
Manual

TC3 IoT Functions

TwinCAT 3

1.0
2018-05-25
TF6710

Version:
Date:
Order No.:

Table of contents

TC3 IoT Functions 3Version: 1.0

Table of contents
1 Foreword .. 5

1.1 Notes on the documentation... 5
1.2 Safety instructions .. 6

2 Overview... 7

3 Installation.. 8
3.1 System requirements.. 8
3.2 Setup scenarios .. 8
3.3 Installation... 8
3.4 Licensing... 11

4 Technical introduction .. 16
4.1 Reference Data Agent .. 17
4.2 Communication patterns... 17
4.3 Programming workflow ... 18
4.4 Synchronizing message operations.. 19
4.5 Timeout settings ... 21

5 Configuration ... 23
5.1 Overview... 23
5.2 Configurator .. 23

5.2.1 Topology view .. 25
5.2.2 Tree view.. 26
5.2.3 Mappings.. 27
5.2.4 Target Browser... 27
5.2.5 Cascading Editor.. 27
5.2.6 Settings .. 28
5.2.7 Error logging... 33

6 PLC API .. 35
6.1 Function blocks... 35

6.1.1 FB_IotFunctions_Connector .. 35
6.1.2 FB_IotFunctions_Message .. 36
6.1.3 FB_IotFunctions_Request ... 37

6.2 Data types... 38
6.2.1 ST_IotFunctionsEvent.. 38
6.2.2 ST_IotFunctionsMessage .. 38
6.2.3 ST_IotFunctionsRequest ... 39
6.2.4 ST_IotFunctionsRequestContainer .. 39

7 Samples.. 40

8 Appendix .. 41
8.1 Support and Service ... 41

Table of contents

TC3 IoT Functions4 Version: 1.0

Foreword

TC3 IoT Functions 5Version: 1.0

1 Foreword

1.1 Notes on the documentation
This description is only intended for the use of trained specialists in control and automation engineering who
are familiar with the applicable national standards.
It is essential that the documentation and the following notes and explanations are followed when installing
and commissioning the components.
It is the duty of the technical personnel to use the documentation published at the respective time of each
installation and commissioning.

The responsible staff must ensure that the application or use of the products described satisfy all the
requirements for safety, including all the relevant laws, regulations, guidelines and standards.

Disclaimer

The documentation has been prepared with care. The products described are, however, constantly under
development.
We reserve the right to revise and change the documentation at any time and without prior announcement.
No claims for the modification of products that have already been supplied may be made on the basis of the
data, diagrams and descriptions in this documentation.

Trademarks

Beckhoff®, TwinCAT®, EtherCAT®, Safety over EtherCAT®, TwinSAFE®, XFC® and XTS® are registered
trademarks of and licensed by Beckhoff Automation GmbH.
Other designations used in this publication may be trademarks whose use by third parties for their own
purposes could violate the rights of the owners.

Patent Pending

The EtherCAT Technology is covered, including but not limited to the following patent applications and
patents:
EP1590927, EP1789857, DE102004044764, DE102007017835
with corresponding applications or registrations in various other countries.

The TwinCAT Technology is covered, including but not limited to the following patent applications and
patents:
EP0851348, US6167425 with corresponding applications or registrations in various other countries.

EtherCAT® is registered trademark and patented technology, licensed by Beckhoff Automation GmbH,
Germany

Copyright

© Beckhoff Automation GmbH & Co. KG, Germany.
The reproduction, distribution and utilization of this document as well as the communication of its contents to
others without express authorization are prohibited.
Offenders will be held liable for the payment of damages. All rights reserved in the event of the grant of a
patent, utility model or design.

Foreword

TC3 IoT Functions6 Version: 1.0

1.2 Safety instructions

Safety regulations

Please note the following safety instructions and explanations!
Product-specific safety instructions can be found on following pages or in the areas mounting, wiring,
commissioning etc.

Exclusion of liability

All the components are supplied in particular hardware and software configurations appropriate for the
application. Modifications to hardware or software configurations other than those described in the
documentation are not permitted, and nullify the liability of Beckhoff Automation GmbH & Co. KG.

Personnel qualification

This description is only intended for trained specialists in control, automation and drive engineering who are
familiar with the applicable national standards.

Description of symbols

In this documentation the following symbols are used with an accompanying safety instruction or note. The
safety instructions must be read carefully and followed without fail!

DANGER

Serious risk of injury!
Failure to follow the safety instructions associated with this symbol directly endangers the
life and health of persons.

WARNING

Risk of injury!
Failure to follow the safety instructions associated with this symbol endangers the life and
health of persons.

CAUTION

Personal injuries!
Failure to follow the safety instructions associated with this symbol can lead to injuries to
persons.

Attention

Damage to the environment or devices
Failure to follow the instructions associated with this symbol can lead to damage to the en-
vironment or equipment.

Note

Tip or pointer
This symbol indicates information that contributes to better understanding.

Overview

TC3 IoT Functions 7Version: 1.0

2 Overview
TC3 IoT Functions is a product for the TwinCAT 3 runtime that enables bi-directional data communication
with cloud services from within the machine program. The transport mechanism depends on the cloud
service. It can be MQTT, AMQP, ADS or OPC UA.

Installation

TC3 IoT Functions8 Version: 1.0

3 Installation

3.1 System requirements
TC3 IoT Functions requires TC3 IoT Data Agent to run in the background. For more information see the
technical introduction [} 16], the setup scenarios [} 8] and the TC3 IoT Data Agent system requirements.

Technical data Description
Operating system Windows 7/10, Windows Embedded Standard 7,

Windows Embedded Compact 7
Target platform PC architecture (x86, x64, ARM)
.NET Framework not required
TwinCAT version 1 TwinCAT 3 Build 4022.20 (or higher)
TwinCAT installation level TwinCAT 3 XAE, XAR
Required TwinCAT license 2 TF6710 TC3 IoT Functions
Required setup TF6720 TC3 IoT Data Agent

Driver and PLC library for TC3 IoT Functions are
automatically included in base TwinCAT installation.

1 Version of the TwinCAT 3 runtime on which TC3 IoT Functions can be executed
2 Although TC3 IoT Functions (TF6710) has a technical dependency on TC3 IoT Data Agent (TF6720), a
license for TF6720 is not required.

3.2 Setup scenarios
TC3 IoT Functions and TC3 IoT Data Agent can either be installed on the same computer or separately from
each other on different devices.

TC3 IoT Functions and TC3 IoT Data Agent on the controller

In this scenario, TC3 IoT Functions and TC3 IoT Data Agent are running on the (same) controller. This is the
default setup scenario and no further settings have to be made. A TF6710 license is required on the
controller to use the TC3 IoT Functions PLC library.

TC3 IoT Functions on the controller and TC3 IoT Data Agent on a gateway device

In this scenario, TC3 IoT Functions is running on the controller and TC3 IoT Data Agent is installed on a
gateway device. The communication between TC3 IoT Functions and TC3 IoT Data Agent is based on ADS.
The PLC function blocks of TC3 IoT Functions need to reference the gateway device on which the
TC3 IoT Data Agent is installed (see Reference Data Agent [} 17]). The gateway device does not require
any additional licenses. A TF6710 license is only required on the devices that use the TC3 IoT Functions
PLC library.

TC3 IoT Functions and TC3 IoT Data Agent on a gateway device

In this scenario, TC3 IoT Functions and TC3 IoT Data Agent are installed and executed on a gateway
device, e.g. in an edge scenario. Data ingest to the edge device can be anything, ranging from TCP based
protocols like OPC UA to totally other ways of data communication. A TF6710 license is required on the
gateway device to use the TC3 IoT Functions PLC library.

3.3 Installation
Description of the installation procedure of a TwinCAT 3 Function for Windows-based operating Systems.

Installation

TC3 IoT Functions 9Version: 1.0

1. Double-click the downloaded setup file TFxxxx.
Please note: Under Windows 32-bit/64-bit, please start the installation with "Run as Administrator" by
right-clicking the setup file and selecting the corresponding option in the context menu.

2. Click Next and accept the license agreement.

3. Enter your user information in the specified area.

Installation

TC3 IoT Functions10 Version: 1.0

4. To install the full product, including all sub-components, please choose Complete as the Setup Type.
Alternatively, you can also install each component separately by choosing Custom.

5. Click Next and Install to start the installation.

The TwinCAT system must be stopped before proceeding with installation.

Installation

TC3 IoT Functions 11Version: 1.0

6. Confirm the Dialog with Yes.

7. Select Finish to end the installation process.

ð The installation is now complete.

After a successful installation, the TC 3 Function needs to be licensed. [} 11]

3.4 Licensing
The TwinCAT 3 functions are available both as a full and as a 7-Day trial version. Both license types can be
activated via TwinCAT XAE.For more information about TwinCAT 3 licensing, please consult the TwinCAT 3
Help System.The following document describes both licensing scenarios for a TwinCAT 3 function on
TwinCAT 3 and is divided into the following sections:

• Licensing a 7-Day trial version [} 11]

• Licensing a full version [} 13]

Licensing a 7-Day trial version
1. Start TwinCAT XAE
2. Open an existing TwinCAT 3 project or create a new project

Installation

TC3 IoT Functions12 Version: 1.0

3. In Solution Explorer, please navigate to the entry System\License

4. Open the tab Manage Licenses and add a Runtime License for your product (in this screenshot
TE1300: TC3 Scope View Professional)

5. Optional: If you would like to add a license for a remote device, you first need to connect to the remote
device via TwinCAT XAE toolbar

6. Switch to the tab Order Information and click the button Activate 7 Days Trial License... to activate a
test version

7. Please restart TwinCAT 3 afterwards.

Installation

TC3 IoT Functions 13Version: 1.0

Licensing a full version
8. Start TwinCAT XAE
9. Open an existing TwinCAT 3 project or create a new project

10. In Solution Explorer, please navigate to the entry SYSTEM\License

11. Open the tab Manage Licenses and add a Runtime License for your product (in this screenshot
TE1300: TC3 Scope View Professional).

12. Optional:If you would like to add a license for a remote device, you first need to connect to the remote
device via TwinCAT XAE toolbar

13. Navigate to the Order Information tab
The fields System-ID and HW Platform cannot be changed and just describe the platform for the
licensing process in general a TwinCAT 3 license is always bound to these two identifiers:
the System-ID uniquely identifies your system.
The HW Platform is an indicator for the performance of the device.

Installation

TC3 IoT Functions14 Version: 1.0

14. Optionally, you may also enter an own order number and description for your convenience

15. enter the Beckhoff License ID and click on Generate License Request File.... If you are not aware of
your Beckhoff License ID please contact your local sales representative.

16. After the license request file has been saved, the system asks whether to send this file via E-Mail to the
Beckhoff Activation Server

17. After clicking Yes, the standard E-Mail client opens and creates a new E-Mail message to
"tclicense@beckhoff.com" which contains the "License Request File"

18. Send this Activation Request to Beckhoff
NOTE! The License Response File will be sent to the same E-Mail address used for sending out

the License Request File
19. After receiving the activation file, please click on the button Activate License Response File... in the

TwinCAT XAE license Interface.

mailto:tclicense@beckhoff.com

Installation

TC3 IoT Functions 15Version: 1.0

20. Select the received License response file and click on Open

21. The License Response File will be imported and all included licenses will be activated. If there have
been any trial licenses, these will be removed accordingly.

22. Please restart TwinCAT to activate licenses.

NOTE! The license file will be automatically copied to...\TwinCAT\3.1\Target\License on the
local device.

Technical introduction

TC3 IoT Functions16 Version: 1.0

4 Technical introduction
TC3 IoT Functions is a product for the TwinCAT 3 runtime that enables bi-directional data communication
with the Cloud. To establish a connectivity channel with a cloud service, the product uses technical
functionalities of the TC3 IoT Data Agent (TF6720) in the background. TC3 IoT Functions can therefore be
used with every cloud service that is also supported by the TC3 IoT Data Agent.
Note that the TC3 IoT Data Agent is only used for providing the connectivity layer to the cloud and no
TF6720 license has to be purchased to use TF6710.

TC3 IoT Functions and TC3 IoT Data Agent do not have to run on the same system, but can also run
separately from each other on different systems (see Setup scenarios).

Features

TC3 IoT Functions includes the following features:

• Read/Write operations for messages that should be send/received to/from a cloud service
• Convenient timeout, error and retry handling

Technical introduction

TC3 IoT Functions 17Version: 1.0

4.1 Reference Data Agent
If TC3 IoT Functions and TC3 IoT Data Agent are installed separately and the components are placed on
different computers, the function blocks need to specify the location of the TC3 IoT Data Agent installation.
This can be done via the AMS Net ID of the device that executes the TC3 IoT Data Agent. Simply enter the
AMS Net ID of the device that executes TC3 IoT Data Agent in the corresponding input parameter of function
block FB_IotFunctions_Connector [} 35]. Note that in this case an ADS route between the devices has to be
created.

If TC3 IoT Data Agent and TC3 IoT Functions are running on the same device, the local AMS NET ID is
used by default.
fbConnector : FB_IotFunctions_Connector := (sAmsNetId := 192.168.2.3.1.1');

4.2 Communication patterns
The upper connectivity layer to a cloud service is usually based on publisher/subscriber patterns but in some
cases it can also be based on polling patterns. TC3 IoT Data Agent implements the connectivity with the
cloud service and provides this access via an abstracted way of communication to TC3 IoT Functions. The
PLC library of TC3 IoT Functions then uses this interface then via a polling read/write pattern.

Technical introduction

TC3 IoT Functions18 Version: 1.0

Example

TC3 IoT Functions should be used to read messages from Azure IoT Hub. Connectivity with this cloud
service is based on the publisher/subscriber pattern. This means that TC3 IoT Data Agent is configured with
access credentials to the IoT Hub service and will therefore provides connectivity to it. TC3 IoT Functions
then polls the TC3 IoT Data Agent for any incoming messages.

Message buffer

TC3 IoT Data Agent includes a message buffer for incoming messages that should be used by
TC3 IoT Functions. This message buffer can be set directly on the corresponding TC3 IoT Functions
channel.

4.3 Programming workflow
This section describes how to use the function blocks of the TC3 IoT Functions PLC library from a best
practice point-of-view. The programming workflow includes the following steps:

• Invoking FB_IotFunctions_Connector.Execute() [} 18]

• Checking for general errors [} 18]

• Checking for read/write errors [} 19]

• Reading data [} 19]

• Writing data [} 19]

The code snippets in this section are based on the following declarations:
PROGRAM MAIN
VAR
 fbConnector : FB_IotFunctions_Connector;
 fbRead : FB_IotFunctions_Message;
 fbWrite : FB_IotFunctions_Message;
 nReadError : UINT;
 nWriteError : UINT;
 nReadData : UINT;
 nIn : UINT;
 nOut : UINT;
 bWrite : BOOL;
END_VAR

Invoking FB_IotFunctions_Connector.Execute()

It is highly recommended to invoke the Execute method on the FB_IotFunctions_Connector function block
instance as one of the first instructions. This method is responsible for Online Change handling, timeout
handling and the communication with TC3 IoT Data Agent.
fbConnector.Execute();

Checking for general errors

Once the Execute method has been triggered, check the bError output of the FB_IotFunctions_Connector
function block to figure out if any error has occurred during the communication with TC3 IoT Data Agent.

Technical introduction

TC3 IoT Functions 19Version: 1.0

IF fbConnector.bError THEN
 ...
END_IF

Checking for read/write errors

If the bError output of the connector’s function block instance is TRUE, check the individual error message of
the request function block for errors to handle them properly. To acknowledge an error and to prevent it from
recurring, call the Reset method of the function block.
IF fbConnector.bError THEN
 IF fbRead.bError THEN
 nReadError := nReadError + 1;
 fbRead.Reset();
 END_IF
 IF fbWrite.bError THEN
 nWriteError := nWriteError + 1;
 fbWrite.Reset();
 END_IF
END_IF

Before starting a new operation like read or write, check all relevant status queries, as these operations will
reset all status information in the structures ST_IotFunctionsMessage and ST_IotFunctionsRequest.

Reading data

The Read operation is receiving data from the buffer and stores this data in a symbol. The value of the
specified symbol is used to compare new data with previous data. When new data has been received,
bDataAvailable is set to TRUE. If the current value of the symbol is different from the previous value, the
data has changed and bDataChanged is set to TRUE.

This means, if you want to act on new data that differs from the previously received data, check the
bDataChanged output. This output will only be set to TRUE if the receive buffer indicates a change to the
previously received packet.
IF fbRead.bDataChanged THEN
 ...
END_IF

If you are interested in receiving data regardless of the data differing from the previously received payload,
check the bDataAvailable output instead.
IF fbRead.bDataAvailable THEN
 ...
END_IF

Writing data

The following sample demonstrates how to set up a conditional write operation that will only be executed if
the bWrite flag is set to TRUE. Before calling the Write method ensure that the function block is not busy. If
you write to a busy function block instance, the call will return without starting the write operation.
IF bWrite THEN
 IF NOT fbWrite.bBusy THEN
 bWrite := FALSE;
 fbWrite.Write(ADR(nOut), SIZEOF(nOut));
 END_IF
 END_IF

4.4 Synchronizing message operations
TC3 IoT Functions includes functionalities for synchronizing multiple message operations. This can be very
useful in scenarios where data comes in from different data sources/channels. The function block
FB_IotFunctions_Request [} 37] provides different mechanisms for synchronizing message operations.

Technical introduction

TC3 IoT Functions20 Version: 1.0

Example scenario

A cocktail mixer provides different ingredients and every cocktail consists of five ingredients. An ingredient is
added to the recipe by pressing a button. The cocktail mixer starts mixing the cocktail after the fifth ingredient
has been selected. When an ingredient is selected, an MQTT message is published to a (different) topic.
These messages should be received by TC3 IoT Functions.

Basic setup

TC3 IoT Data Agent is configured with an MQTT gate and five different channels for TC3 IoT Functions.
Every channel is configured for an “ingredient topic”.

To synchronize the read operation for five different ingredients, an instance of FB_IotFunctions_Request is
created. Then an instance of FB_IotFunctions_Message is created for each of the five channels.
fbRequestIngredients : FB_IotFunctions_Request;

fbReadIngredient : ARRAY[0..4] OF FB_IotFunctions_Message := [(nChannelId := 1),(nChannelId := 2),
(nChannelId := 3),(nChannelId := 4),(nChannelId := 5)];
nIn : ARRAY[0..4] OF STRING;

The synchronized request then can be created as follows:
IF NOT fbRequestIngredients.bBusy THEN
 IF fbRequestIngredients.bError THEN
 ...
 ELSE
 IF fbRequestIngredients.bTimeoutOccurred THEN
 ...
 ELSE
 // request was successful
 ...
 END_IF
 END_IF

 // Prepare next read operation for ingredients
 fbRequestIngredients.Create();
 fbRequestIngredients.EnqueueRead(ADR(fbReadIngredient [0]),ADR(nIn[0]),SIZEOF(nIn[0]));
 fbRequestIngredients.EnqueueRead(ADR(fbReadIngredient [1]),ADR(nIn[1]),SIZEOF(nIn[1]));
 fbRequestIngredients.EnqueueRead(ADR(fbReadIngredient [2]),ADR(nIn[2]),SIZEOF(nIn[2]));
 fbRequestIngredients.EnqueueRead(ADR(fbReadIngredient [3]),ADR(nIn[3]),SIZEOF(nIn[3]));
 fbRequestIngredients.EnqueueRead(ADR(fbReadIngredient [4]),ADR(nIn[4]),SIZEOF(nIn[4]));
 fbRequestIngredients.Execute();
END_IF

Technical introduction

TC3 IoT Functions 21Version: 1.0

Sample04 shows the full sample code (see Samples [} 40]).

Synchronization conditions

The function block instance fbRequest contains different synchronization conditions. These can be used to
determine whether the read operations within the request were successful, threw an error or resulted in a
timeout. Note how the different timeout and retry settings can help in supporting this use case (see Timeout
settings [} 21]).

Condition Description
bBusy TRUE: Request is still in progress and not all operations have been

completed successfully
FALSE: Request has been finished. To figure out if an error or
timeout occurred, further flags need to be evaluated.

bTimeoutOccurred TRUE: RequestTimeout has been triggered for at least one
operation.
FALSE: No timeout occurred.

bError TRUE: An error occurred for at least one operation.
FALSE: No error occurred.

Flags of each message operation In addition, the flags (error, success, bDataAvailable,
bDataChanged) of each message operation can be analyzed in
order to figure out if a request operation was successful or failed.

4.5 Timeout settings
The function blocks of TC3 IoT Functions include several timeout settings that may help the user to handle
errors regarding the retry operations. The following section explains the different timeout settings more
detailed.

RequestTimeout

The RequestTimeout can be either set globally on an instance of FB_IotFunctions_Connector or individually
on an instance of FB_IotFunctions_Message. Individual settings always override global settings. The
RequestTimeout closely works together with the MessageRetryInterval setting.

The RequestTimeout specifies when a message operation (read/write) will time out. For example, if
RequestTimeout is set to 10000, a read operation will time out after 10 seconds if no data has been
received. If data is received within 10 seconds, the operation will finish immediately.

MessageRetryInterval

The MessageRetryInterval can be either set globally on an instance of FB_IotFunctions_Connector or
individually on an instance of FB_IotFunctions_Message. Individual settings always override global settings.
The MessageRetryInterval closely works together with the RequestTimeout setting.

The MessageRetryInterval specifies the time interval in [ms] when a message operation will be retried. The
upper limit of the interval is always the RequestTimeout. For example, if RequestTimeout is set to 10000 and
MessageRetryInterval to 1000, a read operation will be retried ten times before the RequestTimeout is
triggered and the read operation times out.

CumulativeTimeout

The CumulativeTimeout can be set on instances of FB_IotFunctions_Request when synchronizing message
operations (see Synchronizing message operations [} 19]).

The use case is as follows (example):

• There are three read operations that should be synchronized.
• Every read operation comes from a different channel

Technical introduction

TC3 IoT Functions22 Version: 1.0

• RequestTimeout is globally set to 10000 ms
• CumulativeTimeout is globally set to 3000 ms
• After 8000 ms the first message comes in via channel 1.
• Since only 2000 ms remain until the RequestTimeout time is reached, the CumulativeTimeout is added

to the remaining RequestTimeout time, to prevent a time out of the whole request. The
RequestTimeout time is then 5000 ms. This gives the request more time to gather data via the other
two read operations. If there is no data on the other two operations after 5000 ms, the whole request
will time out.

Configuration

TC3 IoT Functions 23Version: 1.0

5 Configuration

5.1 Overview
TC3 IoT Functions uses TC3 IoT Data Agent functionalities in order to connect to cloud services. To
configure access to a cloud service and provide access credentials, the TC3 IoT Data Agent configurator can
be used.

Within the configurator, the following configuration steps are required:

1. Create a gate (e.g. Azure IoT Hub) and configure all required connection credentials.
2. Create a server channel on the new gate and note the channel ID.
3. Activate the configuration and start TC3 IoT Data Agent.

In order to use this configuration in TC3 IoT Functions, reference the channel ID in the function block
FB_IotFunctions_Message.

5.2 Configurator
The TC3 IoT Data Agent configurator is an easy-to-use, graphical user interface that abstracts the XML
configuration file and provides a modern interface that includes all functionalities to easily configure symbols
that should be send to or received from a cloud service.

The configurator is also used to configure TC3 IoT Functions.

Configuration

TC3 IoT Functions24 Version: 1.0

Standard components

The TC3 IoT Data Agent configurator consists of the following areas:

Menu and toolbar Provides commands for saving and opening files and for starting and stopping
the application

Hierarchical TreeView Gives a hierarchical overview of the configuration to create and edit a
configuration

Topology view Gives a graphical overview of the configuration to create and edit a configuration
Properties window Shows the properties of an activated component in the topology or tree view.
Logging Provides log information from the configurator.
Cascading Editor Helps to navigate through large and complex navigations by providing filtering

mechanisms for symbols
Mapping Links Gives an overview of all links between symbols in the configuration
Target Browser Is used to provide symbolic access for ADS and OPC UA target runtimes

Installation

The configurator is automatically installed by the setup and is available as a shortcut on the Windows start
menu.

When starting the configurator the first time, it asks for the generation of an OPC UA client certificate. This
certificate is used by the configurator in its integrated OPC UA target browser to connect to a server and
browse its namespace. After the certificate has been generated, the configurator UI is shown.

Configuration

TC3 IoT Functions 25Version: 1.0

5.2.1 Topology view
The topology view (or “canvas”) is the central graphical configuration area of the TC3 IoT Data Agent
configurator. It shows the following components of a configuration:

• The configured gates, channels and symbols
• The relationship (mapping) between gates, channels and symbols
• The cardinality on each relationship

The topology view can be used to create and edit a configuration. Simply right-click the canvas to open the
context menu and select from the variety of configuration options, e.g. to create a new gate, attach a new
channel to a gate or remove a component from the configuration.

You can move any object in the topology view by dragging it to a new position. Each attached subcomponent
is moved together with its parent. Optionally, you can also hide a subcomponent by clicking the expand
button of its parent. When saving a configuration, the position of each object is saved in the configuration file.

In order to make navigational tasks a little easier, the topology view supports the following functionalities:

• Scrollbars for vertical and horizontal navigation
• Vertical navigation via mouse wheel
• Horizontal navigation via mouse wheel and SHIFT key (press and hold)
• ZoomIn/ZoomOut via mouse wheel and CTRL key (press and hold)

Instead of the topology view you can also use the tree view for configuration, but the topology view might
give a better graphical overview of the currently configuration (see Tree view [} 26])

Configuration

TC3 IoT Functions26 Version: 1.0

5.2.2 Tree view
The tree view provides a hierarchical view of the currently opened configuration. It shows the following
components of a configuration:

• The configured gates, channels and symbols
• The existence of a relationship (mapping) between symbols

The tree view can also be used to edit the configuration, but you might find it easier to use the topology view
instead (see Topology view [} 25]).

Configuration

TC3 IoT Functions 27Version: 1.0

5.2.3 Mappings
The mappings window gives an overview of all links between symbols in the currently opened configuration.
When a link is selected, it is automatically highlighted in the topology view.

5.2.4 Target Browser
The Target Browser is used to provide symbolic access for ADS and OPC UA target runtimes. It can be used
to configure symbols for a target runtime by drag-and-drop.

Fig. 1:

5.2.5 Cascading Editor
The Cascading Editor helps to navigate through large and complex configurations by providing filtering
mechanisms for symbols. Starting from left to right you can select gates and channels in order to display the
corresponding symbols. In addition, you can also search for symbol names using free text. When a
component is selected, it is automatically highlighted in the topology view.

Configuration

TC3 IoT Functions28 Version: 1.0

5.2.6 Settings
This section provides some detailed information about the different configuration parameters that can be set
on gates, channels and symbols.

5.2.6.1 Gates

A Gate represents a communication protocol or specific connectivity service, e.g. ADS, OPC UA, MQTT,
AWS IoT or Microsoft Azure IoT Hub. Each Gate is configured with parameters that are specific for the
corresponding Gate type.

ADS

A Beckhoff ADS device represents either a TwinCAT 2/3 or a Beckhoff BC device. ADS is the common
Beckhoff communication protocol and can be used to access many parts of the TwinCAT system. The most
common application scenarios for TC3 IoT Data Agent involve access to a TwinCAT 2/3 PLC, C++, TcCOM
modules or the I/O process image, which is done via ADS.

When configuring an ADS gate, the following settings are required by the TC3 IoT Data Agent to access the
underlying ADS device:

Setting Description
AmsNetId AmsNetId of the target device, e.g. 127.0.0.1.1.1 for the local device.
AdsPort AdsPort of the target device, e.g. 801 (TwinCAT 2 PLC) or 851 (TwinCAT 3 PLC)
IoMode Specifies how the TC3 IoT Data Agent should communicate with the ADS device. The

following options can be set:
• Direct: accesses every symbol with a separate ADS command. Mandatory for BC

controllers but increases ADS traffic
• Batched: accesses symbols batched into an ADS sum command, which optimizes

ADS traffic and can be used for TwinCAT 2 and 3 PLC or C++ runtimes

OPC UA

OPC UA is a standardized, industrial, client/server communication protocol and adopted by many vendors
for different use cases. The TC3 IoT Data Agent can access OPC UA server devices to connect variables
(so-called “nodes”) on those devices with IoT services.

When configuring an OPC UA gate, the following settings are required by the TC3 IoT Data Agent to access
the underlying OPC UA device:

Setting Description
Server URL The OPC UA Server URL, e.g. opc.tcp://localhost:4840
Security policy The OPC UA security policy that the TC3 IoT Data Agent should use during

connection establishment with the OPC UA server
Security mode The OPC UA message security mode that the TC3 IoT Data Agent should use

during connection establishment with the OPC UA server
Authentication mode The OPC UA authentication mode that the TC3 IoT Data Agent should use

during connection establishment with the OPC UA server

Configuration

TC3 IoT Functions 29Version: 1.0

MQTT

MQTT can be used for connecting to a generic message broker, e.g. Mosquitto, HiveMQ or similar broker
types.

Setting Description
Broker address The IP address or hostname of the MQTT message broker
Port MQTT specifies port 1883 for unencrypted communication and 8883 for

encrypted communication
ClientId A numeric or string-based value that identifies the client. Depending on

the message broker type, this ID should be unique
Authentication mode Specifies if the TC3 IoT Data Agent should authenticate to the broker by

using a username/password combination
TLS mode Specifies if TLS should be used to secure the communication channel to

the message broker. Note that the message broker also needs to support
TLS in order for this to work. Different options are available for TLS:

• CA certificate: Only uses the CA certificate for server authentication
• Client certificate: Uses a client certificate for mutual client/server

authentication
• PSK: Used a common PSK-Identity and PSK-Key that is known to

the message broker and the client

Microsoft Azure IoT Hub

With Azure IoT Hub the Microsoft Azure cloud platform offers a connectivity service in the cloud that provides
bi-directional communication, device security and automatic scalability. In the TC3 IoT Data Agent, the IoT
Hub can be configured as a special gate type.

Setting Description
HostName URL of the Azure IoT Hub instance
DeviceId DeviceId of the device that has been created on the IoT Hub configuration

website
SharedAccessKey Either the primary or secondary device key that has been generated together

with the device on the IoT Hub configuration website
CA file CA file that is used for server authentication. At the time writing this article, three

certificates are in play during the server authentication, which form part of the
certificate chain and are linked together.

• Root CA: Baltimore CyberTrust Root
• Intermediate CA: Baltimore CyberTrust
• Wilcard certificate

During the initial TLS handshake, only the first two are sent by the server to the
client. The client will normally only validate the Root CA of the chain and will
determine if it is trusted.
In order to acquire the CA file for the Root CA, you can open the Windows
certificate store (certmgr.msc), browse to the trusted root authorities and export
the Baltimore CyberTrust Root certificate.

AWS IoT

With AWS IoT the Amazon Web Services cloud platform offers a message broker service in the cloud that
provides bi-directional communication, device security and automatic scalability. In the TC3 IoT Data Agent,
AWS IoT is configured as a regular MQTT gate. However, some special MQTT settings have to be
configured to successfully connect to an AW IoT instance.

Setting Description
Broker address The URL of the AWS IoT instance
Port Port 8883 for encrypted TLS communication is mandatory

Configuration

TC3 IoT Functions30 Version: 1.0

Setting Description
ClientId Can be set to anything but needs to be unique. Typically this could be the

AWS IoT thing name.
Authentication mode Set to “No authentication”. Authentication on AWS IoT is done via the

TLS client certificate.
TLS mode Automatically set to “Client certificate” by the configurator. Select path to

CA file, client certificate file and client key file. These are the files that can
be generated and downloaded on the AWS IoT configuration website.

5.2.6.2 Channels

Channels are configured on a Gate to send (“publisher”) or receive (“subscriber”) data to/from a Gate.

• Source: This Gate is the source of data, meaning the TC3 IoT Data Agent connects to the Gate and
retrieves data from it in order to send this data somewhere else (to a “Destination Gate”). Technically,
this is also referred to as the “Subscriber Channel”.

• Destination: This Gate is the target of data, meaning the TC3 IoT Data Agent connects to the Gate and
sends data to it, which has been acquired from another Gate (from a “Source Gate”). Technically, this
is also referred to as the “Publisher Channel”.

Every channel has different settings that either describe the data format that should be used for this channel
or the sampling settings that the TC3 IoT Data Agent should use for gathering data. These settings can also
depend on the gate type that the channel has been configured for.

The following table lists all available settings.

Setting Description Applicable to Gate type
Direction Sets whether the channel should either be a publisher

(sender) or subscriber (receiver) channel. Depending
on the selection and gate type, other settings are
required or pre-selected.

All Gates

Setting Description Applicable to Gate type
SamplingMode Selects if the channel should use either cyclic or

event-based sampling mechanisms when gathering
data from a source. Note that, depending on the
direction, not all Gates might support both types. An
MQTT Gate, for example, uses when receiving data
always SamplingMode “event” (because of the Pub/
Sub principle it is always event-based).

All Gates

CycleTime Only applicable for SamplingMode “cyclic”. Sets the
sampling rate in [ms].

All Gates

Timeout The timeout for a communication with the Gate in [ms]. All Gates
PartialUpdate Enable/Disable partial updates on this channel. When

enabled (default), a publish includes only the updated
symbol. When disabled, a publish includes all symbols
of a channel with their last known value.
Only applicable to publisher channels.

All Gates

BufferSize Sets the size (amoung of messages) of the ringbuffer
on connection loss.

MQTT, AWS IoT, Azure IoT
Hub

Setting Description Applicable to Gate type
Formatter Sets the data format that should be used for this

channel, e.g. binary or JSON. Note that some Gates
require their Channels to use a fixed data format, e.g.
ADS or OPC UA Gates, because the communication
with those devices requires a specific format. In this
case the Formatter is fixed and not changeable via the
configurator.

MQTT, AWS IoT, Azure IoT
Hub

Configuration

TC3 IoT Functions 31Version: 1.0

Setting Description Applicable to Gate type
FormatterType Sets the formatter type on this channel. In most cases

the formatter type is an InOut type. Consult our
documentation article about writing custom plugins via
the formatter interface for more information about this
setting.

MQTT, AWS IoT, Azure IoT
Hub

Setting Description Applicable to Gate type
Topic Specifies the MQTT topic that should be used to

publish or subscribe to.
MQTT

QoS Specifies the QoS (Quality-of-Service) level that
should be used when publishing or subscribing.

MQTT, AWS IoT

Retain Specifies if a message should be send as retain.
(only relevant for publisher channel)

MQTT

SendStateInfo When activated, the TC3 IoT Data Agent publishes its
“OnlineState” to the sub topic /Desc/ as well as uses
this sub topic in its LastWill. When the
TC3 IoT Data Agent connects to the Message Broker,
a JSON message will be published to this topic,
which contains
{ “OnlineState” : true }
When the TC3 IoT Data Agent disconnects orderly
from the Message Broker, the following message is
sent to this topic:
{ “OnlineState” : false }
When the Message Broker detects, that the
TC3 IoT Data Agent lost connection, the following
message is sent to this topic (LastWill):
{ “OnlineState” : false }

MQTT, AWS IoT

Sampling Modes

The TC3 IoT Data Agent includes different sampling modes that influence the way data is acquired from a
source or written to a destination. The sampling mode can be set on a channel. The following sampling
modes are currently available:

• Cyclic
• OnChange
• TriggerSymbol

Cyclic

Cyclic sampling means that the TC3 IoT Data Agent is cyclically sampling the gate for data (subscriber
channel) or cyclically writing data to a gate (publisher channel). On a subscriber channel, this results in cyclic
read commands whereas on a publisher channel this results in cyclic write commands, e.g. on an ADS or
OPC UA gate. On gate types that are based on publisher/subscriber concepts, e.g. MQTT, AWS IoT and
Azure IoT Hub gates, cyclic requests on a subscriber channel are automatically replaced by subscriptions
whereas on a publisher channel this results in cyclic publish commands.

OnChange

OnChange sampling means that the TC3 IoT Data Agent only communicates data with a gate if the value of
a variable has changed.

Trigger symbols

Trigger symbols enable “on demand” sampling, e.g. if a certain condition for a specified symbol (the so-
called “trigger symbol”) is fullfilled. Different condition types can be set. They are configured as part of a
channel and allow to specify the following condition types.

Configuration

TC3 IoT Functions32 Version: 1.0

Condition type Description
EQ Trigger symbol value equals a given value
NE Trigger symbol value differs from a given value
LE Trigger symbol value is less than or equals a given value
GE Trigger symbol value is greater than or equals a given value
LT Trigger symbol value is less than given value
GT Trigger symbol value is greater than given value

If the condition is fullfilled, all symbols in that channel are published to the corresponding gate. In addition
you can specify how often the symbol values should be send.

Send behavior Description
risingEdge Symbols are only send once when the condition is fullfilled
continuous Symbols are send as long as the condition is fullfilled

5.2.6.3 Symbols

Symbols represent variables from a gate, e.g. a TwinCAT PLC variable. The symbol configuration includes
the address information that the Data Agent requires in order to read a symbol’s value or write to it. This
address information is therefore depending on the gate type.

On gates that support a target browser [} 27], the browser will automatically detect the correct address
information for a symbol. For all other gates, this information needs to be entered manually.

Gate type Setting Description
ADS URN Symbol name address information of the ADS variable. Might

not work with all ADS devices, e.g. BC devices do not
support symbol names.

ADS IndexGroup
IndexOffset

IndexGroup/IndexOffset combination can be used to access
data of an ADS device that does not support symbolic
address information. In case of the TwinCAT PLC, the
IndexGroup/IndexOffset combination directly represents a
memory address, e.g. from a PLC variable, which may
change after a re-compilation of the TwinCAT project. It is
therefore common practice to use the TwinCAT PLC symbol
server instead, which provides symbolic information for its
PLC variables, which means that a variable can be accessed
via its symbol name instead, which stays valid even after a
re-compilation or online change (if the symbol still exists).
However, some ADS services do not include such a symbol
server, e.g. small Beckhoff BC devices. In those cases the
IndexGroup/IndexOffset combination needs to be used.

ADS DataType Data type of the symbol
ADS Conversion Specifies conversion mode for this symbol.
OPC UA Name Descriptive name of the OPC UA node. Only used in

Configurator, does not represent any online address
information.

OPC UA Identifier Identifier of OPC UA symbol on the server, e.g.:
• s = MAIN.nCounter (if the IdentifierType is “String”)
• n = 42 (if the IdentifierType is “Numeric”)

OPC UA NsName Namespace name in which the symbol is located. This
corresponds to the namespace index, which is part of an
OPC UA NodeId. The translation can be done via the
NamespaceArray.

Configuration

TC3 IoT Functions 33Version: 1.0

Gate type Setting Description
OPC UA AttributeId The AttributeId defines the OPC UA attribute that should be

used by the Data Agent when reading a symbol. In most
scenarios, this is the “Value” of a symbol.

OPC UA Conversion Specifies conversion mode for this symbol.
MQTT URN Name of the MQTT symbol. This represents the name that is

being used in the JSON format as a key, also when receiving
data from the MQTT Gate.

MQTT DataType Data type of the symbol
MQTT Conversion Specifies conversion mode for this symbol.
IoT Hub URN Name of the IoT Hub symbol. This represents the name that

is being used in the JSON format as a key, also when
receiving data from IoT Hub.

IoT Hub DataType Data type of the symbol
IoT Hub Conversion Specifies conversion mode for this symbol.

When configuring a Channel, symbols can be added via a target browser or manually by providing the
correct address information. Note that not all gate types include target browser functionalities. In this case
symbols need to be configured manually.

Manual symbol configuration

If the target device is not online or does not provide any symbolic address information (e.g. the BC9191),
symbols may also be added manually by entering the symbol address. The tables at the beginning of this
document show which information is required in this case.

Type conversion

The TC3 IoT Data Agent supports data type conversion before the data is published to a Gate. Type
conversion occurs on symbol level, which means that different Symbols can use different conversion modes.
The following table shows the different conversion modes available.

Conversion mode Description
Losless Default setting. “Smaller” types can be converted into “larger” types. For

example, a subscriber symbol of data type INT can be published to a
symbol of data type Int32 (2 byte to 4 byte).

Lossy If required, “larger” symbols can also be converted into “smaller” symbols.
For example, a subscriber symbol of data type DINT can be published to a
symbol of data type Int16 (4 byte to 2 byte). Depending on the value of the
subscriber symbol, this can of course result in cut-off values.

Strict If required, symbols can also be configured to use “strict mode”. In this
conversion mode, the data type size of a subscriber symbol needs to
match exactly the data type of the mapped publisher symbol. For example,
a subscriber symbol of data type INT can only be published to a symbol of
data type Int16 (2 byte to 2 byte).

5.2.7 Error logging
For troubleshooting purposes, the TC3 IoT Data Agent can generate a logfile, which can be populated based
on different logging levels. All necessary settings can be configured via the properties window of the
configurator. Simply click on an empty spot on the topology view and configure the logging settings in the
properties window.

Configuration

TC3 IoT Functions34 Version: 1.0

Note that all settings are tied to the currently opened configuration and have to be set individually for every
configuration. The default directory in which the logfile is created, is the TwinCAT boot directory. The
placeholder [BootDir] automatically selects the TwinCAT boot directory.

Note

Logging window
The logging window inside of the configurator is only showing log events that are related to
the configurator. In order to create a log for the TC3 IoT Data Agent background service,
the settings above are required.

PLC API

TC3 IoT Functions 35Version: 1.0

6 PLC API

6.1 Function blocks

6.1.1 FB_IotFunctions_Connector
The function block enables communication with a local/remote TC3 IoT Data Agent installation. The Execute
method of the function block must be called cyclically in order to ensure the background communication with
the TC3 IoT Data Agent to facilitate the reception of messages. All connection parameters as well as global
settings exist as input parameters.

Syntax
FUNCTION_BLOCK FB_IotFunctions_Connector
VAR_INPUT
 sAmsNetId : STRING;
 nDefaultRequestTimeout : UDINT;
 eDefaultMessageAckOption : EIotFunctionsAckOption;
 nDefaultMessageRetryInterval : UDINT;
 nDefaultMessageCumulativeTimeout : UDINT;
END_VAR
VAR_OUTPUT
 hrInitializationErrorCode : HRESULT;
 hrLastMessageErrorCode : HRESULT;
 driverOTCID : OTCID;
 fbTcResultEvent : FB_TcIotFunctionsResultEvent;
 stIotFunctionsEvent : ST_IotFunctionsEvent;
 pStIotFunctionsRequests : POINTER TO ST_IotFunctionsRequestContainer;
END_VAR

 Inputs

Name Type Description
sAmsNetId STRING Target Data Agent Instance AmsNetId [127.0.0.1.1.1]
nDefaultRequestTimeout UDINT Default timeout value in milliseconds [10000]
nDefaultMessageRetryInter
val

UDINT Default message retry interval in milliseconds (0 disables
retries) [0]

nDefaultMessageCumulati
veTimeout

UDINT Default cumulative timeout in milliseconds (successfully
receiving message data will prolong the containing
request's timeout by this value) [0]

 Outputs

Name Type Description
hrInitializationErrorCode HRESULT HRESULT of driver instantiation and configuration
hrLastMessageErrorCode HRESULT HRESULT of latest reported error occurred in any

message during Execute invocation.
driverOTCID OTCID OTCID of the instantiated driver (passable to request and

message FB input variables in multi data agent
environments)

pStIotFunctionsRequests POINTER TO
ST_IotFunctionsRequ
estContainer [} 39]

Description of latest error code.

PLC API

TC3 IoT Functions36 Version: 1.0

 Methods

Name Description
Execute Enables background communication with TC3 IoT Data Agent. The method

must be called cyclically.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4022.14 IPC or CX (c86, x64, ARM) Tc3_IotFunctions

6.1.2 FB_IotFunctions_Message
The function block provides read/write operations for messages. All message parameters as well as global
settings exist as input parameters.

Syntax
FUNCTION_BLOCK FB_IotFunctions_Message
VAR_INPUT
 nChannelId : UINT;
 nRequestTimeout : UDINT;
 eMessageAckOption : EIotFunctionsAckOption;
 nMessageRetryInterval : UDINT;
 nMessageCumulativeTimeout : UDINT;
 eSumCommandMode : EIotFunctionsSumCommandMode;
 iotFunctionsDriverOTCID : OTCID;
END_VAR
VAR_OUTPUT
 hResult : HRESULT;
 pStMessageDetails : POINTER TO ST_IotFunctionsMessage;
 pStRequestDetails : POINTER TO ST_IotFunctionsRequest;
 bInitialized : BOOL;
 fbTcResultEvent : FB_TcIotFunctionsResultEvent;
 stIotFunctionsEvent : ST_IotFunctionsEvent;
END_VAR

 Inputs

Name Type Description
nChannelId UINT Channel Id of corresponding IotFunctions channel in

target data agent instance's configuration.
nRequestTimeout UDINT Timeout value in milliseconds.
nMessageRetryInterval UDINT Message interval in milliseconds (0 disables retries).
nMessageCumulativeTime
out

UDINT Cumulative timeout (successfully receiving message data
will prolong the containing request's timeout by this
value).

iotFunctionsDriverOTCID OTCID Target IotFunctions Driver Instance's OTCID (see
driverOTCID of FB_IotFunctions_Connector)

 Outputs

Name Type Description
hResult HRESULT Contains the last hresult (is updated when bBusy or

bError are accessed or Read/Write is invoked)
pStMessageDetails POINTER TO

ST_IotFunctionsMess
age [} 38]

Pointer to structure containing detailed information about
the underlying message

PLC API

TC3 IoT Functions 37Version: 1.0

Name Type Description
pStRequestDetails POINTER TO

ST_IotFunctionsRequ
est [} 39]

Pointer to structure containing detailed information about
the underlying request in which this message is executed

bInitialized BOOL Indicates whether interface lookup and initialization was
successful

 Methods

Name Description
Read Reads a message from the channel
Acknowledge Acknowledges error/success status and frees associated message objects. Call

this method after status acknowledgment if no new read/write operation will be
started this cycle to prevent multiple evaluation of latest status.

Write Writes a message to the channel

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4022.14 IPC or CX (c86, x64, ARM) Tc3_IotFunctions

6.1.3 FB_IotFunctions_Request
The function block enables the synchronization of multiple messages (see Synchronizing message
operations [} 19]).

Syntax
FUNCTION_BLOCK FB_IotFunctions_Request
VAR_INPUT
 iotFunctionsDriverOTCID : OTCID;
 nRequestTimeout : UDINT;
 eSumCommandMode : EIotFunctionsSumCommandMode;
END_VAR
VAR_OUTPUT
 hResult : HRESULT;
 pStRequestDetails : POINTER TO ST_IotFunctionsRequest;
 bInitialized : BOOL;
 fbTcResultEvent : FB_TcIotFunctionsResultEvent;
 stIotFunctionsEvent : ST_IotFunctionsEvent;
END_VAR

 Inputs

Name Type Description
iotFunctionsDriverOTCID OTCID Target IotFunctions Driver Instance's OTCID [defaults to

first created FB_IotFunctions_Connector's created object]
nRequestTimeout UDINT Timeout value in milliseconds

 Outputs

Name Type Description
hResult HRESULT Contains the last message's hresult (is updated when

bBusy or bError are accessed or Create/Execute/
EnqueueRead/EnqueueWrite is invoked)

pStRequestDetails POINTER TO
ST_IotFunctionsRequ
est [} 39]

Pointer to structure containing details information about
the underlying request

PLC API

TC3 IoT Functions38 Version: 1.0

Name Type Description
bInitialized BOOL Indicates whether interface lookup and initialization was

successful

 Methods

Name Description
Create Creates a new request
EnqueueRead Adds an instance of FB_IotFunctions_Message [} 36] for read operation
EnqueueWrite Adds an instance of FB_IotFunctions_Message [} 36] for write operation
Execute Executes the request
Acknowledge Acknowledges error/success status and frees associated message objects. Call

this method after status acknowledgment if no new read/write operation will be
started this cycle to prevent multiple evaluation of latest status.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4022.14 IPC or CX (c86, x64, ARM) Tc3_IotFunctions

6.2 Data types

6.2.1 ST_IotFunctionsEvent
Contains detailed information about the cause of the latest error code result.
(* guid of underlying event class *)
uuidEventClass : GUID;

(* event id of underlying event *)
nEventId : UDINT;

(* severity level of underlying event *)
nSeverity : UDINT;

(* verbose message of underlying event *)
sEventMsg : STRING(255);

(* verbose event class name of underlying event *)
sEventClass : STRING(255);

(* verbose origin of underlying event *)
sSourcePath : STRING(255);

(* cycle in which underlying event occurred *)
nCycle : ULINT;

6.2.2 ST_IotFunctionsMessage
Contains detailed information about the underlying message object.
(* request Id of governing request containing this message *)
nRequestId : ULINT;

(* cycle in which this message was created *)
nCycleCreated : ULINT;

(* time passed since creation (in milliseconds) *)
nAge : ULINT;

(* corresponding IoTDataAgent channel *)
nChannelId : UDINT;

PLC API

TC3 IoT Functions 39Version: 1.0

(* hrResult of latest action *)
hrResultCode : HRESULT;

(* message Id *)
nMessageId : UINT;

(* amount of initiated Ads requests during message lifetime *)
nAdsRequestCount : UINT;

(* amount of received Ads confirmations during message lifetime *)
nAdsConfirmationCount : UINT;

(* current (internal) state of message object. *)
eMessageState : EIotFunctionsMessageState;

(* message direction [read/write] *)
eMessageDirection : EIotFunctionsMessageDirection;

(* indicates if the accepted data differes from the previously contained data (relevant for read-
ing data) *)
bBufferChanged : BOOL;

(* name of the corresponding symbol *)
sSymbolName : STRING(255);

6.2.3 ST_IotFunctionsRequest
Contains detailed information about the underlying request object.
(* request Id *)
nRequestId : ULINT;

(* cycle in which this request was created *)
nCycleCreated : ULINT;

(* time passed since creation (in milliseconds) *)
nAge : ULINT;

(* time until request expires (timeout) (in milliseconds) *)
nTimeToLive : ULINT;

(* count of currently pending messages in this request *)
nPendingCount : UDINT;

(* count of currently contained messages in this request *)
nTotalCount : UINT;

(* indicates if the corresponding internal object has been removed *)
bIsRemoved : BOOL;

(* indicates if any contained message has timed out *)
bIsTimedOut : BOOL;

(* indicates if all contained messages have been processed (regardless of success, error or time-
out states) *)
bIsCompleted : BOOL;

6.2.4 ST_IotFunctionsRequestContainer
Contains an array of ST_IotFunctionsRequests that represents the requests handled by the containing
FB_IotFunctions_Connector instance.
(* array of ST_IotFunctionsRequests *)
apIotRequests : ARRAY [0..99] OF POINTER TO ST_IotFunctionsRequest;

Samples

TC3 IoT Functions40 Version: 1.0

7 Samples
Samples for TC3 IoT Functions can be downloaded as a single container solution: https://
infosys.beckhoff.com/content/1033/tf6710_tc3_iot_functions/Resources/zip/5247017867.zip

https://infosys.beckhoff.com/content/1033/tf6710_tc3_iot_functions/Resources/zip/5247017867.zip
https://infosys.beckhoff.com/content/1033/tf6710_tc3_iot_functions/Resources/zip/5247017867.zip

Appendix

TC3 IoT Functions 41Version: 1.0

8 Appendix

8.1 Support and Service
Beckhoff and their partners around the world offer comprehensive support and service, making available fast
and competent assistance with all questions related to Beckhoff products and system solutions.

Beckhoff's branch offices and representatives

Please contact your Beckhoff branch office or representative for local support and service on Beckhoff
products!

The addresses of Beckhoff's branch offices and representatives round the world can be found on her internet
pages:
http://www.beckhoff.com

You will also find further documentation for Beckhoff components there.

Beckhoff Headquarters

Beckhoff Automation GmbH & Co. KG

Huelshorstweg 20
33415 Verl
Germany

Phone: +49(0)5246/963-0
Fax: +49(0)5246/963-198
e-mail: info@beckhoff.com

Beckhoff Support

Support offers you comprehensive technical assistance, helping you not only with the application of
individual Beckhoff products, but also with other, wide-ranging services:

• support
• design, programming and commissioning of complex automation systems
• and extensive training program for Beckhoff system components

Hotline: +49(0)5246/963-157
Fax: +49(0)5246/963-9157
e-mail: support@beckhoff.com

Beckhoff Service

The Beckhoff Service Center supports you in all matters of after-sales service:

• on-site service
• repair service
• spare parts service
• hotline service

Hotline: +49(0)5246/963-460
Fax: +49(0)5246/963-479
e-mail: service@beckhoff.com

http://www.beckhoff.de/english/support/default.htm
http://www.beckhoff.com
http://www.beckhoff.com/english/download/default.htm

	 Table of contents
	1 Foreword
	1.1 Notes on the documentation
	1.2 Safety instructions

	2 Overview
	3 Installation
	3.1 System requirements
	3.2 Setup scenarios
	3.3 Installation
	3.4 Licensing

	4 Technical introduction
	4.1 Reference Data Agent
	4.2 Communication patterns
	4.3 Programming workflow
	4.4 Synchronizing message operations
	4.5 Timeout settings

	5 Configuration
	5.1 Overview
	5.2 Configurator
	5.2.1 Topology view
	5.2.2 Tree view
	5.2.3 Mappings
	5.2.4 Target Browser
	5.2.5 Cascading Editor
	5.2.6 Settings
	5.2.6.1 Gates
	5.2.6.2 Channels
	5.2.6.3 Symbols

	5.2.7 Error logging

	6 PLC API
	6.1 Function blocks
	6.1.1 FB_IotFunctions_Connector
	6.1.2 FB_IotFunctions_Message
	6.1.3 FB_IotFunctions_Request

	6.2 Data types
	6.2.1 ST_IotFunctionsEvent
	6.2.2 ST_IotFunctionsMessage
	6.2.3 ST_IotFunctionsRequest
	6.2.4 ST_IotFunctionsRequestContainer

	7 Samples
	8 Appendix
	8.1 Support and Service

