an error number [} 34] in the event of disturbed or faulty communication.

Hardware connection
The data structures required for the link with the communication port are included in the function block. The
allocation in the TwinCAT System Manager on a PC is carried out according to the description in Chapter
Serial Bus Terminal. On a BC Bus Controller, the I/O addresses have to be assigned manually. See
Hardware assignment at the BC Bus Controller.

Prerequisites

Development environment Target platform PLC libraries to include
TwinCAT V3.0.0 PC or CX (x86) Tc2_Modbus_RTU

5.2 Datatypes

5.2.1 Modbus station address
Modbus defines valid station addresses in the range 1 to 247. A Modbus slave only responds to telegrams
that contain its own address. Address 0 is not a valid station address. It is used for broadcast telegrams to all
stations. These are not answered. Addresses 248 to 255 are reserved.

The ModbusRTU library defines further collective addresses. This enables a station to respond to several
addresses.

TYPE MODBUS_UNITID :
(
MODBUS_UNITID_BROADCAST := 0,
MODBUS_UNITID_ALLVALID := 256, (* response on address 1..247 *)
MODBUS_UNITID_ALLBUTBROADCAST := 257, (* response on address 1..255 *)
MODBUS_UNITID_ALL := 258 (* response on address 0..255 *)
);
END_TYPE

Prerequisites

Development environment Target platform PLC libraries to include
TwinCAT V3.0.0 PC or CX (x86) Tc2_Modbus_RTU

5.3 Global Constants

5.3.1 Library Version
All libraries have a certain version. The version is indicated in the PLC library repository, for example. A
global constant contains the information about the library version:

Global_Version

TC3 Modbus RTU28 Version 1.0

PLC libraries

VAR_GLOBAL CONSTANT
stLibVersion_Tc2_Modbus_RTU : ST_LibVersion;
END_VAR

To check whether the version you have is the version you need, use the function F_CmpLibVersion (defined
in Tc2_System library).

Notice: All other options for comparing library versions, which you may know from TwinCAT 2, are outdated!

TC3 Modbus RTU 29Version 1.0

Samples

6 Samples

6.1 Modbus RTU Master PC COM port
The function block ModbusRtuMaster_PcCom implements a Modbus master that communicates via a serial
PC interface (COM port). The function block is not called in its basic form, but individual actions of that block
are used within a PLC program. Each Modbus function is implemented as an action.

The function block ModbusRtuMaster_KL6x5B [} 21] is available for communication via a serial Bus Terminal
KL6001, KL6011 or KL6021.

Supported Modbus functions (actions)
• ModbusMaster.ReadCoils

Modbus function 1 = Read Coils
Reads binary outputs (coils) from a connected slave. The data is stored in compressed form (8 bits
per byte) from the specified address pMemoryAddr.

• ModbusMaster.ReadInputStatus
Modbus function 2 = Read Input Status

Reads binary inputs from a connected slave. The data is stored in compressed form (8 bits per
byte) from the specified address pMemoryAddr.

• ModbusMaster.ReadRegs
Modbus function 3 = Read Holding Registers

Reads data from a connected slave.
• ModbusMaster.ReadInputRegs

Modbus function 4 = Read Input Registers
Reads input registers from a connected slave.

• ModbusMaster.WriteSingleCoil
Modbus function 5 = Write Single Coil
Sends a binary output (coil) to a connected slave. The data must be ready to send in compressed form
(8 bits per byte) from the specified address pMemoryAddr.

• ModbusMaster.WriteSingleRegister
Modbus function 6 = Write Single Register
Sends a single data word to a connected slave

• ModbusMaster.WriteMultipleCoils
Modbus function 15 = Write Multiple Coils
Sends binary outputs (coils) to a connected slave. The data must be ready to send in compressed form
(8 bits per byte) from the specified address pMemoryAddr.

• ModbusMaster.WriteRegs
Modbus function 16 = Preset Multiple Registers
Sends data to a connected slave

• ModbusMaster.Diagnostics
Modbus function 8 = Diagnostics
Sends a diagnostic request to the slave with a user-specified function code (subfunction code). Since
this function does not address a memory, the function code is transferred in the data word MBAddr.
Any data required for the function is included in pMemoryAddr.

TC3 Modbus RTU30 Version 1.0

Samples

VAR_INPUT

VAR_INPUT
UnitID : UINT;
Quantity: WORD;
MBAddr : WORD;
cbLength: UINT;
pMemoryAddr : DWORD;
Execute : BOOL;
Timeout : TIME;
END_VAR

UnitID: Modbus station address [} 28] (1..247). The Modbus slave will only answer if it receives telegrams
containing its own station address. Optionally, collective addresses can be used for replying to any requests.
Address 0 is reserved for broadcast telegrams and is therefore not a valid station address.

Quantity: Number of data words to be read or written for word-oriented Modbus functions. For bit-oriented
Modbus functions, Quantity specifies the number of bits (inputs or coils).

MBAddr: Modbus data address, from which the data are read from the end device (slave). This address is
transferred to the slave unchanged and interpreted as a data address.
In the Diagnostics function (8), the function code (subfunction code) is transferred here.

cbLength : Size of the data variable used for send or read actions in bytes. cbLength must be greater than
or equal to the transferred data quantity as specified by Quantity. Example for word access: [cbLength >=
Quantity * 2]. cbLength can be calculated via SIZEOF (Modbus data).

pMemoryAddr: Memory address in the PLC, calculated with ADR (Modbus data). For read actions, the read
data are stored in the addressed variable. For send actions, the data are transferred from the addressed
variable to the end device.

Execute : Start signal. The action is initiated via a rising edge at the Execute input.

Timeout: Timeout value for waiting for a response from the addressed slave.

VAR_OUTPUT

VAR_OUTPUT
BUSY : BOOL;
Error : BOOL;
ErrorId : MODBUS_ERRORS;
cbRead : UINT;
END_VAR

Busy: Indicates that the function block is active. Busy becomes TRUE with a rising edge at Execute and
becomes FALSE again once the started action is completed. At any one time, only one action can be active.

Error: Indicates that an error occurred during execution of an action.

ErrorId: Indicates an error number [} 34] in the event of disturbed or faulty communication.

cbRead: Provides the number of read data bytes for a read action.

Hardware connection
The data structures required for the link with the communication port are included in the function block. They
are displayed in the TwinCAT System Manager once the PLC program has been integrated and can be
connected with a COM port. The procedure is as described in Chapter Serial PC Interface.

TC3 Modbus RTU 31Version 1.0

Samples

Prerequisites

Development environment Target platform PLC libraries to include
TwinCAT V3.0.0 PC or CX (x86) Tc2_Modbus_RTU

6.2 Modbus RTU slave via PC COM port
The function block ModbusRTUslave_PcCom implements a Modbus slave that communicates via a serial
PC interface (COM port). The block is passive until it receives telegrams from a connected Modbus master.

The function block ModbusRTUslave_KL6x5B [} 23] is available for communication via a serial Bus Terminal
KL6001, KL6011 or KL6021.

VAR_INPUT
VAR_INPUT
UnitID : UINT;
AdrInputs : POINTER TO BYTE; (* Pointer to the Modbus input area *)
SizeInputBytes : UINT;
AdrOutputs : POINTER TO BYTE; (* Pointer to the Modbus output area *)
SizeOutputBytes : UINT;
AdrMemory : POINTER TO BYTE; (* Pointer to the Modbus memory area *)
SizeMemoryBytes : UINT;
END_VAR

UnitID: Modbus station address [} 28] (1..247). The Modbus slave will only answer if it receives telegrams
containing its own station address. Optionally, collective addresses can be used for replying to any requests.
Address 0 is reserved for broadcast telegrams and is therefore not a valid station address.

AdrInputs: Start address of the Modbus input array [} 15]. The data array is usually declared as a PLC
array, and the address can be calculated with ADR (input variable).

SizeInputBytes: Size of the Modbus input array in bytes. The size can be calculated with SIZEOF (input
variable).

AdrOutputs : Start address of the Modbus output array [} 15]. The data array is usually declared as a PLC
array, and the address can be calculated with ADR (output variable).

SizeOutputBytes: Size of the Modbus output array in bytes. The size can be calculated with SIZEOF (output
variable).

AdrMemory : Start address of the Modbus memory array [} 15]. The data array is usually declared as a PLC
array, and the address can be calculated with ADR (memory variable).

SizeMemoryBytes : Size of the Modbus memory array in bytes. The size can be calculated with SIZEOF
(memory variable).

VAR_OUTPUT
VAR_OUTPUT
ErrorId : Modbus_ERRORS;
END_VAR

ErrorId: Indicates an error number [} 34] in the event of disturbed or faulty communication.

TC3 Modbus RTU32 Version 1.0

Samples

Hardware connection
The data structures required for the link with the communication port are included in the function block. They
are displayed in the TwinCAT System Manager once the PLC program has been integrated and can be
connected with a COM port. The procedure is as described in Chapter Serial PC Interface.

Prerequisites

Development environment Target platform PLC libraries to include
TwinCAT V3.0.0 PC or CX (x86) Tc2_Modbus_RTU

TC3 Modbus RTU 33Version 1.0

Appendix

7 Appendix

7.1 Modbus RTU Error Codes
TYPE MODBUS_ERRORS :
(
(* Modbus communication errors *)
MODBUSERROR_NO_ERROR, (* 0 *)
MODBUSERROR_ILLEGAL_FUNCTION, (* 1 *)
MODBUSERROR_ILLEGAL_DATA_ADDRESS, (* 2 *)
MODBUSERROR_ILLEGAL_DATA_VALUE, (* 3 *)
MODBUSERROR_SLAVE_DEVICE_FAILURE, (* 4 *)
MODBUSERROR_ACKNOWLEDGE,(* 5 *)
MODBUSERROR_SLAVE_DEVICE_BUSY, (* 6 *)
MODBUSERROR_NEGATIVE_ACKNOWLEDGE, (* 7 *)
MODBUSERROR_MEMORY_PARITY, (* 8 *)
MODBUSERROR_GATEWAY_PATH_UNAVAILABLE, (* A *)
MODBUSERROR_GATEWAY_TARGET_DEVICE_FAILED_TO_RESPOND, (* B *)

(* additional Modbus error definitions *)
MODBUSERROR_CHARREC_TIMEOUT := 16#20, (* 20 hex *)
MODBUSERROR_ILLEGAL_DATA_SIZE, (* 21 hex *)
MODBUSERROR_ILLEGAL_DEVICE_ADDRESS, (* 22 hex *)
MODBUSERROR_ILLEGAL_DESTINATION_ADDRESS,(* 23 hex *)
MODBUSERROR_ILLEGAL_DESTINATION_SIZE, (* 24 hex *)
MODBUSERROR_NO_RESPONSE,(* 25 hex *)

(* Low level communication errors *)
MODBUSERROR_TXBUFFOVERRUN := 102, (* 102 *)
MODBUSERROR_SENDTIMEOUT := 103, (* 103 *)
MODBUSERROR_DATASIZEOVERRUN := 107, (* 107 *)
MODBUSERROR_STRINGOVERRUN := 110, (* 110 *)
MODBUSERROR_INVALIDPOINTER := 120, (* 120 *)
MODBUSERROR_CRC := 150, (* 150 *)

(* High level PLC errors *)
MODBUSERROR_INVALIDMEMORYADDRESS := 232,(* 232 *)
MODBUSERROR_TRANSMITBUFFERTOOSMALL (* 233 *)
);
END_TYPE

TC3 Modbus RTU34 Version 1.0

	 Table of contents
	1 Foreword
	1.1 Notes on the documentation
	1.2 Safety instructions

	2 Overview
	3 Installation
	3.1 System Requirements
	3.2 Installation
	3.3 Licensing

	4 Configuration
	4.1 Terminal configuration
	4.2 Modbus address arrays

	5 PLC libraries
	5.1 Function blocks
	5.1.1 ModbusRtuMaster_PcCom
	5.1.2 ModbusRtuSlave_PcCom
	5.1.3 ModbusRtuMaster_KL6x5B
	5.1.4 ModbusRtuSlave_KL6x5B
	5.1.5 ModbusRtuMaster_KL6x22B
	5.1.6 ModbusRtuSlave_KL6x22B

	5.2 Datatypes
	5.2.1 Modbus station address

	5.3 Global Constants
	5.3.1 Library Version

	6 Samples
	6.1 Modbus RTU Master PC COM port
	6.2 Modbus RTU slave via PC COM port

	7 Appendix
	7.1 Modbus RTU Error Codes

