

Documentation for

EP3356-0022

1-channel precise load cell analysis (resistor bridge), 24 bit

Version: 1.1.0 Date: 2018-11-15

Table of contents

1	Fore	vord	5		
	1.1	Notes on the documentation	5		
	1.2	Safety instructions	6		
	1.3	Documentation issue status	7		
2	Prod	ıct overview	8		
	2.1	EP3356-0022 - Introduction	8		
	2.2	EP3356-0022 - Technical data	9		
	2.3	Basic principles of strain gauge technology	10		
3	Basi	s of communication	17		
	3.1	EtherCAT basics	17		
	3.2	Watchdog setting	17		
	3.3	EtherCAT State Machine	20		
	3.4	CoE interface	22		
	3.5	Distributed Clock	26		
4	Mour	ting and Cabling	27		
	4.1	Mounting	27		
		4.1.1 Dimensions	27		
		4.1.2 Fixing	28		
		4.1.3 Nut torque for connectors	29		
		4.1.4 Additional checks	30		
	4.2	EtherCAT	31		
		4.2.1 EtherCAT connection	31		
		4.2.2 EtherCAT - Fieldbus LEDs	32		
	4.3	Power supply	34		
		4.3.1 Power Connection	34		
		4.3.2 Status LEDs for power supply	37		
		4.3.3 Power cable conductor losses M8	38		
		4.3.4 Conductor losses 7/8"	39		
	4.4	Cabling	40		
	4.5	UL Requirements	42		
	4.6	ATEX notes	43		
		4.6.1 ATEX - Special conditions	43		
		4.6.2 BG2000-0000 - EtherCAT Box protection enclosure	44		
		4.6.3 ATEX Documentation	45		
5	EP33	56-0022 - Signal connection	46		
	5.1	Analog voltage inputs M12 and meaning of the LEDs	46		
6	Com	nissioning/Configuration	48		
	6.1	TwinCAT configuration setup, manual	48		
	6.2	Configuration setup: TwinCAT - online scan	51		
	6.3	EtherCAT slave process data settings (PDO)	58		
	6.4	Configuration via TwinCAT	59		
	6.5	Basic function principles	67		
	6.6	6.6 Application notes			

BECKHOFF

	6.7	Calibration and adjustment	80
	6.8	Notices on analog specifications	84
	6.9	Voltage measurement	89
	6.10	Distributed Clocks mode (EL3356-0010 and EP3356-0022 only)	91
	6.11	Process data	92
	6.12	Object description and parameterization	100
	6.13	Example program	113
	6.14	Restoring the delivery state	118
7	Арре	ndix	119
	7.1	General operating conditions	119
	7.2	EtherCAT Box- / EtherCAT P Box - Accessories	120
	7.3	Support and Service	121

1 Foreword

1.1 Notes on the documentation

Intended audience

This description is only intended for the use of trained specialists in control and automation engineering who are familiar with the applicable national standards.

It is essential that the documentation and the following notes and explanations are followed when installing and commissioning these components.

It is the duty of the technical personnel to use the documentation published at the respective time of each installation and commissioning.

The responsible staff must ensure that the application or use of the products described satisfy all the requirements for safety, including all the relevant laws, regulations, guidelines and standards.

Disclaimer

The documentation has been prepared with care. The products described are, however, constantly under development.

We reserve the right to revise and change the documentation at any time and without prior announcement.

No claims for the modification of products that have already been supplied may be made on the basis of the data, diagrams and descriptions in this documentation.

Trademarks

Beckhoff[®], TwinCAT[®], EtherCAT[®], EtherCAT P[®], Safety over EtherCAT[®], TwinSAFE[®], XFC[®] and XTS[®] are registered trademarks of and licensed by Beckhoff Automation GmbH. Other designations used in this publication may be trademarks whose use by third parties for their own purposes could violate the rights of the owners.

Patent Pending

The EtherCAT Technology is covered, including but not limited to the following patent applications and patents: EP1590927, EP1789857, DE102004044764, DE102007017835 with corresponding applications or registrations in various other countries.

The TwinCAT Technology is covered, including but not limited to the following patent applications and patents: EP0851348, US6167425 with corresponding applications or registrations in various other countries.

EtherCAT[®] is registered trademark and patented technology, licensed by Beckhoff Automation GmbH, Germany.

Copyright

© Beckhoff Automation GmbH & Co. KG, Germany.

The reproduction, distribution and utilization of this document as well as the communication of its contents to others without express authorization are prohibited.

Offenders will be held liable for the payment of damages. All rights reserved in the event of the grant of a patent, utility model or design.

1.2 Safety instructions

Safety regulations

Please note the following safety instructions and explanations! Product-specific safety instructions can be found on following pages or in the areas mounting, wiring, commissioning etc.

Exclusion of liability

All the components are supplied in particular hardware and software configurations appropriate for the application. Modifications to hardware or software configurations other than those described in the documentation are not permitted, and nullify the liability of Beckhoff Automation GmbH & Co. KG.

Personnel qualification

This description is only intended for trained specialists in control, automation and drive engineering who are familiar with the applicable national standards.

Description of instructions

In this documentation the following instructions are used. These instructions must be read carefully and followed without fail!

▲ DANGER

Serious risk of injury!

Failure to follow this safety instruction directly endangers the life and health of persons.

Risk of injury!

Failure to follow this safety instruction endangers the life and health of persons.

Personal injuries!

Failure to follow this safety instruction can lead to injuries to persons.

NOTE

Damage to environment/equipment or data loss

Failure to follow this instruction can lead to environmental damage, equipment damage or data loss.

Tip or pointer

This symbol indicates information that contributes to better understanding.

1.3 Documentation issue status

Version	Changes
1.1.0	Update Safety instructions
	Update chapter Mounting and Cabling
1.0.4	Technical Data updated
	EP3356-0022 – Signal connection updated
1.0.3	Basic function principles updated
1.0.2	Nut torque for connectors updated
1.0.1	Parallel connection of strain gauges updated
1.0.0	first publication
0.5	first preliminary version

Firm and hardware version

The documentation refers to the firm and hardware status that was valid at the time it was prepared.

The properties of the modules are subject to continuous development and improvement. Modules having earlier production statuses cannot have the same properties as modules with the latest status. Existing properties, however, are always retained and are not changed, so that these modules can always be replaced by new ones.

The firmware and hardware version (delivery state) can be found in the batch number (D number) printed at the side of the EtherCAT Box.

Syntax of the batch number (D number)

D: WW YY FF HH

WW - week of production (calendar week) YY - year of production FF - firmware version HH - hardware version

Example with D No. 29 10 02 01:

29 - week of production 29

- 10 year of production 2010
- 02 firmware version 02
- 01 hardware version 01

2 Product overview

2.1 EP3356-0022 - Introduction

Fig. 1: EP3356-0022

1-channel precise load cell analysis (resistor bridge), 24 bit

The EP3356 EtherCAT Box enables direct connection of a resistor bridge or load cell in a 4-wire connection technology. The ratio between the bridge voltage U_D and the supply voltage U_{ref} is determined simultaneously in the input circuit and the final load value is calculated as a process value on the basis of the settings in the EP3356. With automatic self-calibration (can be deactivated), dynamic filters and distributed clock support, the EP3356 with measuring cycles of 100 µs can be used for fast and precise monitoring of torque or vibration sensors.

Installation [27]

Configuration [▶ 48]

2.2 EP3356-0022 - Technical data

Technical data	EP3356-0022
Number of inputs	2, for 1 resistor bridge in full bridge technology
Signal connection sockets [46]	M12
Resolution	24 Bit, 32 bit presentation
Conversion time	0.1 ms250 ms, configurable, max. 10,000 samples/s
Nominal voltage	24 V _{DC} (-15 %/+20 %)
Distributed Clocks	yes
selectable modes	yes (2)
Measuring error	<±0.01 % for the calculated load value in relation to the final load value with a 12 V feed and 24 mV bridge voltage (hence nominal strain gauge characteristic value of 2 mV/V), self-calibration active, 50 Hz filter active. Attention: Due to external influences such as temperature drifts [\blacktriangleright 10] and HF-disturbances may possibly occur a not insignificant error!
Measuring range U_{D}	max27 mV+27 mV typ. (see <u>note [) 89]</u> concerning voltage measuring recommended: -25 mV+25 mV rated voltage
Measuring range U _{ref}	max13.8 V+13.8 V typ. (see <u>note [▶ 89]</u> concerning voltage measuring recommended: -12 V+12 V rated voltage
Supported nominal sensitivity	all, resolution of parameter: 0.01 µV/V
	Recommended: 0.5 mV/V4 mV/V
Min. strain gauge resistor	parallel operation of strain gauges only with suitable strain gauges recommended
Input filter limit frequency (hardware)	10 kHz low pass (-3 dB)
Filter (software)	Present 50 Hz,
	Configurable: 50/60 Hz FIR notch filter, IIR low pass 4-fold averager
Internal resistance	>200 kΩ (U _{ref}), > 1 MΩ (U _d)
Special features	self-calibration, quadruple averager, dynamic filters, fast data sampling, parallel connection
Sensor supply	U _{ref} = 10 V (supplied by the EP3356)
Current consumption from U _s (without sensor current)	120 mA
Power supply connection	feed: 1 x M8 male socket, 4-pin
	downstream connection: 1 x M8 female socket, 4-pin
Permissible ambient temperature	-25°C+60°C
during operation	0°C +55°C (according to cULus, see UL Requirements)
Permissible ambient temperature during storage	-40°C+85°C
Vibration / shock resistance	conforms to EN 60068-2-6 / EN 60068-2-27
EMC immunity/emission	conforms to EN 61000-6-2 / EN 61000-6-4
Dimensions	126 mm x 60 mm x 40 mm
Weight	approx 450 g
Installation position	variable
Protection class	IP65, IP66, IP67 (according to EN 60529)
Approvals	CE, UL

2.3 Basic principles of strain gauge technology

Basic information on the technological field of "strain gauges/load cells" as metrological instruments is to be given below. The information is of general nature; it is up to the user to check the extent to which it applies to his application.

- Strain gauges serve either to directly measure the static (0 to a few Hz) or dynamic (up to several KHz) elongations, compressions or torsions of a body by being directly fixed to it, or to measure various forces or movements as part of a sensor (e.g. load cells/force transducers, displacement sensor, vibration sensors).
- In the case of the optical strain gauge (e.g. Bragg grating), an application of force causes a
 proportional change in the optical characteristics of a fiber used as a sensor. Light with a certain
 wavelength is fed into the sensor. Depending upon the deformation of the grating, which is laser-cut
 into the sensor, due to the mechanical load, part of the light is reflected and evaluated using a suitable
 measuring transducer (interrogator).

The commonest principle in the industrial environment is the electrical strain gauge. There are many common terms for this type of sensor: load cell, weighbridge, etc.

Structure of electrical strain gauges

A strain gauge consists of a carrier material (e.g. stretchable plastic film) with an applied metal film from which a lattice of electrically conductive resistive material is worked in very different geometrical forms, depending on the requirements.

Fig. 2: Strain gauge

This utilizes a behavior whereby, for example in the case of strain, the length of a metallic resistance network increases and its diameter decreases, as a result of which its electrical resistance increases proportionally.

$\Delta R/R = k^* \epsilon$

 $\epsilon = \Delta l/l$ thereby corresponds to the elongation; the strain sensitivity is called the k-factor. This also gives rise to the typical track layout inside the strain gauge: the resistor track or course is laid in a meandering pattern in order to expose the longest possible length to the strain.

Example

The elongation $\varepsilon = 0.1$ % of a strain gauge with k-factor 2 causes an increase in the resistance of 0.2 %. Typical resistive materials are constantan (k~2) or platinum tungsten (92PT, 8W with k ~4). In the case of semiconductor strain gauges a silicon structure is glued to a carrier material. The conductivity is changed primarily by deformation of the crystal lattice (piezo-resistive effect); k-factors of up to 200 can be achieved.

Measurement of signals

The change in resistance of an individual strain gauge can be determined in principle by resistance measurement (current/voltage measurement) using a 2/3/4-conductor measurement technique

Usually 1/2/4 strain gauges are arranged in a Wheatstone bridge (-> quarter/half/full bridge); the nominal resistance/impedance R_0 of all strain gauges (and the auxiliary resistors used if necessary) is usually equivalent to R1=R2=R3=R4=R_0. Typical values in the non-loaded state are $R_0 = 120 \Omega$, 350 Ω , 700 Ω and 1 k Ω .

The full bridge possesses the best characteristics such as linearity in the feeding of current/voltage, four times the sensitivity of the quarter-bridge as well as systematic compensation of disturbing influences such as temperature drift and creeping. In order to achieve high sensitivity, the 4 individual strain gauges are arranged on the carrier in such a way that 2 are elongated and 2 are compressed in each case.

Fig. 3: quarter, half and full bridge

The measuring bridges can be operated with constant current, constant voltage, or also with AC voltage using the carrier frequency method.

Measuring procedure

The Beckhoff EL/KL335x Terminals and the EP3356 Box support only the constant excitation

• Full bridge strain gauge at constant voltage (ratiometric measurement)

Since the relative resistance change ΔR is low in relation to the nominal resistance R_0 , a simplified equation is given for the strain gauge in the Wheatstone bridge arrangement:

$U_D/U_V = \frac{1}{4} * (\Delta R1 - \Delta R2 + \Delta R3 - \Delta R4)/R_0$

 ΔR usually has a positive sign in the case of elongation and a minus sign in the case of compression.

A suitable measuring instrument measures the bridge supply voltage U_v (or U_{Supply}) and the resulting bridge voltage U_D (or U_{Bridge}), and forms the quotients from both voltages, i.e. the ratio. After further calculation and scaling the measured value is output, e.g. in kg. Due to the division of U_D and U_V the measurement is in principle independent of changes in the supply voltage.

If the voltages U_v and U_D are measured simultaneously, i.e. at the same moment, and placed in relation to each other, then this is referred to as a ratiometric measurement.

The advantage of this is that (with simultaneous measurement!) brief changes in the supply voltage (e.g. EMC effects) or a generally inaccurate or unstable supply voltage likewise have no effect on the measurement.

A change in U_v by e.g. 1 % creates the same percentage change in U_D according to the above equation. Due to the simultaneous measurement of U_D and U_v the error cancels itself out completely during the division.

4-conductor vs. 6-conductor connection

If supplied with a constant voltage of 5 to 12 V a not insignificant current flows of e.g. 12 V/350 Ω = 34.3 mA. This leads not only to dissipated heat, wherein the specification of the strain gauge employed must not be exceeded, but possibly also to measuring errors in the case of inadequate wiring due to line losses not being taken into account or compensated.

In principle a full bridge can be operated with a 4-conductor connection (2 conductors for the supply U_v and 2 for the measurement of the bridge voltage U_D).

If, for example, a 25 m copper cable (feed + return = 50 m) with a cross section q of 0.25 mm² is used, this results in a line resistance of

RL = I/ ($\kappa * q$) = 50 m / (58 S*m/mm² * 0.25 mm²) = 3.5 Ω

If this value remains constant, then the error resulting from it can be calibrated out. However, assuming a realistic temperature change of, for example, 30° the line resistance R_L changes by

 $\Delta RL = 30^{\circ} * 3.9 * 10^{-4} * 3.5 \Omega = 0.41 \Omega$

In relation to a 350 Ω measuring bridge this means a measuring error of > 0.1 %.

Fig. 4: 4-conductor connection

This can be remedied by a 6-conductor connection, in particular for precision applications (only possible with EL3356).

Fig. 5: 6-conductor connection

The supply voltage U_v is thereby fed to the strain gauge (= current carrying conductor). The incoming supply voltage U_{ref} is only measured with high impedance directly at the measuring bridge in exactly the same way as the bridge voltage U_D with two currentless return conductors in each case. The conductor-related errors are hence omitted.

Since these are very small voltage levels of the order of mV and μ V, all conductors should be shielded. The shield must be connected to pin 5 of the M12 connector.

EP3356-0022: No 6-conductor connection necessary

The connection of a strain gauge over 4-conductor with the EP3356-0022 is sufficient because due to the shorter cable lengths no measurement errors occur.

Structure of a load cell with a strain gauge

One application of the strain gauge is the construction of load cells.

This involves gluing strain gauges (full bridges as a rule) to an elastic mechanical carrier, e.g. a doublebending beam spring element, and additionally covered to protect against environmental influences.

The individual strain gauges are aligned for maximum output signals according to the load direction (2 strain gauges in the elongation direction and 2 in the compression direction).

Fig. 6: Example of a load cell

The most important characteristic data of a load cell

Characteristic data

Please enquire tot he sensor manufacturer regarding the exact characteristic data!

Nominal load E_{max}

Maximum permissible load for normal operation, e.g. 10 kg

Nominal characteristic value mV/V

The nominal characteristic value 2 mV/V means that, with a supply of $U_s=10$ V and at the full load E_{max} of the load cell, the maximum output voltage $U_D = 10$ V * 2 mV/V *E = 20 mV. The nominal characteristic value is always a nominal value – a manufacturer's test report is included with good load cells stating the characteristic value determined for the individual load cell, e.g. 2.0782 mV/V.

Minimum calibration value V_{min}

This indicates the smallest mass that can be measured without the maximum permissible error of the load cell being exceeded [RevT].

This value is represented either by the equation $V_{min} = E_{max} / n$ (where n is an integer, e.g. 10000), or in % of E_{max} (e.g. 0.01).

This means that a load cell with E_{max} = 10 kg has a maximum resolution of

 V_{min} = 10 kg / 10000 = 1 g or V_{min} = 10 kg * 0.01 % = 1 g.

Accuracy class according to OIML R60

The accuracy class is indicated by a letter (A, B, C or D) and an additional number, which encodes the scale interval d with a maximum number n_{max} (*1000); e.g. C4 means Class C with maximally 4000d scale intervals.

The classes specify a maximum and minimum limit for scale intervals d:

- A: 50,000 unlimited
- B: 5000 100,000
- C: 500 10,000
- D: 500 1000

The scale interval n_{max} = 4000d states that, with a load cell with a resolution of V_{min} = 1 g, a calibratable set of scales can be built that has a maximum measuring range of 4000d * V_{min} = 4 kg. Since V_{min} is thereby a minimum specification, an 8 kg set of scales could be built – if the application allows – with the same load cell, wherein the calibratable resolution would then fall to 8 kg/4000d = 2 g. From another point of view the scale interval n_{max} is a maximum specification; hence, the above load cell could be used to build a set of scales with a measuring range of 4 kg, but a resolution of only 2000 divisions = 2 g, if this is adequate for the respective application. Also the classes differ in certain error limits related to non-repeatability/creep/TC

Accuracy class according to PTB

The European accuracy classes are defined in an almost identical way (source: PTB).

Class	Calibration values	Minimum load	Ma	ax/e
			Minimum value	Maximum value
	0.001 g <= e	100 e	50000	
Fine scales				
	g <= e <=0.05 g	20 e	100	100000
Precision scales	g <= e	50 e	5000	100000
	g <= e <=2 g	20 e	100	10000
Commercial scales	g <= e	20 e	500	10000
	5 g <= e	10 e	100	1000
Coarse scales				

Minimum application range or minimum measuring range in % of rated load

This is the minimum measuring range/measuring range interval, which a calibratable load cell/set of scales must cover.

Example: above load cell E_{max} = 10 kg; minimum application range e.g. 40 % E_{max}

The used measuring range of the load cell must be at least 4 kg. The minimum application range can lie in any range between E_{min} and E_{max} , e.g. between 2 kg and 6 kg if a tare mass of 2 kg already exists for structural reasons. A relationship between n_{max} and V_{min} is thereby likewise apparent: 4000 * 1 g = 4 kg.

There are further important characteristic values, which are for the most part self-explanatory and need not be discussed further here, such as nominal characteristic value tolerance, input/output resistance, recommended supply voltage, nominal temperature range etc.

Parallel connection of strain gauges

It is usual to distribute a load mechanically to several strain gauge load cells at the same time. Hence, for example, the 3-point bearing of a silo container on 3 load cells can be realized. Taking into account wind loads and loading dynamics, the total loading of the silo including the dead weight of the container can thus be measured. The mechanically parallel-connected load cells are usually also electrically connected in parallel and connect at two arbitrarily M12 sockets of EP3356-0022 (see figure below). To this end the following must be observed:

- the load cells must be matched to each other and approved by the manufacturer for this mode of operation
- the impedance of the load cells must be such that the current feed capability of the transducer electronics (max. 350 mA) is not overloaded.

Fig. 7: Parallel connection of strain gauges

Sources of error/disturbance variables

Inherent electrical noise of the load cell

Electrical conductors exhibit so-called thermal noise (thermal/Johnson noise), which is caused by irregular temperature-dependent movements of the electrons in the conductor material. The resolution of the bridge signal is already limited by this physical effect. The rms value e_n of the noise can be calculated by $e_n = \sqrt{4kTRB}$

In the case of a load cell with $R_0 = 350 \Omega$ at an ambient temperature T = 20 °C (= 293 K) and a bandwidth of the measuring transducer of 50 Hz (and Boltzmann constant k = 1.38 * 10⁻²³ J/K), the rms e_n = 16.8 nV. The peak-peak noise e_{pp} is thus approx. $e_{pp} \sim 4^* e_n$ = 67.3 nV.

Example:

In relation to the maximum output voltage $U_{out-max}$ of a bridge with 2 mV/V and Us = 5 V, this corresponds to $U_{out-max} = 5 V * 2 mV/V = 10 mV$. (For the nominal load) this results in a maximum resolution of 10 mV/67.3 nV = 148588 digits. Converted into bit resolution: ln(148588)/ln(2) = 17 bits. Interpretation: a higher digital measuring resolution than 17 bits is thus inappropriate for such an analog signal in the first

step. If a higher measuring resolution is used, then additional measures may need to be taken in the evaluation chain in order to obtain the higher information content from the signal, e.g. hardware low-pass filter or software algorithms.

This resolution applies alone to the measuring bridge without any further interferences. The resolution of the measuring signal can be increased by reducing the bandwidth of the measuring unit.

If the strain gauge is glued to a carrier (load cell) and wired up, both external electrical disturbances (e.g. thermovoltage at connection points) and mechanical vibrations in the vicinity (machines, drives, transformers (mechanical and audible 50 Hz vibration due to magnetostriction etc.)) can additionally impair the result of measurement.

Creep

Under a constant load, spring materials can further deform in the load direction. This process is reversible, but it generates a slowly changing measured value during the static measurement. In an ideal case the error can be compensated by constructive measures (geometry, adhesives).

Hysteresis

If even elongation and compression of the load cell take place, then the output voltage does not follow exactly the same curve, since the deformation of the strain gauge and the carrier may be different due to the adhesive and its layer thickness.

Temperature drift (inherent heating, ambient temperature)

Relatively large currents can flow in strain gauge applications, e.g. $I = U_S/R_0 = 10 \text{ V} / 350 \Omega = 26 \text{ mA}$. The power dissipation at the sensor is thus $P_V = U^*I = 10 \text{ V} * 26 \text{ mA} = 260 \text{ mW}$. Depending on application/carrier material (= cooling) and ambient temperature, a not insignificant error can arise that is termed apparent elongation. The sensor manufacturers integrate suitable compensation elements in their strain gauges.

Inadequate circuit technology

As already shown, a full bridge may be able (due to the system) to fully compensate non-linearity, creep and temperature drift. Wiring-related measuring errors are avoided by the 6-conductor connection.

References

Some organizations are listed below that provide the specifications or documents for the technological field of weighing technology:

- OIML (ORGANISATION INTERNATIONALE DE MÉTROLOGIE LÉGALE) www.oiml.org/en
- PTB Physikalisch-Technischen Bundesanstalt www.ptb.de/cms/
- www.eichamt.de
- WELMEC European cooperation in legal metrology <u>www.welmec.org</u>
- DAkkS Deutsche Akkreditierungsstelle www.dakks.de
- Fachgemeinschaft Waagen (AWA) im Verband Deutscher Maschinen- und Anlagenbau VDMA <u>www.vdma.org</u>

3 Basics of communication

3.1 EtherCAT basics

Basic information on the EtherCAT fieldbus can be found in the EtherCAT system documentation.

3.2 Watchdog setting

General information on watchdog settings

The ELxxxx Terminals and EPxxxx Box Modules are equipped with a safety device (watchdog) that switches the outputs to a safe state after a time that can be preset, for example in the case of interrupted process data traffic, or to OFF, for example depending on device and setting.

The EtherCAT Slave Controller (ESC) has two watchdogs:

- SM watchdog (default: 100 ms)
- PDI watchdog (default: 100 ms)

SM Watchdog (SyncManagerWatchdog)

The SyncManager watchdog is reset after each successful EtherCAT process data communication with the terminal/box. If no EtherCAT process data communication takes place with the terminal/box for longer than the set and activated SM watchdog time, e.g. in the event of a line interruption, the watchdog is triggered and the outputs are set to FALSE. The OP status of the terminal/box is unaffected by this. The watchdog is only reset after a successful EtherCAT process data access. Set the monitoring time as specified below.

The SyncManager watchdog monitors correct and timely process data communication with the ESC from the EtherCAT side.

PDI watchdog (process data watchdog)

If no PDI communication with the EtherCAT slave controller (ESC) takes place for longer than the set and activated PDI watchdog time, this watchdog is triggered.

PDI (Process Data Interface) is the internal interface between the ESC and local processors in the EtherCAT slave, for example. The PDI watchdog can be used to monitor this communication for failure.

The PDI watchdog monitors correct and timely process data communication with the ESC but from the application side.

The SM and PDI watchdogs should be set separately for each slave in the TwinCAT System Manager:

BECKHOFF

Advanced Settings			
⊡- General <mark>Behavior</mark>	Behavior	State Masking	
Timeout Settings Identification FMMU / SM Init Commands Onit Co	Check Vendor Id Check Product Code Check Revision Number Check Serial Number	V Auto Restore States V Auto Restore States V Auto Restore States V Auto Restore State is Ok V ReInit after Communication Error V Log Communication Changes	
	Check Identification Process Data Use RD/WR Instead of RW Include WC State Btt(s) Frame Repeat Support General No AutoInc - Use 2. Address AutoInc only - No Fixed Address Watchdog Set Multiplier (Reg. 400h): Set PDI Watchdog (Reg. 410h): Vest SM Watchdog (Reg. 420h):	Final State OP SAFEOP in Config Mode SAFEOP PREOP INIT Info Data Include State Include Ads Address	
		Include AoE NetId Include Channels Include DC Shift Times Include Object Id	
		2498 x 1000 x ms: 100.000 ms: 100.000	
	5		OK Abbrechen

Fig. 8: EtherCAT tab --> Advanced settings --> Behavior --> Watchdog

Comments:

- The multiplier applies to both watchdogs.
- Each watchdog has its own timer setting, which together with the multiplier results in a time.
- Important: The multiplier/timer setting is loaded into the slave on start-up, if the corresponding checkbox is ticked. If the checkbox is not ticked, no download takes place, and the ESC setting remains unchanged.

Multiplier

Both watchdogs receive their pulses from the local terminal/box clock, divided by the watchdog multiplier.

1/25 MHz * (watchdog multiplier + 2) = 100 µs (for default setting of 2498 for the multiplier)

The standard setting of 1000 for the SM watchdog corresponds to a release time of 100 ms.

The value in multiplier + 2 corresponds to the number of basic 40 ns ticks representing a watchdog tick.

The multiplier can be modified in order to adjust the watchdog time over a larger range.

Example "Set SM watchdog"

This checkbox enables manual setting of the watchdog times. If the outputs are set and the EtherCAT communication is interrupted, the SM watchdog is triggered after the set time and the outputs are deleted. This setting can be used for adapting a terminal to a slower EtherCAT master or long cycle times. The default SM watchdog setting is 100 ms. The setting range is from 0 to 65535. Together with a multiplier in a range from 1 to 65535, this covers a watchdog period of 0 to ~170 seconds.

Calculation

Multiplier = 2498 \rightarrow watchdog base time = 1 / 25 MHz * (2498 + 2) = 0.0001 seconds = 100 μ s

SM watchdog = 10000 \rightarrow 10000 * 100 μs = 1 second watchdog monitoring time

Caution! Unintended behavior of the system is possible!

The function for switching off of the SM watchdog via SM watchdog = 0 is only implemented in terminals from version -0016. In previous versions this operating mode should not be used.

Caution! Damage to the equipment and unintended behavior of the system is possible!

If the SM watchdog is activated and a value of 0 is entered the watchdog switches off completely. This is watchdog deactivation! Outputs are then *NOT* set to a safe state, in the event of an interruption in communication!

1

Outputs in SAFEOP

Watchdog monitoring is activated by default. It sets the outputs in the module to a safe state (e.g. OFF), depending on the *SAFEOP* and *OP* settings, and depending on the device and its settings. If this is prevented due to deactivation of watchdog monitoring in the module, outputs can be switched or remain set in device state *SAFEOP*.

3.3 EtherCAT State Machine

The state of the EtherCAT slave is controlled via the EtherCAT State Machine (ESM). Depending upon the state, different functions are accessible or executable in the EtherCAT slave. Specific commands must be sent by the EtherCAT master to the device in each state, particularly during the bootup of the slave.

A distinction is made between the following states:

- Init
- Pre-Operational
- · Safe-Operational and
- Operational
- Boot

The regular state of each EtherCAT slave after bootup is the OP state.

Fig. 9: EtherCAT State Machine

Init

After switch-on the EtherCAT slave in the *Init* state. No mailbox or process data communication is possible. The EtherCAT master initializes sync manager channels 0 and 1 for mailbox communication.

Pre-Operational (Pre-Op)

During the transition between *Init* and *Pre-Op* the EtherCAT slave checks whether the mailbox was initialized correctly.

In *Pre-Op* state mailbox communication is possible, but not process data communication. The EtherCAT master initializes the sync manager channels for process data (from sync manager channel 2), the FMMU channels and, if the slave supports configurable mapping, PDO mapping or the sync manager PDO assignment. In this state the settings for the process data transfer and perhaps terminal-specific parameters that may differ from the default settings are also transferred.

Safe-Operational (Safe-Op)

During transition between *Pre-Op* and *Safe-Op* the EtherCAT slave checks whether the sync manager channels for process data communication and, if required, the distributed clocks settings are correct. Before it acknowledges the change of state, the EtherCAT slave copies current input data into the associated DP-RAM areas of the EtherCAT slave controller (ECSC).

Mailbox and process data communication is possible in the *Safe-Op* state, but the slave keeps its outputs in the safe state. However, the input data are cyclically updated.

Operational (Op)

Before the EtherCAT master switches the EtherCAT slave from *Safe-Op* to *Op* it must transfer valid output data.

In the *Op* state the slave copies the output data of the masters to its outputs. Process data and mailbox communication is possible.

Boot

In the Boot state the slave firmware can be updated. The Boot state can only be reached via the Init state.

In the *Boot* state mailbox communication via the *file access over EtherCAT* (FoE) protocol is possible, but no other mailbox communication and no process data communication.

3.4 **CoE** interface

General description

The CoE interface (CANopen over EtherCAT) is used for parameter management of EtherCAT devices. EtherCAT slaves or the EtherCAT master manage fixed (read only) or variable parameters which they require for operation, diagnostics or commissioning.

CoE parameters are arranged in a table hierarchy. In principle, the user has read access via the fieldbus. The EtherCAT master (TwinCAT System Manager) can access the local CoE lists of the slaves via EtherCAT in read or write mode, depending on the properties.

Different CoE parameter types are possible, including string (text), integer numbers, Boolean values or larger byte fields. They can be used to describe a wide range of features. Examples of such parameters include manufacturer ID, serial number, process data settings, device name, calibration values for analog measurement or passwords.

Organization takes place on 2 levels by means of hexadecimal numbering: the (main) index is named first, then the subindex. The value ranges are:

- Index 0 to 65535
- Subindex: 0...255

A parameter localized in this way is normally written as 0x8010:07, with preceding "0x" to identify the hexadecimal numerical range and a colon between index and subindex.

The relevant ranges for EtherCAT fieldbus users are:

- 0x1000: This is where fixed identity information for the device is stored, including name, manufacturer, serial number etc., plus information about the current and available process data configurations.
- 0x8000: This is where the operational and functional parameters for all channels are stored, such as filter settings or output frequency.

Other important ranges are:

- 0x4000: In some EtherCAT devices the channel parameters are stored here (as an alternative to the 0x8000 range).
- 0x6000: Input PDOs ("input" from the perspective of the EtherCAT master)
- 0x7000: Output PDOs ("output" from the perspective of the EtherCAT master)

Not every EtherCAT device must have a CoE list. Simple I/O modules without dedicated processor usually have no variable parameters and therefore no CoE list.

If a device has a CoE list, it is shown in the TwinCAT System Manager as a separate tab with a listing of the elements:

BECKHOFF

Ger	General EtherCAT Process Data Startup CoE - Online Online			
	Update Lis	t 🗌 🗖 Auto Update	🔽 Single Up	date 🔽 Show Offline Data
	Advanced.			
	Add to Startu	ip Offline Data	Modul	e OD (AoE Port): 0
	Index	Name	Flags	Value
	1000	Device type	RO	0x00FA1389 (16389001)
	1008	Device name	RO	EL2502-0000
	1009	Hardware version	RO	
	100A	Software version	RO	
E	± 1011:0	Restore default parameters	RO	>1<
E	1018:0	Identity	RO	> 4 <
	1018:01	Vendor ID	RO	0x00000002 (2)
	1018:02	Product code	RO	0x09C63052 (163983442)
	1018:03	Revision	RO	0x00130000 (1245184)
	1018:04	Serial number	RO	0x00000000 (0)
E	± 10F0:0	Backup parameter handling	RO	>1<
E	±- 1400:0	PWM RxPD0-Par Ch.1	RO	>6<
E	±⊡ 1401:0	PWM RxPDO-Par Ch.2	RO	> 6 <
E	± 1402:0	PWM RxPDO-Par h.1 Ch.1	RO	> 6 <
E	± 1403:0	PWM RxPDO-Par h.1 Ch.2	RO	> 6 <
E	± 1600:0	PWM RxPDO-Map Ch.1	RO	>1<

Fig. 10: CoE-Online tab

The CoE objects from 0x1000 to 0x1600, which are available in the example device "EL2502", can be seen in the above figure; the subindices from 0x1018 are expanded.

Data management

Some parameters, particularly the setting parameters of the slave, are configurable and writeable. This can be done in write or read mode

- via the System Manager (figure above) by clicking. This is useful for commissioning of the system/ slaves. Click on the row of the index to be parameterized and enter a value in the SetValue dialog.
- from the control system/PLC via ADS, e.g. through function blocks from the TcEtherCAT.lib library This
 is recommended for modifications while the system is running or if no System Manager or operating
 staff are available.

Data management

If CoE parameters on the slave are changed online, this is saved fail-safe in the device (EEPROM) in Beckhoff devices. This means that the changed CoE parameters are still retained after a restart. The situation may be different with other manufacturers.

Startup list

Changes in the local CoE list of the terminal are lost **if the terminal is replaced**. If a terminal is replaced with a new Beckhoff terminal, it will have the factory settings. It is therefore advisable to link all changes in the CoE list of an EtherCAT slave with the **Startup list** of the slave, which is processed whenever the EtherCAT fieldbus is started. In this way a replacement EtherCAT slave can automatically be parameterized with the specifications of the user.

If EtherCAT slaves are used which are unable to store local CoE values permanently, the Startup list must be used.

Recommended approach for manual modification of CoE parameters

• Make the required change in the System Manager. The values are stored locally in the EtherCAT slave

• If the value is to be stored permanently, enter it in the Startup list. The order of the Startup entries is usually irrelevant.

G	General EtherCAT Process Data Startup CoE - Online Online					
	T 22			D .		
	I ransition	Protocol	Index	Data	Lomment	
	C <ps></ps>	CoE	0x1C12:00	0x00 (0)	clear sm pdos (0x1C12)	
	C <ps></ps>	CoE	0x1C13:00	0x00 (0)	clear sm pdos (0x1C13)	
	C <ps></ps>	CoE	0x1C12:01	0x1600 (5632)	download pdo 0x1C12:01 i	
	C <ps></ps>	CoE	0x1C12:02	0x1601 (5633)	download pdo 0x1C12:02 i	
	C <ps></ps>	CoE	0x1C12:00	0x02 (2)	download pdo 0x1C12 count	
			嘗 Insert			
			💥 Delete			
			Edit			

Fig. 11: Startup list in the TwinCAT System Manager

The Startup list may already contain values that were configured by the System Manager based on the ESI specifications. Additional application-specific entries can be created.

Online/offline directory

While working with the TwinCAT System Manager, a distinction has to be made whether the EtherCAT device is "available", i.e. switched on and linked via EtherCAT and therefore **online**, or whether a configuration is created **offline** without connected slaves.

In both cases a CoE directory is visible according to the figure "CoE-Online tab", but the connectivity is displayed as offline/online.

- If the slave is offline
 - the offline list from the ESI file is displayed. In this case modifications are not meaningful or possible.
 - the configured status is shown under Identity
 - no firmware or hardware version is displayed, since these are features of the physical device.
 - Offline is shown in red

BECKHOFF

General EtherCAT Process Data Startup CoE - Online Online			
Update Li:	st 📃 🗖 Auto Update	🔽 Single	Update 🔽 Show Offline Data
Advanced			
Add to Start	up Offline Data	- Mo	odule OD (AoE Port):
Index	Name 🔨	Flags	Value
1000	Device type	RO	0x00FA1389 (16389001)
1008	Device name 🛛 🔥	RO	EL2502-0000
1009	Hardware version	RO	
100A	Software version	RO	
😟 - 1011:0	Restore default parameters	RO	>1<
i ⊡ 1018:0	Identity	RO	> 4 <
1018:01	Vendor ID	RO	0x0000002 (2)
1018:02	Product code	RO	0x09C63052 (163983442)
1018:03	Revision	RO	0x00130000 (1245184)
1018:04	Serial number	RO	0x0000000 (0)
😟 🗉 10F0:0	Backup parameter handling	RO	>1<
主 1400:0	PWM RxPDO-Par Ch.1	RO	>6<
😟 1401:0	PWM RxPDO-Par Ch.2	RO	> 6 <
主 1402:0	PWM RxPDO-Par h.1 Ch.1	RO	>6<
😟 ·· 1403:0	PWM RxPDO-Par h.1 Ch.2	RO	> 6 <
主 1600:0	PWM RxPDO-Map Ch.1	RO	>1<

Fig. 12: Offline list

- · If the slave is online
 - the actual current slave directory is read. This may take several seconds, depending on the size and cycle time.
 - the actual identity is displayed
 - the firmware and hardware version of the equipment according to the electronic information is displayed.
 - Online is shown in green

G	General EtherCAT Process Data Startup CoE - Online Online				
	Update Li	st 📃 🗖 Auto Update	🔽 Single	Update 🥅 Show Offline Data	
	Advanced				
	Add to Start	up	- Mo	dule OD (AoE Port): 0	
	Index	Name	Flags	Value	
	1000	Device type	RO	0x00FA1389 (16389001)	
	1008	Device name	RO	EL2502-0000	
	1009	Hardware version	RO	02	
	100A	Software version	RO	07	
	吏 ··· 1011:0	Restore default parameters	RO	>1<	
	🖻 – 1018:0	Identity	RO	> 4 <	
	1018:01	Vendor ID	RO	0x0000002 (2)	
	1018:02	Product code	RO	0x09C63052 (163983442)	
	1018:03	Revision	RO	0x00130000 (1245184)	
	1018:04	Serial number	RO	0x00000000 (0)	
	😟 10F0:0	Backup parameter handling	RO	>1<	
	. ⊕ 1400:0	PWM RxPDO-Par Ch.1	RO	>6<	

Fig. 13: Online list

Channel-based order

The CoE directory is located in EtherCAT devices that usually encompass several functionally equivalent channels. e.g. a 4-channel 0 - 10 V analog input terminal also has 4 logical channels and thus 4 identical sets of parameter data for the channels. In order to avoid having to list each channel in the documentation, the placeholder "n" tends to be used for the individual channel numbers.

In the CoE system 16 indices, each with 255 subindices, are generally sufficient for representing all channel parameters. The channel-based order is therefore arranged in $16_{dec}/10_{hex}$ steps. The parameter range 0x8000 exemplifies this:

- Channel 0: parameter range 0x8000:00 ... 0x800F:255
- Channel 1: parameter range 0x8010:00 ... 0x801F:255
- Channel 2: parameter range 0x8020:00 ... 0x802F:255
- ...

This is generally written as 0x80n0. Detailed information on the CoE interface can be found in the <u>EtherCAT</u> system documentation on the Beckhoff website.

3.5 Distributed Clock

The distributed clock represents a local clock in the EtherCAT slave controller (ESC) with the following characteristics:

- Unit 1 ns
- Zero point 1.1.2000 00:00
- Size 64 bit (sufficient for the next 584 years; however, some EtherCAT slaves only offer 32-bit support, i.e. the variable overflows after approx. 4.2 seconds)
- The EtherCAT master automatically synchronizes the local clock with the master clock in the EtherCAT bus with a precision of < 100 ns

For detailed information please refer to the EtherCAT system description.

BECKHOFF

4 Mounting and Cabling

4.1 Mounting

4.1.1 Dimensions

Fig. 14: Dimensions of the EtherCAT Box Modules

All dimensions are given in millimeters.

Housing properties

EtherCAT Box	lean body	wide bodies
Housing material	PA6 (polyamide)	
Casting compound	Polyurethane	
Mounting	two fastening holes Ø 3 mm for M3	two fastening holes Ø 3 mm for M3 two fastening holes Ø 4.5 mm for M4
Metal parts	Brass, nickel-plated	
Contacts	CuZn, gold-plated	
Power feed through	max. 4 A (M8) max. 16 A (7/8") max. 15.5 A (B17 5G 1.5 mm²)	
Installation position	variable	
Protection class	IP65, IP66, IP67 (conforms to EN 60529)	when screwed together
Dimensions (H x W x D)	app. 126 x 30 x 26.5 mm	app. 126 x 60 x 26,5 mm app. 150 x 60 x 26.5 mm (without 7/8", B17)

4.1.2 Fixing

Note or pointer

While mounting the modules, protect all connectors, especially the IP-Link, against contamination! Only with connected cables or plugs the protection class IP67 is guaranteed! Unused connectors have to be protected with the right plugs! See for plug sets in the catalogue.

Modules with narrow housing are mounted with two M3 bolts. Modules with wide housing are mounted with two M3 bolts to the fixing holes located at the corners or mounted with two M4 bolts to the fixing holes located centrally.

The bolts must be longer than 15 mm. The fixing holes of the modules are not threaded.

When assembling, remember that the fieldbus connectors increases the overall height. See chapter accessories.

Mounting Rail ZS5300-0001

The mounting rail ZS5300-0001 (500 mm x 129 mm) allows the time saving assembly of modules.

The rail is made of stainless steel, 1.5 mm thick, with already pre-made M3 threads for the modules. The rail has got 5.3 mm slots to mount it via M5 screws to the machine.

Fig. 15: Mounting Rail ZS5300-000

The mounting rail is 500 mm long, that way 15 narrow modules can be mounted with a distance of 2 mm between two modules. The rail can be cut to length for the application.

Mounting Rail ZS5300-0011

The mounting rail ZS5300-0011 (500 mm x 129 mm) has in addition to the M3 treads also pre-made M4 treads to fix 60 mm wide modules via their middle holes.

Up to 14 narrow or 7 wide modules may be mixed mounted.

4.1.3 Nut torque for connectors

M8 connectors

It is recommended to pull the M8 connectors tight with a nut torque of **0.4 Nm**. When using the torque control screwdriver <u>ZB8800</u> is also a max. torque of **0.5 Nm** permissible.

Fig. 16: EtherCAT Box with M8 connectors

M12 connectors

It is recommended to pull the M12 connectors tight with a nut torque of **0.6 Nm**.

Fig. 17: EtherCAT Box with M8 and M12 connectors

7/8" plug connectors

We recommend fastening the 7/8" plug connectors with a torque of 1.5 Nm.

Fig. 18: 7/8" plug connectors

Torque socket wrenches

Fig. 19: ZB8801 torque socket wrench

4.1.4 Additional checks

The boxes have undergone the following additional tests:

Verification	Explanation
Vibration	10 frequency runs in 3 axes
	5 Hz < f < 60 Hz displacement 0.35 mm, constant amplitude
	60.1 Hz < f < 500 Hz acceleration 5 g, constant amplitude
Shocks	1000 shocks in each direction, in 3 axes
	35 g, 11 ms

4.2 EtherCAT

4.2.1 EtherCAT connection

For the incoming and ongoing EtherCAT connection,

- the EtherCAT Box (EPxxxx) has two M8 sockets, marked in green
- the Coupler Box (FBB-x110) has two M12 sockets

Fig. 20: EtherCAT Box: M8, 30 mm housing

Fig. 21: EtherCAT Box: M860 mm housing (example: EP9214)

Fig. 22: Coupler Box: M12

Assignment

There are various different standards for the assignment and colors of connectors and cables for Ethernet/ EtherCAT.

Ethernet/EtherCAT		Plug connector			Cable		Standard
Signal	Description	M8	M12	RJ45 ¹	ZB9010, ZB9020, ZB9030, ZB9032, ZK1090-6292, ZK1090-3xxx-xxxx	ZB9031 and old ver- sions of ZB9030, ZB9032, ZK1090-3xxx-xxxx	TIA-568B
Tx +	Transmit Data+	Pin 1	Pin 1	Pin 1	yellow ²	orange/white3	white/orange
Tx -	Transmit Data-	Pin 4	Pin 3	Pin 2	orange ²	orange ³	orange
Rx +	Receive Data+	Pin 2	Pin 2	Pin 3	white ²	blue/white ³	white/green
Rx -	Receive Data-	Pin 3	Pin 4	Pin 6	blue ²	blue ³	green
Shield	Shield	Housing		Shroud	Screen	Screen	Screen

 $^{\rm 1})$ colored markings according to EN 61918 in the four-pin RJ45 connector ZS1090-0003 $^{\rm 2})$ wire colors according to EN 61918

 3) wire colors

Assimilation of color coding for cable ZB9030, ZB9032 and ZK1090-3xxxx-xxxx (with M8 connectors)

For unification the prevalent cables ZB9030, ZB9032 and ZK1090-3xxx-xxxx this means the pre assembled cables with M8 connectors were changed to the colors of EN61918 (yellow, orange, white, blue). So different color coding exists. But the electrical properties are absolutely identical.

EtherCAT connector

The following connectors can be supplied for use in Beckhoff EtherCAT systems.

Name	Connector	Comment
ZS1090-0003	RJ45	four-pole, IP20, field-configurable
ZS1090-0004	M12, male	four-pin, IP67, for field assembly
ZS1090-0005	RJ45	eight-pole, IP20, field-configurable, suitable for gigabit Ethernet
ZS1090-0006	M8 plug connector	four-pole, IP67, field-configurable, for cable type ZB903x
ZS1090-0007	M8 socket	four-pole, IP67, field-configurable, for cable type ZB903x
ZS1090-1006	M8 plug connector	four-pole, IP67, field-configurable up to OD = 6.5 mm
ZS1090-1007	M8 socket	four-pole, IP67, field-configurable up to OD = 6.5 mm

4.2.2 **EtherCAT - Fieldbus LEDs**

Fig. 23: EtherCAT-LEDs

LED display

LED	Display	Meaning	
IN L/A	off	no connection to the preceding EtherCAT module	
	Lit	LINK: connection to the preceding EtherCAT module	
	flashing	ACT: Communication with the preceding EtherCAT module	
OUT L/A	off	no connection to the following EtherCAT module	
	Lit	LINK: connection to the following EtherCAT module	
	flashing	ACT: Communication with the following EtherCAT module	
Run	off	Status of the EtherCAT module is Init	
	flashes quickly	Status of the EtherCAT module is pre-operational	
	flashes slowly	Status of the EtherCAT module is safe-operational	
	Lit	Status of the EtherCAT module is operational	

EtherCAT statuses

The various statuses in which an EtherCAT module may be found are described in the Basic System Documentation for EtherCAT, which is available for download from our website (<u>www.beck-hoff.com</u>) under Downloads.

4.3 **Power supply**

4.3.1 **Power Connection**

The feeding and forwarding of supply voltages is done via two M8 connectors at the bottom end of the modules:

- · IN: left M8 connector for feeding the supply voltages
- OUT: right M8 connector for forwarding the supply voltages

Fig. 24: EtherCAT Box, Connectors for power supply

Fig. 25: Pin assignment M8, Power In and Power Out

Table 1: PIN assignment

Pin	Voltage						
1	Control volta	ontrol voltage Us, +24 V _{DC}					
2	Auxiliary voltage Up, +24 V _{DC}						
3	GNDs*	*) may be connected internally to each other depending on the module: see specific					
4	GNDp*	module descriptions					

The pins M8 connectors carry a maximum current of 4 A.

Two LEDs display the status of the supply voltages.

NOTE

Don't confuse the power connectors with the EtherCAT connectors!

Never connect the power cables (M8, 24 V_{DC}) with the green marked EtherCAT sockets of the EtherCAT Box Modules! This can damage the modules!

Control voltage Us: 24 V_{DC}

Power is supplied to the fieldbus, the processor logic, the inputs and the sensors from the 24 V_{DC} control voltage Us. The control voltage is electrically isolated from the fieldbus circuitry.

Auxiliary voltage Up 24 V_{DC}

The Auxiliary voltage Up supplies the digital outputs; it can be brought in separately. If the load voltage is switched off, the fieldbus functions and the power supply and functionality of the inputs are retained.

Redirection of the supply voltages

The IN and OUT power connections are bridged in the module (not IP204x-Bxxx and IE204x). The supply voltages Us and Up can thus easily be transferred from EtherCAT Box to EtherCAT Box.

NOTE

Pay attention to the maximum permissible current!

Pay attention also for the redirection of the supply voltages Us and Up, the maximum permissible current for M8 connectors of 4 A must not be exceeded!

Supply via EP92x4-0023 PowerBox modules

If the machine requires higher current or if the EtherCAT Box Modules are installed far away from the control cabinet with included power supply, the usage of four cannel power distribution modules EP9214 or EP9224 (with integrated data logging, see www.beckhoff.com/EP9224) is recommended.

With these modules intelligent power distribution concepts with up to 2 x 16 A and a maximum of 2.5 mm^2 cable cross-section can be realized.

Fig. 26: EP92x4-0023, Connectors for Power In and Power Out

Fig. 27: Pin assignment 7/8", Power In and Power Out
Electrical isolation

Digital modules

In the digital input/output modules, the grounds of the control voltage (GNDs) and the auxiliary voltage (GNDp) are connected to each other!

Check this at the documentation of each used EtherCAT Box.

Analog modules

In the analog input/output modules the grounds of the control voltage (GNDs) and the auxiliary voltage (GNDp) are separated from each other in order to ensure electrical isolation of the analog signals from the control voltage.

In some of the analog modules the sensors or actuators are supplied by Up - this means, for instance, that in the case of 0...10 V inputs, any reference voltage (0...30 V) may be connected to Up; this is then available to the sensors (e.g. smoothed 10 V for measuring potentiometers).

Details of the power supply may be taken from the specific module descriptions.

NOTE

Electrical isolation may be cancelled!

If digital and analog fieldbus boxes are connected directly via four-core power leads, the analog signals in the fieldbus boxes may be no longer electrically isolated from the control voltage!

4.3.2 Status LEDs for power supply

Fig. 28: Status LEDs for power supply

LED display

LED	Display	Meaning
Us (Control voltage) off The power supply voltage Us is not pre		The power supply voltage Us is not present
	green illuminated	The power supply voltage Us is present
	red illuminated	Because of overload (current > 0.5 A) the sensor supply generated from power supply voltage Us was switched off for all sensors fed from this.
Up (Auxiliary voltage)	off	The power supply voltage Up is not present
	green illuminated	The power supply voltage Up is present

4.3.3 Power cable conductor losses M8

The ZK2020-xxxx-yyyy power cables should not exceed the total length of 15 m at 4 A (with continuation). When planning the cabling, note that at 24 V nominal voltage, the functionality of the module can no longer be assured if the voltage drop reaches 6 V. Variations in the output voltage from the power supply unit must also be taken into account.

Voltage Drop - Supply Line

Fig. 29: Power cable conductor losses

Example

8 m power cable with 0.34 mm² cross-section has a voltage drop of 3.2 V at 4 A.

EP92x4 Power Distribution Modules

With EP9214 and EP9224 Power Distribution Modules intelligent concepts for voltage supply are available. Further information may be found under <u>www.beckhoff.com/EP9224</u>.

4.3.4 Conductor losses 7/8"

In the case of the power cables ZK2030-xxxx-yyy, a total length of 15 m should not be exceeded at 16 A. When wiring, note that with a rated voltage of 24 V the function of the modules can no longer be guaranteed from a voltage drop of 6 V. Variations in the output voltage from the power supply unit must also be taken into account.

Fig. 30: ZK2030-xxxx-yyy - Conductor losses

Alternatively, larger cable cross-section can be used, e.g. 2.5 mm².

4.4 Cabling

A list of EtherCAT cables, power cables, sensor cables, Ethernet/EtherCAT connectors and fieldconfigurable connectors can be found under the following link: <u>https://beckhoff.de/english/fieldbus_box/</u> <u>ethercat_box_accessories_overview.htm?id=25525466903389</u>

The corresponding data sheets can be found under the following link:

https://beckhoff.de/english/ethercat-box/ethercat_box_cables.htm?id=690338951657421

EtherCAT cables

Fig. 31: ZK1090-3131-0xxx

For connecting EtherCAT devices, only use shielded Ethernet cables with a minimum specification of category 5 (CAT5) according to EN 50173 or ISO/IEC 11801.

Wiring recommendations

Detailed recommendations for EtherCAT cabling can be found in the documentation "Design recommendations for EtherCAT/Ethernet infrastructure", which is available for download from www.beckhoff.de.

EtherCAT uses four cable wires for signal transmission.

Due to automatic cable detection (auto-crossing) symmetric (1:1) or cross-over cables can be used between EtherCAT devices from Beckhoff.

Power cable

Fig. 32: ZK2020-3132-0xxx

Sensor cables

Fig. 33: Selection of Beckhoff sensor cables

4.5 UL Requirements

The installation of the EtherCAT Box Modules certified by UL has to meet the following requirements.

Supply voltage

CAUTION!

This UL requirements are valid for all supply voltages of all marked EtherCAT Box Modules! For the compliance of the UL requirements the EtherCAT Box Modules should only be supplied

- by a 24 V_{DC} supply voltage, supplied by an isolating source and protected by means of a fuse (in accordance with UL248), rated maximum 4 Amp, or
- by a 24 V_{DC} power source, that has to satisfy NEC class 2.
 A NEC class 2 power supply shall not be connected in series or parallel with another (class 2) power source!

▲ CAUTION

CAUTION!

To meet the UL requirements, the EtherCAT Box Modules must not be connected to unlimited power sources!

Networks

▲ CAUTION

CAUTION!

To meet the UL requirements, EtherCAT Box Modules must not be connected to telecommunication networks!

Ambient temperature range

▲ CAUTION

CAUTION!

To meet the UL requirements, EtherCAT Box Modules has to be operated only at an ambient temperature range of 0 to 55°C!

Marking for UL

All EtherCAT Box Modules certified by UL (Underwriters Laboratories) are marked with the following label.

4.6 ATEX notes

4.6.1 ATEX - Special conditions

WARNING

Observe the special conditions for the intended use of EtherCAT Box modules in potentially explosive areas – directive 94/9/EU.

- The certified components are to be installed in the <u>BG2000-0000 protection enclosure</u> [> <u>44</u>] that guarantees a protection against mechanical hazards!
- If the temperatures during rated operation are higher than 70°C at the feed-in points of cables, lines or pipes, or higher than 80°C at the wire branching points, then cables must be selected whose temperature data correspond to the actual measured temperature values!
- Observe the permissible ambient temperature range of 0 55°C for the use of EtherCAT Box modules in potentially explosive areas!
- Measures must be taken to protect against the rated operating voltage being exceeded by more than 40% due to short-term interference voltages!
- The connections of the certified components may only be connected or disconnected if the supply voltage has been switched off or if a non-explosive atmosphere is ensured!

Standards

The fundamental health and safety requirements are fulfilled by compliance with the following standards:

- EN 60079-0: 2006
- EN 60079-15: 2005

Marking

The EtherCAT Box modules certified for potentially explosive areas bear the following marking:

II 3 G Ex nA II T4 DEKRA 11ATEX0080 X Ta: 0 - 55°C

or

Batch number (D number)

The EtherCAT Box modules bear a batch number (D number) that is structured as follows:

D: WW YY FF HH

WW - week of production (calendar week) YY - year of production FF - firmware version HH - hardware version

Beispiel mit Ser. Nr.: 29 10 02 01:

29 - week of production 29

- 10 year of production 2010
- 02 firmware version 02
- 01 hardware version 01

4.6.2 BG2000-0000 - EtherCAT Box protection enclosure

▲ WARNING

Risk of electric shock and damage of device!

Bring the EtherCAT system into a safe, powered down state before starting installation, disassembly or wiring of the modules!

ATEX

The BG2000-0000 protection enclosure has to be mounted over a single EtherCAT Box to fulfill the <u>special</u> conditions according to ATEX [\blacktriangleright 43].

Installation

Put the cables for EtherCAT, power supply and sensors/actuators through the hole of the BG2000-0000 protection enclosure.

Fig. 35: BG2000-0000, putting the cables

Fix the wires for EtherCAT, power supply and sensors/actuators to the EtherCAT Box.

Fig. 36: BG2000-0000, fixing the cables

Mount the BG2000-0000 protection enclosure over the EtherCAT Box.

Fig. 37: BG2000-0000, mounting the protection enclosure

4.6.3 ATEX Documentation

1

Notes about operation of EtherCAT Box Modules (EPxxxx-xxxx) in potentially explosive areas (ATEX)

Pay also attention to the continuative documentationNotes about operation of EtherCAT Box Modules (EPxxxx-xxxx) in potentially explosive areas (ATEX) that is available in the download area of the Beckhoff homepage http://www.beckhoff.com!

5 EP3356-0022 - Signal connection

5.1 Analog voltage inputs M12 and meaning of the LEDs

1-channel precise load cell analysis

The analog input enables direct connection of a resistor bridge or load cell in a 4-wire connection technology.

Fig. 38: Analog volatge input M12, resistor bridge

The shield must be connected to pin 5 of the M12 connector.

You can find an example for the parallel connection of strain gauges here [> 15].

The voltage U_{ref} is 10 V and is supplied by the EP3356-0022.

Meanings of the LEDs

Fig. 39: LEDs EP3356-0022

LED	Color	Meaning			
RUN	green	This LED indicates t	nis LED indicates the terminals/boxes operating state:		
		off	State of the EtherCAT State Machine $[\bullet 60]$: INT = Initialization of the terminal/box		
		blinking	State of the EtherCAT State Machine: PREOP = Setting for mailbox communication and variant standard settings		
		single flash	State of the EtherCAT State Machine: SAFEOP = Channel checking of the <u>Sync Manager</u> [▶ <u>60]</u> and the Distributed Clocks: Outputs stay in safe operation mode.		
		on	State of the EtherCAT State Machine: OP = Normal operation mode, mailbox- and process data communication possible		
		flickering	State of the EtherCAT State Machine: BOOTSTRAP = mode for firmware updates of the terminal/box		
Measure	green	on	Measuring active (valid process data)		
		off	 Calibration active (if LED self calibration is lit) or 		
			 Testing active (if LED self test is lit) 		
			filters are initialized		
Steady state	green	on	The measuring value is steady		
		off	The measuring value is not steady		
Self Calibr.	green	on	Calibration active		
			Process data are not valid		
Self Test	green	on	Self test active		
			 Process data are not valid 		
Error Dif	red	on	 Channel 1 (strain gauge differential signal) is out of valid value range 		
			 Internal reference voltage of channel 1 is not present 		
Error Ref	red	on	 Channel 2 (strain gauge differential signal) is out of valid value range 		
			Internal reference voltage of channel 2 is not present		
			 Reference voltage too low (between -1 V and +1 V) 		

6 Commissioning/Configuration

6.1 TwinCAT configuration setup, manual

This part of the documentation describes the manual configuration of an EtherCAT Box in TwinCAT.

Distinction between Online and Offline

The distinction between online and offline refers to the existence of the actual I/O environment (drives, terminals). If the configuration is to be prepared in advance of the system configuration as a programming system, e.g. on a laptop, this is only possible in "Offline configuration" mode. In this case all components have to be entered manually in the configuration, e.g. based on the electrical design (as described below under TwinCAT configuration setup, manual). If the designed control system is already connected to the EtherCAT system and all components are energized and the infrastructure is ready for operation, the TwinCAT configuration can simply be generated through "scanning" from the runtime system. This is referred to as online configuration. In any case, during each startup the EtherCAT master checks whether the devices it finds match the configuration. This test can be parameterized in the advanced device settings.

To ensure that the latest features/settings of the master can be used, always download the latest ESI file. Please note the following information.

Installation of the latest ESI-XML device description

The TwinCAT System Manager needs the device description files for the devices to be used in order to generate the configuration in online or offline mode. The device descriptions are contained in the so-called ESI files (EtherCAT Slave Information) in XML format. These files can be requested from the respective manufacturer and are made available for download. The ESI files for Beckhoff EtherCAT devices are available on the Beckhoff website (<u>https://www.beckhoff.de/english/down-load/elconfg.htm?id=1983920606140</u>). The ESI files should be stored in the TwinCAT installation directory (default: C:\TwinCAT\IO\EtherCAT). The files are read (once) when a new System Manager window is opened. A TwinCAT installation includes the Beckhoff ESI files that were current at the time when the TwinCAT build was created. From TwinCAT 2.11 and in TwinCAT 3 the ESI directory can be updated from the System Manager, if the programming PC is connected to the internet (TwinCAT \rightarrow EtherCAT Devices \rightarrow Update Device Description...)

Twir	CAT PLC Tools Scope Window Help		
ыž	Activate Configuration		- 2
*	Restart TwinCAT System		■
*	Restart TwinCAT (Config Mode)		
2	Reload Devices		
×	Scan		
۲	Toggle Free Run State		
60	Show Online Data		
8 80	Show Sub Items		
	Security Management		
RE6	Access Bus Coupler/IP Link Register		
	Update Firmware/EEPROM	•	
	Show Realtime Ethernet Compatible Devices		
	Selected Item	•	
	EtherCAT Devices	•	Update Device Descriptions (via ETG Website)
	About TwinCAT		Reload Device Descriptions
_			Manage User Defined Whitelist
			Manage User Defined Blacklist

Adding a module manually

- The EtherCAT system must be in a safe, de-energized state before you connect the EtherCAT modules to the EtherCAT network.
- Switch on the operating voltage, open the <u>TwinCAT System Manager</u> [▶ <u>59</u>] (Config mode)
- Adding a new I/O device. In the following dialog select the device: *EtherCAT (Direct Mode),* and confirm with OK.

Fig. 40: Appending a new I/O device (I/O Devices-> right-click -> Append Device...)

Insert Devic	e	×
Туре:	 H/O Beckhoff Lightbus Profibus DP Profinet CANopen DeviceNet EtherNet/IP SERCOS interface EtherCAT EtherCAT EtherCAT Slave EtherCAT Automation Protocol (Network Variables) EtherCAT Automation Protocol via EL6601, EtherCAT Ethernet W USB Interbus-S Miscellaneous 	Ok Cancel Target Type PC only PC only CX only BX only All
Name:	Device 1	

Fig. 41: Selecting the device (EtherCAT)

• Adding a new Box.

SYSTEM - Configuration NC - Configuration	ation	General Adapter
PLC - Configuration	n	Name:
		Type:
	Append Box	R
	X Delete Device	
	 (B) Online <u>R</u>eset ♣ Online Reload (Control 	onfig Mode only)
	Online Delete (Co	nfia Mode only)

Fig. 42: Appending a new box (Device -> right-click -> Append Box...)

• In the dialog that is displayed select the required Box (e.g. EP6224-2022) and confirm with OK.

Fig. 43: Selecting a Box (e.g. EP6224-2022)

6.2 Configuration setup: TwinCAT - online scan

This part of the documentation describes the configuration of a physically existing EtherCAT Box in TwinCAT.

Online configuration setup "Scanning" (TwinCAT 3.x)

Distinction between Online and Offline

The distinction between online and offline refers to the existence of the actual I/O environment (drives, terminals). If the configuration is to be prepared in advance of the system configuration as a programming system, e.g. on a laptop, this is only possible in "Offline configuration" mode. In this case all components have to be entered manually in the configuration, e.g. based on the electrical design (as described under TwinCAT configuration setup, manual). If the designed control system is already connected to the EtherCAT system and all components are energized and the infrastructure is ready for operation, the TwinCAT configuration can simply be generated through "scanning" from the runtime system. This is referred to as online configuration. In any case, during each startup the EtherCAT Box checks whether the devices it finds match the configuration.

To ensure that the latest features/settings of the EtherCAT Box can be used, always download the latest ESI file. Please note the following information.

Installation of the latest ESI-XML device description

The TwinCAT System Manager needs the device description files for the devices to be used in order to generate the configuration in online or offline mode. The device descriptions are contained in the so-called ESI files (EtherCAT Slave Information) in XML format. These files can be requested from the respective manufacturer and are made available for download. The ESI files for Beckhoff EtherCAT devices are available on the Beckhoff website (<u>https://www.beckhoff.de/english/download/elconfg.htm?id=1983920606140</u>). The ESI files should be stored in the TwinCAT installation directory (default: C:\TwinCAT\IO\EtherCAT). The files are read (once) when a new System Manager window is opened. A TwinCAT installation includes the Beckhoff ESI files that were current at the time when the TwinCAT build was created. From TwinCAT 2.11 and in TwinCAT 3 the ESI directory can be updated from the System Manager, if the programming PC is connected to the internet (TwinCAT \rightarrow EtherCAT Devices \rightarrow Update Device Description)

Twir	nCAT PLC Tools Scope Window Help		
11 2	Activate Configuration		- 2
*	Restart TwinCAT System		- 4 日 1 年 1 日 1 日 1 日 1 日 1 日 1 日 1 日 1 日 1
*	Restart TwinCAT (Config Mode)		
2	Reload Devices		
1	Scan		
	Toggle Free Run State		
60'	Show Online Data		
8 8 0	Show Sub Items		
	Security Management		
RE6	Access Bus Coupler/IP Link Register		
	Update Firmware/EEPROM	۲	
	Show Realtime Ethernet Compatible Devices		
	Selected Item	•	
	EtherCAT Devices	•	Update Device Descriptions (via ETG Website)
	About TwinCAT		Reload Device Descriptions
_			Manage User Defined Whitelist
			Manage User Defined Blacklist

The following conditions must be met before a configuration can be set up

- The actual EtherCAT and IO-Link hardware (devices, couplers, drives) must be present and installed.
- The devices/modules must be connected via an EtherCAT cables or an IO-Link cable in the same way as they are intended to be used later.
- The devices/modules must be connected to the power supply and ready for communication.
- TwinCAT must be in CONFIG mode on the target system.

The online scan process consists of:

- Detecting the EtherCAT device (Ethernet port at the IPC)
- Detecting the connected EtherCAT devices: This step can be performed independent of the previous step.
- Troubleshooting

The scan with existing configuration can also be carried out for comparison.

Detecting/scanning of the EtherCAT device

The online device search can be used if the TwinCAT system is in Config mode (blue TwinCAT icon or blue indication in the System Manager).

Fig. 44: TwinCAT Config mode display

Online scanning in Config mode

The online search is not available in RUN mode (production operation).

Note the differentiation between TwinCAT programming system and TwinCAT target system. The TwinCAT icon next to the Windows clock always shows the TwinCAT mode of the local IPC. The System Manager window shows the TwinCAT state of the target system.

target system TwinCAT mode

Right-clicking on "I/O Devices" in the configuration tree opens the search dialog.

Solution Explorer		Ŧ	Ψ×	
E.				
Solution 'IO-Li Solution 'IO-Link on IO-Link on SYSTEN MOTIO ID PLC SAFETY C++ I/O ID During the solution 'IO-Link on SYSTEN SYSTEN SYSTEN SYSTEN SOLUTION 'IO-Link on SYSTEN	ink o line : / / N	nline Scan' (1 project) Scan		
		Add Ne <u>w</u> Item		Ctrl+Shift+A
L		Add Existing Item		Shint+Ait+A
_		Export EAP Config File		
	1	Scan		
0	B.	<u>P</u> aste		Ctrl+V
		Paste with Links		

Fig. 45: Scan Devices

This scan mode not only tries to find EtherCAT devices (or Ethernet ports that can be used as such), but also NOVRAM, fieldbus cards, SMB etc. Not all devices can be found automatically.

Microsoft Visual Studio	—
HINT: Not all types of device	es can be found automatically
	OK Abbrechen

Fig. 46: Note for automatic device scan

Ethernet ports with installed TwinCAT real-time driver are shown as "RT Ethernet" devices. An EtherCAT frame is sent to these ports for testing purposes. If the scan agent detects from the response that an EtherCAT device is connected, the port is immediately shown as an "EtherCAT Device".

1	new I/O devices found	— ×-
	Device 2 (EtherCAT) [LAN-Verbindung (TwinCAT-Intel PCI Ethernet Adapter]	OK Cancel
		Select All Unselect All

Fig. 47: detected Ethernet devices

After confirmation with "OK" a device scan is suggested for all selected devices (see the illustration below).

Detecting/Scanning the EtherCAT devices

Online scan functionality

During a scan the master queries the identity information of the EtherCAT device from the device EEPROM. The name and revision are used for determining the type. The respective devices are located in the stored ESI data and integrated in the configuration tree in the default state defined there.

(EL2521-0025-1018) Revision

If an EtherCAT device was created in the configuration (manually or through a scan), the I/O field can be scanned for devices/slaves.

Fig. 48: scan query after automatic creation of an EtherCAT device

The configuration was established and switched directly to the online state (operational). The EtherCAT system should be in a cyclic operational state, as shown in the following illustration.

Solution Explorer 🛛 👻 🕂 🗙	V IO-Link online Scan 🗙	
Solution 'IO-Link online Scan' (1 project)	General Adapter EtherCAT Online CoE - Online	
 IO-Link online Scan SYSTEM MOTION PLC SAFETY C++ I/O Te Devices Device 2 (EtherCAT) Image Image Image SyncUnits 	No Addr Name State Image 1 1001 Box 1 (EP6224-3022) OP	CRC 0
 Inputs Outputs InfoData Em Box 1 (EP6224-3022) Mappings 	Actual State: OP Counter Cyclic Init Pre-Op Safe-Op Op Send Frames 57381 Clear CRC Clear Frames Clear Frames 0 Lost Frames 0 Tx/Rx Errors 0 0 0 0 0	Queued + 7256 + 18 + 0 / 0

Fig. 49: online display example

Please note:

- · All Boxes should be in OP state
- "frames/sec" should match the cycle time taking into account the sent number of frames
- · no excessive "LostFrames" or CRC errors should occur

The configuration is now complete. It can be modified as described under manual procedure.

The connected EtherCAT Box (EP6224-3022) is displayed in the TwinCAT tree, as shown in the following illustration.

D 🗳 📽 🔲 🦪 💁 🔍 🕷 📾 📾 🖊	8 🖪 📾 🗸 🏽 👧 👧 🎨 🔨 🚳 🖹 🔾 🖓 🗄 🖓 🥵 🕉
SYSTEM - Configuration Structure Configurati	General EtherCAT DC Process Data Startup CoE - Online Diag History Online IO-Link General
I/O = Ourigur audit I/O = Device 1 (EtherCAT) Device 1 (EtherCAT) Device 1 (Image	Ports

Fig. 50: Master display after "Scan for boxes"

Troubleshooting

Various effects may occur during scanning.

- An unknown device is detected, i.e. an EtherCAT device for which no ESI XML description is available.
 - In this case the System Manager offers to read any ESI that may be stored in the device.
- Device are not detected properly
 - Possible reasons include
 - faulty data links, resulting in data loss during the scan
 - the device has an invalid device description

The connections and devices should be checked in a targeted manner, e.g. via the emergency scan. Then re-run the scan.

Scan over existing Configuration

If a scan is initiated for an existing configuration, the actual I/O environment may match the configuration exactly or it may differ. This enables the configuration to be compared.

Microsoft Visual Studio	×
Configuration is ider	itical
	ОК

Fig. 51: Identical configuration

If differences are detected, they are shown in the correction dialog, so that the user can modify the configuration as required.

Fig. 52: Example correction dialog

It is recommended to check the "Extended Information" box, in order to show differences in the revision.

Color	Explanation
green	This EtherCAT device matches the entry on the other side. Both type and revision match.
blue	This EtherCAT device is present on the other side, but in a different revision. If the found revision is higher than the configured revision, the slave may be used provided compatibility issues are taken into account.
	If the found revision is lower than the configured revision, it is likely that the slave cannot be used. The found devices may not support all functions that the master expects based on the higher revision number.
light blue	This EtherCAT device is ignored ("Ignore" button)
red	This EtherCAT device is not present on the other side.

Device selection based on revision, compatibility

The ESI description also defines the process image, the communication type between master and device and the device functions, if applicable. The physical device (firmware, if available) has to support the communication queries/settings of the master. This is backward compatible, i.e. newer devices (higher revision) should be supported if the EtherCAT master addresses them as an older revision. The following compatibility rule of thumb is to be assumed for Beckhoff EtherCAT Terminals/Boxes:

Device revision in the system >= device revision in the configuration

This also enables subsequent replacement of devices without changing the configuration (different specifications are possible for drives). Example: If an EL2521-0025-**1018** is specified in the configuration, an EL2521-0025-**1019** or higher (-**1020**, -**1021**) can be used in practice.

(EL2521-0025-1018) Revision

If current ESI descriptions are available in the TwinCAT system, the last revision offered in the selection dialog matches the Beckhoff state of production. It is recommended to use the last device revision when creating a new configuration, if current Beckhoff devices are used in the real application. Older revisions should only be used if older devices from stock are to be used in the application.

Fig. 53: Example correction dialog with modifications

Once all modifications have been saved or accepted, click "OK" to transfer them to the real *.tsm configuration.

6.3 EtherCAT slave process data settings (PDO)

The process data transferred by an EtherCAT slave during each cycle (Process Data Objects, PDOs) are user data which the application expects to be updated cyclically or which are sent to the slave. To this end the EtherCAT master (Beckhoff TwinCAT) parameterizes each EtherCAT slave during the start-up phase to define which process data (size in bits/bytes, source location, transmission type) it wants to transfer to or from this slave. Incorrect configuration can prevent successful start-up of the slave.

For Beckhoff EtherCAT EL/ES/EP slaves the following applies in general:

- The input/output process data supported by the device are defined by the manufacturer in the ESI/XML description. The TwinCAT EtherCAT Master uses the ESI description to configure the slave correctly.
- The process data can be modified in the system manager. See the device documentation. Examples of modifications include: Mask out a channel, displaying additional cyclic information, 16-bit display instead of 8-bit data size, etc.
- In so-called "intelligent" EtherCAT devices the process data information is also stored in the CoE directory. Any changes in the CoE directory that lead to different PDO settings prevent successful startup of the slave. It is not advisable to deviate from the designated process data, because the device firmware (if available) is adapted to these PDO combinations.

If the device documentation envisages modification of process data, proceed as follows (see illustration below).

- · A: Select the device to configure
- B: In the "Process Data" tab select Input or Output under SyncManager (C)
- D: The PDOs can be selected or deselected
- H: The new process data are visible as linkable variables in the system manager. The new process
 data are active once the configuration has been activated and TwinCAT has been restarted (or the
 EtherCAT master has been restarted)
- E: If a slave supports this, Input and Output PDO can be modified simultaneously by selecting a socalled PDO record ("predefined PDO settings").

Fig. 54: Configuring the process data

Manual modification of the process data

According to the ESI description, a PDO can be identified as "fixed" with a flag "F" in the PDO overview (see previous illustration, J). The configuration of such PDOs cannot be changed, even if Twin-CAT offers the associated dialog ("Edit"). In particular, CoE content cannot be displayed as cyclic process data. This generally also applies in cases where a device supports download of the PDO configuration, "G". In case of incorrect configuration the EtherCAT slave usually refuses to start and change to OP state. The System Manager displays an "invalid SM cfg" logger message:

`Box 1 (EP3356)` (0022): state change aborted (requested ,SAFEOP`, back to ,PREOP`), `Box1 (EP3356)` (0022): `PREOP to SAFEOP`failed! Error: `check device state for SAFEOP`, AL Status `0x0012`read and 0x0004` expected. AL status code `0x001e – invalid SM IN cfg` This error message "invalid SM IN cfg" or "invalid SM OUT cfg" provides an indication of the reason for the failed start.

6.4 Configuration via TwinCAT

In the left-hand window of the TwinCAT System Manager, click on the branch of the EtherCAT Box you wish to configure (EP2816-0008 in this example).

Fig. 55: Branch of the EtherCAT box to be configured

In the right-hand window of the TwinCAT System manager, various tabs are now available for configuring the EtherCAT Box.

General tab

General EtherC	AT DC Process Data Startup CoE - Online Online
Name:	Box 1 (EP2816-0008) Id: 1
Туре:	EP2816-0008 16 Ch. Dig. Output 24V, 0,5A, Diagnostic, D-SUB25
Comment:	
	Disabled Create symbols

Fig. 56: General tab

Name	Name of the EtherCAT device
ld	Number of the EtherCAT device
Туре	EtherCAT device type
Comment	Here you can add a comment (e.g. regarding the system).
Disabled	Here you can deactivate the EtherCAT device.
Create symbols	Access to this EtherCAT slave via ADS is only available if this checkbox is activated.

EtherCAT tab

General EtherCAT	DC Process Data Startup CoE - Online Online				
Туре:	EP2816-0008 16 Ch. Dig. Output 24V, 0,5A, Diagnostic, D-SUB25				
Product/Revision:	EP2816-0008-0017				
Auto Inc Addr:	0				
EtherCAT Addr: 🔲	1001 🚊 Advanced Settings				
Previous Port:	Master				
http://www.beckhoff.com/EP2816-0008					

Fig. 57: EtherCAT tab

Туре	EtherCAT device type
Product/Revision	Product and revision number of the EtherCAT device
Auto Inc Addr.	Auto increment address of the EtherCAT device. The auto increment address can be used for addressing each EtherCAT device in the communication ring through its physical position. Auto increment addressing is used during the start-up phase when the EtherCAT master allocates addresses to the EtherCAT devices. With auto increment addressing the first EtherCAT slave in the ring has the address 0000_{hex} . For each further slave the address is decremented by 1 (FFFF _{hex} , FFFE _{hex} etc.).
EtherCAT Addr.	Fixed address of an EtherCAT slave. This address is allocated by the EtherCAT master during the start-up phase. Tick the checkbox to the left of the input field in order to modify the default value.
Previous Port	Name and port of the EtherCAT device to which this device is connected. If it is possible to connect this device with another one without changing the order of the EtherCAT devices in the communication ring, then this combobox is activated and the EtherCAT device to which this device is to be connected can be selected.
Advanced Settings	This button opens the dialogs for advanced settings.

The link at the bottom of the tab points to the product page for this EtherCAT device on the web.

Process Data tab

Indicates the configuration of the process data. The input and output data of the EtherCAT slave are represented as CANopen process data objects (PDO). The user can select a PDO via PDO assignment and modify the content of the individual PDO via this dialog, if the EtherCAT slave supports this function.

General EtherCAT DC		Process I	Dat	a Start	up C	oE - () nline	Online						
Sync Manager:				P	DO List:									
	SM	Size	Туре	Flags		Index	Size	Nan	ne		Flags	SM	SU	
	0	128	MbxOut			0x1A00	2.0	DO	Inputs	Channel 1	MF	3	0	
	1	128	MbxIn			0x1A01	2.0	DO	Inputs	Channel 2	MF	3	0	
	2	6	Outputs	F	١.	0x1A02	2.0	DO	Inputs	Device	MF	3	0	
	3	6	Inputs	F		0x1600	2.0	DO	Output	s Channel 1	MF	2	0	
					١.	0x1601	2.0	DO	Output	s Channel 2	2 MF	2	0	
						0x1602	2.0	DO	Output	s Device	MF	2	0	
	▲	signment	(0x1C13):	•	P	'DO Cont	ent (0x	(1A00	1):					
	🗸 0x1/	/00			Γ	Index	Sia	ze	Offs	Name		Туре		
	🗸 0x1/	401			ľ	0x6001:	01 0.1	1	0.0	Diag I	nput 1	BOOL		
	🗸 0x14	402				0x6001:I	02 0.1	1	0.1	Diag I	nput 2	BOOL		
						0x6001:I	03 0.1	1	0.2	Diag I	nput 3	BOOL		
						0x6001:I	04 0.1	1	0.3	Diag I	nput 4	BOOL		
						0x6001:I	05 0.1	1	0.4	Diag I	nput 5	BOOL		
						0x6001:	06 0.1	1	0.5	Diag I	nput 6	BOOL		
					Ľ	•								▶
[Down	load —							Load F	DO info fro	m device			
	I PDU Assignment				Sync Unit Assignment									
	P	DO Confi	guration		-									
L														

Fig. 58: Process Data tab

Sync Manager

Lists the configuration of the Sync Manager (SM).

If the EtherCAT device has a mailbox, SM0 is used for the mailbox output (MbxOut) and SM1 for the mailbox input (MbxIn).

SM2 is used for the output process data (outputs) and SM3 (inputs) for the input process data.

If an input is selected, the corresponding PDO assignment is displayed in the PDO Assignment list below.

PDO Assignment

PDO assignment of the selected Sync Manager. All PDOs defined for this Sync Manager type are listed here:

- If the output Sync Manager (outputs) is selected in the Sync Manager list, all RxPDOs are displayed.
- If the input Sync Manager (inputs) is selected in the Sync Manager list, all TxPDOs are displayed.

The selected entries are the PDOs involved in the process data transfer. In the tree diagram of the System Manager these PDOs are displayed as variables of the EtherCAT device. The name of the variable is identical to the *Name* parameter of the PDO, as displayed in the PDO list. If an entry in the PDO assignment list is deactivated (not selected and greyed out), this indicates that the input is excluded from the PDO assignment. In order to be able do select a greyed out PDO, the currently selected PDO has to be deselected first.

Activation of PDO assignment

 the EtherCAT slave has to run through the PS status transition cycle (from pre-operational to safe-operational) once (see <u>Online tab [▶ 65]</u>),

• and the System Manager has to reload the EtherCAT slaves (🎫 button)

PDO list

List of all PDOs supported by this EtherCAT device. The content of the selected PDOs is displayed in the *PDO Content* list. The PDO configuration can be modified by double-clicking on an entry.

Column	Description				
Index	PDO index.				
Size	Size of the PDO in bytes.				
Name	Name of the PDO. If this PDO is assigned to a Sync Manager, it appears as a variable of the slave with this parameter as the name.				
Flags	Fixed content: The content of this PDO is fixed and cannot be changed by the System Manager.				
	Mandatory PDO. This PDO is mandatory and must therefore be assigned to a Sync Manager! Consequently, this PDO cannot be deleted from the <i>PDO Assignment</i> list				
SM	Sync Manager to which this PDO is assigned. If this entry is empty, this PDO does not take part in the process data traffic.				
SU	Sync unit to which this PDO is assigned.				

PDO Content

Indicates the content of the PDO. If flag F (fixed content) of the PDO is not set the content can be modified.

Download

If the device is intelligent and has a mailbox, the configuration of the PDO and the PDO assignments can be downloaded to the device. This is an optional feature that is not supported by all EtherCAT slaves.

PDO Assignment

If this check box is selected, the PDO assignment that is configured in the PDO Assignment list is downloaded to the device on startup. The required commands to be sent to the device can be viewed in the <u>Startup [b_62]</u> tab.

PDO Configuration

If this check box is selected, the configuration of the respective PDOs (as shown in the PDO list and the PDO Content display) is downloaded to the EtherCAT slave.

Startup tab

The *Startup* tab is displayed if the EtherCAT slave has a mailbox and supports the *CANopen over EtherCAT* (CoE) or *Servo drive over EtherCAT* protocol. This tab indicates which download requests are sent to the mailbox during startup. It is also possible to add new mailbox requests to the list display. The download requests are sent to the slave in the same order as they are shown in the list.

G	eneral 🛛 Ether	rCAT DC	Process Data	Startup CoE - Or	iline Online		
	Transition	Protocol	Index	Data	Comment		<u>I</u>
	Move Up	Move Do	own	L	New D	elete E	dit

Fig. 59: Startup tab

Column	Description		
Transition Transition to which the request is sent. This can either be			
	 the transition from pre-operational to safe-operational (PS), or 		
	 the transition from safe-operational to operational (SO). 		
	If the transition is enclosed in "<>" (e.g. <ps>), the mailbox request is fixed and cannot be modified or deleted by the user.</ps>		
Protocol	Type of mailbox protocol		
Index	Index of the object		
Data	Date on which this object is to be downloaded.		
Comment	Description of the request to be sent to the mailbox		

Move Up	This button moves the selected request up by one position in the list.
---------	--

Move Down This button moves the selected request down by one position in the list.

- **New** This button adds a new mailbox download request to be sent during startup.
- **Delete** This button deletes the selected entry.
- **Edit** This button edits an existing request.

CoE - Online tab

The additional *CoE* - *Online* tab is displayed if the EtherCAT slave supports the *CANopen over EtherCAT* (CoE) protocol. This dialog lists the content of the object directory of the slave (SDO upload) and enables the user to modify the content of an object from this list. Details for the objects of the individual EtherCAT devices can be found in the device-specific object descriptions.

eneral Ether	AT DC Process Data Startup	CoE - Online (Online			
Update List 🔽 Auto Update 🔽 Single Update 🔽 Show Offline Data						
Advanced						
Add to Startup Offline Data Module OD (AoE Port): 0						
Index	Name	Flags	Value			
1000	Device type	RO	0x01181389 (18355081)			
1008	Device name	RO	EP2816-0008			
1009	Hardware version	RO	00			
100A	Software version	RO	02			
	Restore default parameters	RO	>1<			
	Identity	RO	> 4 <			
. ± 10F0:0	Backup parameter handling	RO	>1<			
	DO RxPDO-Map Outputs Ch.1	RO	>9<			
. . 1601:0	DO RxPDO-Map Outputs Ch.2	RO	>9<			
	DO RxPDO-Map Outputs Device	RO	> 3 <			
. ± 1A00:0	DO TxPDO-Map Inputs Ch.1	RO	>9<			
. ■ 1A01:0	DO TxPDO-Map Inputs Ch.2	RO	>9<			
. ± 1A02:0	DO TxPDO-Map Inputs Device	RO	>7<			
	Sync manager type	RO	> 4 <			
	RxPDO assign	RO	>3<			
	TxPDO assign	RO	>3<			
	SM output parameter	RO	> 32 <			
. ⊕ 1C33:0	SM input parameter	RO	> 32 <			
· ⊡ 6001:0	DO Diag Inputs Ch.1	RO	> 8 <			
	DO Diag Inputs Ch.2	RO	> 8 <			
· ∓ 7000:0	DO Outputs Ch.1	RO	>8<			
	DO Outputs Ch.2	RO	>8<			
⊕ 8000:0	DO Safe state active Ch.1	RW	>8<			
± 8001:0	DO Safe state value Ch.1	RW	>8<			
	DO Safe state active Ch.2	RW	>8<			
. ■ 8011:0	DO Safe state value Ch.2	RW	>8<			
. ∓ F000:0	Modular device profile	RO	>2<			
F008	Code word	RW	0x00000000 (0)			
. ● F010:0	Module list	BW	> 2 <			
. ∓ • F600:0	DO Inputs	RO	> 16 <			
. ∓ F700:0	DO Outputs	RO	> 2 <			
. € • F800:0	DO Settings	RW	> 17 <			

Fig. 60: CoE - Online tab

Object list display

Column	Desc	Description					
Index	Index	ndex and subindex of the object					
Name	Name	Name of the object					
Flags	RW	The object can be read, and data can be written to the object (read/write)					
	RO	The object can be read, but no data can be written to the object (read only)					
	Р	An additional P identifies the object as a process data object.					
Value	Value of the object						

Update List	The Update list button updates all objects in the displayed list
Auto Update	If this check box is selected, the content of the objects is updated automatically.
Advanced	The <i>Advanced</i> button opens the <i>Advanced Settings</i> dialog. Here you can specify which objects are displayed in the list.

Advanced Settings		×			
Dictionary	Dictionary				
	Online - via SDO Information	• Device OD			
	O Offline - from Device Description	C Module OD (via AcE port)			
	All Objects Mappable Objects (RxPDO) Mappable Objects (TxPDO) Backup Objects Settings Objects				
	O Offline - via EDS File	Browse			
	1				
		OK Cancel			

Fig. 61: Advanced settings

Online - via SDO information	If this option button is selected, the list of the objects included in the object directory of the slave is uploaded from the slave via SDO information. The list below can be used to specify which object types are to be uploaded.			
Offline - via EDS file	If this option button is selected, the list of the objects included in the object directory is read from an EDS file provided by the user.			

Online tab

General EtherCAT DC Process Data	Startup CoE - Online	Online	
State Machine Init Bootstrap Pre-Op Safe-Op Op Clear Error	Current State: Requested State:		
DLL Status Port A: Port B: Port C: Port D: File Access over EtherCAT			
Download Upload			

Fig. 62: Online tab

State Machine

Init	This button attempts to set the EtherCAT device to the Init state.			
Pre-Op	This button attempts to set the EtherCAT device to the pre-operational state.			
Ор	This button attempts to set the EtherCAT device to the operational state.			
Bootstrap	This button attempts to set the EtherCAT device to the Bootstrap state.			
Safe-Op	This button attempts to set the EtherCAT device to the <i>safe-operational</i> state.			
Clear Error This button attempts to delete the fault display. If an EtherCAT slave fail change of state it sets an error flag.				
	Example: An EtherCAT slave is in PREOP state (pre-operational). The master now requests the SAFEOP state (safe-operational). If the slave fails during change of state it sets the error flag. The current state is now displayed as ERR PREOP. When the <i>Clear Error</i> button is pressed the error flag is cleared, and the current state is displayed as PREOP again.			
Current State	Indicates the current state of the EtherCAT device.			
Requested State	Indicates the state requested for the EtherCAT device.			

DLL Status

Indicates the DLL status (data link layer status) of the individual ports of the EtherCAT slave. The DLL status can have four different states:

Status	Description
No Carrier / Open	No carrier signal is available at the port, but the port is open.
No Carrier / Closed	No carrier signal is available at the port, and the port is closed.
Carrier / Open	A carrier signal is available at the port, and the port is open.
Carrier / Closed	A carrier signal is available at the port, but the port is closed.

File Access over EtherCAT

Download	With this button a file can be written to the EtherCAT device.
Upload	With this button a file can be read from the EtherCAT device.

6.5 Basic function principles

EL/EP3356 and special versions

Unless stated otherwise, the designation "EL/EP3356"always refers also to special versions such as the EL3356-0010 and EP3356-0022.

The measuring functions of the EL/EP3356 can be described as follows:

- The EL3356 Analog Input Terminal and the EP3356-0022 Analog Input Box are used to acquire the supply voltage to a load cell as a reference voltage, and the differential voltage that is proportional to the force acting on the cell.
- It is compulsory to connect a full bridge. If there is only a quarter or half bridge available, you have to add external auxiliary bridges. In this case you have to modify the nominal characteristic value.
- · The reference and differential voltages are measured simultaneously
- Since the two voltages are measured at the same time, there is basically no need for a high-precision reference voltage with respect to the level. On changing the reference voltage, the differential voltage across the full bridge changes by the same degree. Therefore a stabilized reference voltage should be used that is subject to only low fluctuations (e.g. the EL95xx supply terminal)
- The change of the quotient of the differential and reference voltages corresponds to the relative force acting on the load cell.
- · The quotient is converted into a weight and is output as process data.
- The data processing is subject to the following filtering procedures:
 - the analog converter (ADC) integrates over 76 samples
 - · calculation of mean values in the averager (if activated)
 - software filter IIR/FIR (if activated)
- The EL/EP3356 has an automatic compensation/self-calibration function. Default state: self-calibration activated, execution every 3 minutes
 - errors in the analog input stages (temperature drift, long-term drift etc.) are checked by regular automatic calibration, and compensated to bring the measurement within the permitted tolerance range.
 - · the automatic function can be deactivated or activated in a controlled manner
- The EL/EP3356 can also be used as a 2-channel analog input terminal/box for <u>voltage measurement</u> [<u>> 89</u>].
- The EL3356-0010/EP3356-0022 has a timestamp function that can be activated through Distributed Clocks. The filter functionality is not available in Distributed Clocks mode.

General notes

 The measuring ranges of both channels (supply voltage and bridge voltage) should always be used as widely as possible in order to achieve a high measuring accuracy. We recommended a supply voltage of 12 V in connection with a load cell that has such a sensitivity (e.g. 2 mV/V) that the largest possible bridge voltage – ideally ±25 mV – is generated. Please consider the max. input voltage (see technical data).

Fig. 63: Max. input voltages

- Parallel operation of load cells is possible with the EL/EP3356. Please note:
 - the EL3356 does not provide a supply! Hence, the power supply employed must be sufficiently large, since the total bridge resistance of all strain gauges connected together is considerably reduced due to the parallel connection.
 - $\circ\,$ Load cells approved and calibrated by the load cell manufacturer for parallel operation should be used. The nominal characteristic values [mV/V], zero offset [mV/V] and impedance [Ω , ohm] are then usually adjusted accordingly.
 - a 6-wire connection is expressly recommended with the EL3356

Fig. 64: Parallel connection with EL3356

Fig. 65: Parallel connection with EP3356

- Load cell signals have a low amplitude and are occasionally very sensitive to electromagnetic interference. Considering the typical system characteristics and taking into account the technical possibilities, purposeful state-of-the-art EMC protective measures are to be taken. The shield of the sensor cable can be connected to the EL3356 at the terminal points 4/8. In the case of high electromagnetic interference levels, it may be helpful to additionally connect the cable screen before the terminal using suitable screening material.
- the minimum permissible assigned EtherCAT cycle time for the EL/EP3356 is 100 μs.
- If the EL3356-0010/EP3356-0022 is to be used in Distributed Clocks mode:
 - DC must be activated
 - the Process data [>92] Timestamp must be activated. The filter functionality is not available then.

Signal flow diagram

Fig. 66: Block diagram of EP3356-0022

The EL/EP3356 processes the data in the following order:

- Hardware low-pass 10 KHz
- 2-channel simultaneous sampling at 10.5/105.5 kSps with 64-fold oversampling by delta-sigma ($\Delta\Sigma$) converter and internal pre-filtration
- · 4-fold averager (can be deactivated)
- Software filter (can be deactivated)
- · Calculating the weight

•

Measurement principle of delta-sigma ($\Delta\Sigma$) converter

The measurement principle employed in the EL/EP3356, with real sampling in MHz range, shifts aliasing effects into a very high frequency range, so that normally no such effects are to be expected in the KHz range.

Averager

In order to make use of the high data rates of the Analog-to-Digital converter (ADC) even with slow cycle times, a mean value filter is connected after the ADC. This determines the sliding mean value of the last 4 measured values. This function can be deactivated for each mode via the CoE object "Mode X enable averager".

Software filter

The EL/EP3356 is equipped with a digital software filter which, depending on its settings, can adopt the characteristics of a Finite Impulse Response filter (FIR filter), or an Infinite Impulse Response filter (IIR filter). The filter is activated by default as 50 Hz-FIR.

In the respective measuring mode the filter can be activated (0x8000:01, 0x8000:02) [\blacktriangleright 104] and parameterized (0x8000:11, 0x8000:12) [\blacktriangleright 104] (the EL3356-0000 supports only mode 0).

FIR 50/60 Hz

• The filter performs a notch filter function and determines the conversion time of the terminal/box. The higher the filter frequency, the faster the conversion time. A 50 Hz and a 60 Hz filter are available. Notch filter means that the filter has zeros (notches) in the frequency response at the filter frequency and multiples thereof, i.e. it attenuates the amplitude at these frequencies. The FIR filter operates as a non-recursive filter.

PDO filter

The filter behaves like the 50/60 Hz FIR filter described above. However, the filter frequency can be adjusted here in 0.1 Hz steps by means of an output data object. The filter frequency range extends from 0.1 Hz to 200 Hz and can be reparameterised during operation. To do this the PDO 0x1601 ("RMB filter frequency") must be displayed in the process data and the entry "PDO filter frequency" must be selected in the object 0x8000:11. This function allows the EL/EP3356 to suppress interference of a known frequency in the measuring signal. A typical application, for example, is a silo that is filled and weighed by a driven screw conveyor. The rotary speed of the screw conveyor is known and can be adopted into the object as a frequency. Thus mechanical oscillations can be removed from the measuring signal.

Fig. 67: Notch characteristic/amplitude curve and step response of the FIR filter

IIR-Filter 1 to 8

• The filter with IIR characteristics is a discrete time, linear, time invariant filter that can be set to eight levels (level 1 = weak recursive filter, up to level 8 = strong recursive filter). The IIR can be understood to be a moving average value calculation after a low-pass filter.

Fig. 68: Step response and Bode diagramm of the IIR filter

Overview of conversion times

Filter Set- tings	Value	PDO update time EL3356	PDO update time EP3356-0022/ EL3356-0010	Filter property	Limit fre- quency (-3 dB) [Hz] (typ.)	Comment	Rise time 10-90 % [s] (typ.)	
Filter deacti- vated	-	min. 10 ms	Cycle-synchro- nous,, min. 100 µs	-	-	-	-	
0	FIR 50 Hz	min. 10 ms	312.5 µs	50 Hz notch fil- ter	22 Hz	Typ. conversion time 312.5 µs	0.013	
1	FIR 60 Hz	min. 10 ms	260.4 µs	60 Hz notch fil- ter	25 Hz	Typ. conversion time 260.4 μs	0.016	
2	IIR1	Cyclesyn-	Cycle-synchro-	Low-pass	2000 Hz	a ₀ =1/2 ¹ = 0.5	0.0003	
3	IIR2	chronous (up to min. 10 ms up- date)	nous (up to min. 100 µs)	Low-pass	500 Hz	a ₀ =1/2 ² = 0.25	0.0008	
4	IIR3			Low-pass	125 Hz	a ₀ =1/2 ⁴ = 62.5e- 3	0.0035	
5	liR4		-		Low-pass	30 Hz	a ₀ =1/2 ⁶ = 15.6e- 3	0.014
6	liR5				Low-pass	8 Hz	a ₀ =1/2 ⁸ = 3.91e- 3	0.056
7	IIR6				Low-pass	2 Hz	a ₀ =1/2 ¹⁰ = 977e- 6	0.225
8	lir7			Low-pass	0.5 Hz	a ₀ =1/2 ¹² = 244e- 6	0.9	
9	IIR8			Low-pass	0.1 Hz	a ₀ =1/2 ¹⁴ = 61.0e -6	3.6	
10	Dynamic IIR			The filter changes dynamically between the filters IIR1 to IIR8			R1 to IIR8	
11	PDO Filter fre- quency	min. 10 ms	1/PDO Value[Hz]*64	Notch filter with adjustable fre- quency	ca. 0,443 * PDO Value [Hz]	-	-	

Filter and cycle time

If the FIR filters (50 Hz or 60 Hz) are switched on, the process data are updated maximally with the specified conversion time (see table). The IIR filter works cycle-synchronously. Hence, a new measured value is available in each PLC cycle.

At which point the filters can be adjusted is described in the chapter "Object description and parameterization" for example under index 0x8000:12.

IIR filter

Differential equation: $Y_n = X_n * a_0 + Y_{n-1} * b_1$ with $a_0 + b_1 = 1$ $a_0 =$ (see table), $b_1 = 1 - a_0$

Dynamic IIR Filter

The dynamic IIR filter automatically switches through the 8 different IIR filters depending on the weight change. The idea:

- The target state is always the IIR8-Filter, i.e. the greatest possible damping and hence a very calm measured value.
- In the input variable changes rapidly the filter is opened, i.e. switched to the next lower filter (if still possible). This gives the signal edge more weight and the measured value curve can follow the load quickly.
- If the measured value changes very little the filter is closed, i.e. switched to the next higher filter (if still possible). Hence the static state is mapped with a high accuracy.
- The evaluation as to whether a downward change of filter is required or whether an upward change is possible takes place continuously at fixed time intervals.

Parameterization takes place via the CoE entries 0x8000:13 and 0x8000:14 [\blacktriangleright 104]. Evaluation takes place according to 2 parameters:
- The "Dynamic filter change time" object (0x8000:13) [> 104] is used to set the time interval at which the existing signal is re-evaluated.
- Object 0x8000:14 [> 104] is used to specify the maximum deviation that is permissible during this time without filter switching occurring.

Example:

BECKHOFF

The dynamic filter is to be adjusted in such a manner that a maximum slope of 0.5 digits per 100 ms (5 digits per second) is possible without the filter being opened. This results in a "calm" measured value. In the case of a faster change, however, it should be possible to immediately follow the load.

- Dynamic filter change time (0x8000:13) [> 104] = 10 (equivalent to 100 ms)
- Object <u>0x8000:14</u> [▶ <u>104</u>] is used to specify the maximum deviation that is permissible during this time without filter switching occurring.

The measured value curve is shown below for a slower (left) and faster (right) change.

Fig. 69: Effect of dynamic IIR filters

- Left: The scales are slowly loaded. The change in the weight (delta/time) remains below the mark of 0.5 digits per 100 ms. The filter therefore remains unchanged at the strongest level (IIR8), resulting in a low-fluctuation measured value.
- Right: The scales are suddenly loaded. The change in the weight immediately exceeds the limit value of 0.5 digits per 100 ms. The filter is opened every 100 ms by one level (IIR8 --> IIR7 --> IIR6 etc.) and the display value immediately follows the jump. After the removal of the weight the signal quickly falls again. If the change in the weight is less than 0.5 digit per 100 ms, the filter is set one level stronger every 100 ms until IIR8 is reached. The green line is intended to clarify the decreasing "noise level"

Calculating the weight

Each measurement of the analog inputs is followed by the calculation of the resulting weight or the resulting force, which is made up of the ratio of the measuring signal to the reference signal and of several calibrations.

 $Y_R = (U_{Diff} / U_{ref}) \times A_i$

$$\begin{split} \mathbf{Y}_{L} &= \left(\left(\mathbf{Y}_{R} - \mathbf{C}_{ZB} \right) / \left(\mathbf{C}_{n} - \mathbf{C}_{ZB} \right) \right) * \mathbf{E}_{max} \\ \mathbf{Y}_{S} &= \mathbf{Y}_{L} * \mathbf{A}_{S} \end{split}$$

 $Y_{G} = Y_{S} * (G / 9.80665)$ $Y_{AUS} = Y_{G} x Gain - Tara$

- (1.0) Calculation of the raw value in mV/V
- (1.1) Calculation of the weight
- (1.2) Scaling factor (e.g. factor 1000 for rescaling from kg to g)
- (1.3) Influence of acceleration of gravity
- (1.4) Gain and Tare

Legend

Name	Designation	CoE Index
U_{Diff}	Bridge voltage/differential voltage of the sensor element, after averager and filter	
U _{ref}	Bridge supply voltage/reference signal of the sensor element, after averager and filter	
A _i	Internal gain, not changeable. This factor accounts fort he unit standardisation from mV to V and the different full-scale deflections of the input channels	
C _n	Nominal characteristic value of the sensor element (unit mV/V, e.g. nominally 2 mV/V or 2.0234 mV/V according to calibration protocol)	<u>8000:23 [▶ 104]</u>
C _{ZB}	Zero balance of the sensor element (unit mV/V, e.g0.0142 according to calibration protocol)	<u>8000:25 [▶ 104]</u>
E_{max}	Nominal load of the sensor element	8000:24 [▶ 104]
As	Scaling factor (e.g. factor 1000 for rescaling from kg to g)	<u>8000:27 [) 104]</u>
G	Acceleration of gravity in m/s ² (default: 9.80665 ms/s ²)	8000:26 [104]
Gain		8000:21 [104]
Tare		8000:22 [▶_104]

Conversion mode

The so–called conversion mode determines the speed and latency of the analog measurement in the EL/ EP3356. The characteristics:

Mode	Meaning	typ. la- tency	EL3356	EL3356-0010 and EP3356-0022	typ. current consumption
0	High precision	7,2 ms	х	x	70 %
	Analog conversion at 10.5 kSps (samples per second) Slow conversion and thus high accuracy				(see <u>Technical</u> <u>data [▶_9]</u> re- garding nomi- nal value)
1	<i>High speed / low latency</i> Analog conversion at 105.5 kSps (samples per second) Fast conversion with low latency	0,72 ms	-	X	100 % (see <u>Technical</u> <u>data [▶ 9]</u> re- garding nomi- nal value)

Due to the conversion principle of the EL/EP3356, the analog voltage is only available as a digital value after a defined time. This is shown in figure below.

A step signal 0->1 is applied to the input. The measured value is reached and readable within the defined accuracy after 7.2 ms or 0.72 ms, depending on the conversion mode 0/1. At this time the timestamp is also acquired in Distributed Clocks mode. In real operation a step signal is not normally connected, but rather a higher frequency but constant signal. The EL3356 then maps the input signal with the corresponding latency for further processing, for which reason faster querying of the sampling unit at shorter intervals than the latency (EL3356-0010 allows up to 100 μ s) makes sense for true-to-detail mapping of the analog input signal.

BECKHOFF

Fig. 70: Latency of the Analog-to-Digital converter

It is not possible to change the specified latency.

Beyond that the following are individually adjustable in each mode via CoE

- · activation of the averager
- · activation of the filter
- type of filter

800	0:0	RMB Settings	RW	> 50 <
	8000:01	Mode0 enable filter	BW	TRUE
	8000:02	Mode1 enable filter	BW	TRUE
	8000:03	Mode0 enable averager	BW	TRUE
	8000:04	Mode1 enable averager	RW	TRUE
	8000:05	Symmetric reference potential	RW	TRUE
	8000:11	Mode0 filter settings	RW	FIR 50 Hz (0)
	8000:12	Mode1 filter settings	BW	FIR 50 Hz (0)

Fig. 71: Setting parameters in CoE belonging to the individual modes

The EL3356 has only mode 0, the El3356-0010 has modes 0 & 1.

Mode change (EL3356-0010 only)

In particular for dynamic weighing procedures it may make sense to considerably change the measuring characteristic during the weighing procedure. For example, if a bulk material is filled by the sack within 5 seconds, a very open filter should initially be used so that the measured value quickly follows the fill level. During this phase it is of no importance that the measured value is very inaccurate and subject to high fluctuations. If the sack is >90 % full, filling must be slowed down and the loading must be followed with higher accuracy; the filter must be closed. Therefore the two conversion modes can be switched via the process data bit "Sample mode" in the EL3356-0010 and in the EP3356-0022 in relation to the processing of the analog values.

The mode change takes about 30 ms, during which time the measured values are invalid and indicate this by the status byte.

<u>ه</u>	Ctrl	
	🔶 Start calibratio	п
	🔶 Disable calibrat	ion
	🔶 Input freeze	
	🗣 Sample mode	
	🗣 Tara	

Fig. 72: Sample mode switching

6.6 Application notes

Symmetric reference potential

The EL/EP3356 measures the two voltages U_{supply} und U_{bridge} independently of each other and without electrical reference to a supply voltage. The measuring accuracy can be increased still further if an internal coupling is employed to prevent the internal measuring circuits from drifting apart. To this end the EL/EP3356 has an internal switch that is closed in the default state and establishes a potential reference between the internal electronics and the bridge point.

Fig. 73: Internal switch for increasing the measuring accuracy

If several strain gauges are supplied by the same power supply and equalising currents flow that falsify the measurement, the switch can be opened via CoE 0x8000:05 [\blacktriangleright 104]. Alternatively, electrically isolated strain gauge supplies are to be installed.

Open-circuit recognition

The EL/EP3356 has no express open-circuit recognition facility. If one of the bridge wires is broken, however, the voltage measured there generally moves towards the final value, thus displaying an error in the status word. Over/underrange of the supply voltage is likewise indicated.

Input freeze

If the terminal/box is placed in the freeze state by *InputFreeze* in the control word, no further analog measured values are relayed to the internal filter. This function is usable, for example, if a filling surge is expected from the application that would unnecessarily overdrive the filters due to the force load. This would result in a certain amount of time elapsing until the filter had settled again. The user himself must determine a sensible *InputFreeze* time for his filling procedure.

For clarification: temporal control of the *InputFreeze* and the decision regarding its use must be realised by the user in the PLC, they are not components of the EL/EP3356.

In the following example (recorded with Scope2) impulses on a 15 kg load cell are recorded; the filter is wide open at IIR1 so that steep edges occur in the signal.

Fig. 74: Impulses on a load cell with and without InputFreeze

Explanation: The weight (A) is shown in blue; the state of the InputFreeze variable, which can be controlled by the PLC program and can be TRUE/FALSE, is shown in red (B). The first two impulses (C) lead to large peak deflections in the signal. After that the following is activated in the PLC program (see example program [\blacktriangleright 113]):

 if the measured value for the last cycle (cycle time 100 µs) has changed by more than 10 g (indicating a sudden load), *blnputFreeze* is set to TRUE for 50 ms by a TOF block on the EL/EP3356

The effect can be seen in (D): The peak load is no longer acknowledged by the EL/EP3356. If it is optimally adapted to the expected force impulse, the EL/EP3356 can measure the current load value without overshoot.

Gravity adaption

The calculation of the weight depends on the gravitation/the Earth's gravitational force/acceleration due to gravity at the place of installation of the scales. In general, acceleration due to the gravitational pull of the earth at the place of installation is not equal to the defined standard value of $g = 9.80665 \text{ m/s}^2$. For example, 4 zones of acceleration due to gravity are defined in Germany, in which a local acceleration due to gravity of 9.807 m/s² to 9.813 m/s² is to be assumed. Hence, within Germany alone there is a clear dispersion of the order of parts per thousand for acceleration due to gravity, which has a direct effect on the measured weight in accordance with the equation FG = m*g!

lf

- load cells are used in the theoretical calibration with characteristic values according to the sensor certificate
- calibration weights are used whose weight at the place of installation of the scales is by nature different to that at the place of origin
- scales of the accuracy class I to III are to be realized
- scales that are generally independent of acceleration due to gravity are to be realized

then one should check whether the gravity correction needs to be adapted via object 0x8000:26 [> 104].

Idling recognition

Weighing is a dynamic procedure that can lead to large jumps in the bridge voltage and thus to the calculation of the value. Following a change in load, the measured value must first "settle" so that the process value is evaluable in the controller. The evaluation of the measured value and the decision over the degree of calmness can be done in the controller; however, the EL/EP3356 also offers this function, which is activated by default. The result is output in the status word.

- If the load value remains within a range of values y for longer than time x, then the *SteadyState* is activated in the *StatusWord*.
- SteadyState is set to FALSE as soon as this condition no longer applies.
- The parameters x and y can be specified in the CoE
- · The evaluation is naturally considerably affected by the filter setting

In the following example (recorded with TwinCAT Scope2), a 15 kg load cell is suddenly unloaded and loaded with 547 g. *SteadyState* is subject to a window time from 100 ms and a tolerance of 8 g (15 kg nominal value, scaling 1000; see CoE).

Fig. 75: Load cell loaded and unloaded

Official calibration capability

"Official calibration" is a special kind of calibration that is accomplished according to special regulations with the involvement of trained personnel using prescribed aids. The use of "officially calibrated" scales is mandatory in the Central European region, in particular for the filling of foodstuffs. This ensures the correctness of the weighed quantities in a particular way.

The Beckhoff EL/KL335x terminals and the EP3356 boxes cannot be officially calibrated as individual devices. However, they can be integrated as elements in applications that can then be equipped by the integrator with the required characteristics for official calibration capability using appropriate means.

6.7 Calibration and adjustment

The term "calibration" can be applied in 3 different ways to the EL/EP3356:

- Sensor calibration: once-only calibration of the employed sensor (strain gauge) during commissioning of the system
- Self-calibration: continuously repeated self-calibration of the terminal/box for the improvement of the measuring accuracy
- Tare: repeated gross/net compensation by taring

EL/EP3356 and special versions

Unless stated otherwise, the designation "EL/EP3356" always refers also to special versions such as the EL3356-0010 and the EP3356-0022.

Sensor calibration

The EL/EP3356 is matched to the characteristic curve of the sensor element by means of the calibration. Two values are required for this procedure: the initial value without a load ("zero balance") and fully loaded ("rated output"). These values can be determined by a calibration protocol or by a calibration using calibration weights.

Fig. 76: Adaptation to the sensor curve

Calibration by means of compensation in the system

In the "practical" calibration, measurement takes place first with the scales unloaded, then with a defined load on the scales. The EL/EP3356 automatically calculates the existing sensor characteristic values from the measured values.

Sequence:

- 1. Perform a CoE reset with object 0x1011:01, see <u>Restoring the delivery state [118]</u>
- 2. Set scale factor to 1000 (<u>0x8000:27 [▶ 104]</u>) (for declaration of weight in g)
- 3. Set gravity of earth (<u>0x8000:26 [▶ 104]</u>) if necessary (default: 9.806650)
- 4. Set gain to (<u>0x8000:21 [▶ 104]</u>) = 1
- 5. Set tare to 0 (<u>0x8000:22 [▶ 104]</u>)
- 6. Set the filter (0x8000:11 [> 104]) to the strongest level: IIR8
- 7. Specify the nominal load of the sensor in <u>0x8000:24 [▶ 104]</u> ("Nominal load")

Zero balance: Do not load the scales. As soon as the measured value indicates a constant value for at least 10 seconds, execute the command "0x0101" (257dec) on CoE object <u>0xFB00:01 [▶ 102]</u>. This command causes the current mV/V value (<u>0x9000:11 [▶ 104]</u>) to be entered in the "Zero balance" object. Check: CoE objects <u>0xFB00:02 [▶ 102]</u> and <u>0xFB00:03 [▶ 102]</u> must contain "0" after execution

1	i⊈i‴ ou i u.u	Ar settings	nw	2 2 4 3			level.
	主 - 801E:0	Al Internal data	RO	>1<	Set Value Dia	og	×
	主 🛛 801F:0	Al Vendor data	RW	>2<			
	主 ··· 8020:0	Al Settings	RW	> 24 <	Dec:	257	OK
	Đ 802E:0	Al Internal data	RO	>1<	11	0.0101	Connect
	😟 - 802F:0	Al Vendor data	RW	>2<	Hex:		Lancei
	⊕ ~ 9000:0	RMB Info data	RO	> 17 <	Float	257	
	主 A000:0	RMB Diag data	RO	> 24 <	T IOGC		
	主 🗝 F000:0	Modular device profile	RO	>2<			
	F008	Code word	RW	0x00000000 (
	Đ 🗝 F010:0	Module list	BW	>3<	Bool:	0 1	Hex Edit
	Ė FB00:0	RMB Command	RO	>3<	Dimensi	01.01	
	FB00:01	Request	RW	01 01	binary.	0101	J2
	FB00:02	Status	RO	0x00 (0)	Bit Size:	O1 O8 € 16 O 32	O 64 O 2
	FB00:03	Response	RO	00 00 00 00			

9. Load the scales with a reference load. This should be at least 20 % of the rated load. The larger the reference load, the better the sensor values can be calculated. In object <u>0x8000:28 [▶ 104]</u> ("Reference load"), enter the load in the same unit as the rated load (<u>0x8000:24 [▶ 104]</u>). As soon as the measured value indicates a constant value for at least 10 seconds, execute the command "0x0102" (258dec) on CoE object <u>0xFB00:01 [▶ 102]</u>. By means of this command the EL/EP3356 determines the output value for the nominal weight ("Rated output") Check: CoE objects <u>0xFB00:02 [▶ 102]</u> and <u>0xFB00:03 [▶ 102]</u> must contain "0" after execution.

主 ··· 8010:0	AI Settings	RW	> 24 <	Set Value Diak	ng XI
主 - 801E:0	Al Internal data	RO	>1<	See Falae Diak	
主 🛛 801F:0	Al Vendor data	BW	>2<	Dect	258 OK
主 8020:0	Al Settings	RW	> 24 <	Dec.	
主 802E:0	Al Internal data	RO	>1<	Hex:	0x0102 Cancel
主 - 802F:0	Al Vendor data	BW	>2<		
主 - 9000:0	RMB Info data	RO	> 17 <	Float:	258
主 A000:0	RMB Diag data	RO	> 24 <		
主 🗉 F000:0	Modular device profile	RO	>2<		
F008	Code word	BW	0x00000000 (0)	Book	0 1 Hey Edit
主 🗉 F010:0	Module list	BW	>3<	0000	
Ė… FB00:0	RMB Command	RO	>3<	Binary:	02 01 2
FB00:01	Request	BW	01 01		
FB00:02	Status	RO	0x00 (0)	Bit Size:	○1 ○8 ●16 ○32 ○64 ○ ?
FB00:03	Response	RO	00 00 00 00		

10. Reset: execute the command "0x0000" (0dec) on CoE object 0xFB00:01 [▶ 102].

11. Set the filter to a lower stage.

Calibration according to the sensor calibration protocol (theoretical calibration)

The sensor characteristic values according to the manufacturer's certificate are communicated here directly to the EL/EP3356, so that it can calculate the load.

- 1. Perform a CoE reset with object 0x1011:01, see Restoring the delivery state [118]
- 2. Set scale factor to 1000 (0x8000:27 [▶ 104]) (for declaration of weight in g)
- 3. Set gravity of earth (<u>0x8000:26 [▶ 104]</u>) if necessary (default: 9.806650)
- 4. Set gain to (<u>0x8000:21 [▶ 104]</u>) = 1
- 5. Set tare to 0 (<u>0x8000:22 [▶ 104]</u>)
- 6. Specify the nominal load of the sensor in <u>0x8000:24 [▶ 104]</u> ("Nominal load")
- 7. Adopt the "Rated output" (mV/V value 0x8000:23 [> 104]) from the calibration protocol
- 8. Adopt the "Zero balance" (0x8000:25 [104]) from the calibration protocol

Calibration

The calibration is of great importance for the accuracy of the system. In order to increase this, the
filter should be set as strong as possible over the entire calibration phase. It may take several seconds before a static value is obtained.

Local storage

The values modified during the theoretical and practical calibration are stored in a local EEPROM. This can be written to up to 1 million time. In order to prolong the life of the EEPROM, therefore, the commands should not be executed cyclically.

Self-calibration of the measuring amplifiers

The measuring amplifiers are periodically subjected to examination and self-calibration. Several analog switches are provided for this purpose, so that the various calibration signals can be connected. It is important for this process that the entire signal path, including all passive components, is examined at every phase of the calibration. Only the interference suppression elements (L/C combination) and the analog switches themselves cannot be examined. In addition, a self-test is carried out at longer intervals.

The self-calibration is carried out every 3 minutes in the default setting.

Self-calibration

• The time interval is set in 100 ms steps with object <u>0x8000:31</u> [▶ <u>104</u>]; default: 3 min. Duration approx. 150 ms

Self-test

 is additional carried out together with every nth self-calibration. The multiple (n) is set with object <u>0x8000:32 [104]</u>; default: 10 additional duration approx. 70 ms.

By means of the self-calibration of the input stages at the two operating points (zero point and final value), the two measuring channels are calibrated to each other.

Interface for controller

The self-calibration takes place automatically at the defined intervals. In order to prevent calibration during a time-critical measurement, the automatic calibration can be disabled via the "Disable calibration" bit in *ControlWord*, also permanently. If it should be additional necessary to carry out a manual test, this is started by a rising edge of the "*Start manual calibration*" bit in the process image.

While the terminal is performing a self-calibration or a self-test, the "*Calibration in progress*" bit is set in the process image. Once started, a self-calibration/self-test cannot be aborted.

If the self-calibration has been disabled by "Disable calibration", it can nevertheless be started by the "Start calibration" process data bit.

Self-calibration

The self-calibration takes place for the first time directly after starting up the terminal/box. At this point the external reference voltage must already be applied. If the reference voltage is only applied later, the self-calibration must be manually initiated (process data bit: *"Start calibration"*). The self-calibration must be executed at least once after each start-up. The supply voltage must be applied during the self-calibration, since otherwise the necessary reference voltages cannot be generated. A lower measuring accuracy is to be expected if the self-calibration is disabled for a longer period or permanently.

After a change of the settings in the CoE (range x80nn), a self-calibration will be executed in each case (also for *DisabledCalibration* = TRUE), because the settings have an influence to the measuring procedure. CoE settings should be done as far as possible out of running measuring procedures.

Taring

When taring, the scales are "zeroed" using an arbitrary applied load; i.e. an offset correction is performed. This is necessary for the gross/net compensation of goods that cannot be weighed without a container that has a mass of its own.

The EL/EP3356 supports 2 tarings; it is recommended to set a strong filter when taring.

Temporary tare

The correction value is NOT stored in the terminal/box and is lost in the event of a power failure. To this end the command "0x0001" is executed on CoE object 0xFB00:01 [▶ 102] (binary dialog in the System Manager: "01 00"). This sets the tare object (0x8000:22 [▶ 104]) such that the display value is 0. Note: in the case of a device restart (INIT → OP) the tare is not deleted. In addition this tare can be executed via the control word:

٩	Ctrl

- Start calibration
- Disable calibration
- Input freeze
- Sample mode
- 🗣 Tara

Permanent tare

The correction value is stored locally in the terminal's/boxes EEPROM and is not lost in the event of a power failure. To this end the command "0x0002" is executed on CoE object <u>0xFB00:01 [▶ 102]</u> (binary dialog in the System Manager: "02 00"). This sets the tare object (<u>0x8000:22 [▶ 104]</u>) such that the display value is 0.

The values modified during the theoretical and practical calibration are stored in a local EEPROM. This can be written to up to 1 million time. In order to prolong the life of the EEPROM, therefore, the commands should not be executed cyclically.

Commands

The functions discussed above are carried out by means of commands in the standardized object $\underline{0xFB00}$ [\blacktriangleright 102].

Index	Name	Comment
FB00:01	Request	Entry of the command to be executed
FB00:02	Status	Status of the command currently being executed
		0: Command executed without error
		255: Command is being executed
FB00:03	Response	Optional response value of the command

The function blocks *FB_EcCoESdoWrite* and *FB_EcCoESdoRead* from the *TcEtherCAT.lib* (contained in the standard TwinCAT installation) can be used in order to execute the commands from the PLC.

Commands of the EL/EP3356

The following commands can be transferred to the terminal/box via the CoE entry <u>0xFB00:01 [▶ 102]</u>.

Command	Comment
0x0101	Execute zero balance
0x0102	Execute calibration
0x0001	Execute tare procedure (value is NOT saved in the terminal's/boxes EEprom)
0x0002	Execute tare procedure (value is saved in the terminal's/boxes EEprom)

6.8 Notices on analog specifications

Beckhoff I/O devices (terminals, boxes) with analog inputs are characterized by a number of technical characteristic data; refer to the technical data in the respective documents.

Some explanations are given below for the correct interpretation of these characteristic data.

Full scale value

An I/O device with an analog input measures over a nominal measuring range that is limited by an upper and a lower limit (initial value and end value); these can usually be taken from the terminal/box designation. The range between the two limits is called the measuring span and corresponds to the equation (end value - initial value). Analogous to pointing devices this is the measuring scale (see IEC 61131) or also the dynamic range. For analog I/O devices from Beckhoff the rule is that the limit with the largest value is chosen as the full scale value of the respective product (also called the reference value) and is given a positive sign. This applies to both symmetrical and asymmetrical measuring spans.

Fig. 77: Measuring range

For the above **examples** this means:

- Measuring range 0 to 10 V: asymmetric unipolar, full scale value = 10 V, measuring span = 10 V
- Measuring range 4 to 20 mA: asymmetric unipolar, full scale value = 20 mA, measuring span = 16 mA
- Measuring range -200 to 1370 °C: asymmetric bipolar, full scale value = 1370 °C, measuring span = 1570 °C
- Measuring range -10 to +10 V: symmetric bipolar, full scale value = 10 V, measuring span = 20 V

This applies equally for analog output terminals/boxes.

± Measuring error [% of the full scale value] (also: measurement error)

The relative measuring error is referenced to the full scale value and is calculated as the quotient of the largest numerical deviation from the true value ('measuring error') referenced to the full scale value.

The measuring error is generally valid for the entire permitted operating temperature range, also called the 'usage error limit' and contains random and systematic portions of the referred device (i.e. 'all' influences such as temperature, inherent noise, aging, etc.).

It always to be regarded as a positive/negative span with ±, even if it is specified without ± in some cases.

The maximum deviation can also be specified directly.

Example: Measuring range 0 to 10 V and measuring error $\leq \pm 0.3$ % full scale value \rightarrow maximum deviation \pm 30 mV in the permissible operating temperature range.

Notice: since this specification also includes the temperature drift, a significantly lower measuring error can usually be assumed in case of a constant ambient temperature and thermal stabilization of the device. This applies equally for analog output terminals/boxes.

Single-ended/differential typification

For analog inputs Beckhoff makes a basic distinction between two types: single-ended (SE) and differential (DIFF), referring to the difference in electrical connection with regard to the potential difference.

The diagram shows two-channel versions of an SE module and a DIFF module as examples for all multichannel versions.

Single Ended

Differential

Fig. 78: Single-ended/differential typification

Notice: Dashed lines indicate that the respective connection may not necessarily be present in each SE or DIFF module.

The basic rule:

- Analog measurements always take the form of voltage measurements between two potential points. For voltage measurements a large R is used, in order to ensure a high impedance. For current measurements a small R is used as shunt. If the purpose is resistance measurement, corresponding considerations are applied.
 - Beckhoff generally refers to these two points as input+/signal potential and input-/reference potential.
 - For measurements between two potential points two potentials have to be supplied.
 - Regarding the terms "single-wire connection" or "three-wire connection", please note the following for pure analog measurements: three- or four-wire connections can be used for sensor supply, but are not involved in the actual analog measurement, which always takes place between two potentials/wires. In particular this also applies to SE, even though the term suggest that only one wire is required.
- The term "electrical isolation" should be clarified in advance. Beckhoff IO modules feature 1...8 or more analog channels; with regard to the channel connection a distinction is made in terms of:
 - · how the channels WITHIN a module relate to each other, or
 - how the channels of SEVERAL modules relate to each other.

The property of electrical isolation indicates whether the channels are directly connected to each other.

- Beckhoff terminals/boxes always feature electrical isolation between the field/analog side and the bus/ EtherCAT side. In other words, if two analog terminals/boxes are not connected via the power contacts, the modules are effectively electrically isolated.
- If channels within a module are electrically isolated, or if a single-channel module has no power contacts, the channels are effectively always differential. See also explanatory notes below. Differential channels are not necessarily electrically isolated.
- Analog measuring channels are subject to technical limits, both in terms of the recommended operating range (continuous operation) and the destruction limit. Please refer to the respective terminal documentation for further details.

Explanation

- Differential
 - Differential measurement is the most flexible concept. The user can freely choose both connection points, input+/signal potential and input-/reference potential, within the framework of the technical specification.
 - A differential channel can also be operated as SE, if the reference potential of several sensors is linked. This interconnection may take place via the system GND.
 - Since a differential is configured symmetrically internally (see diagram), there will be a midpotential (X) between the two supplied potentials that is the same as the internal ground/reference ground for this channel. If several DIFF channels are used in a module without electrical isolation, the technical property VCM (common-mode voltage) indicates the degree to which the mean voltage of the channels may differ.
 - The internal reference ground may be accessible as connection point at the terminal/box, in order to stabilize a defined GND potential in the terminal/box. In this case it is particularly important to pay attention to the quality of this potential (noiselessness, voltage stability). At this GND point a wire may be connected to make sure that V_{CM,max} is not exceeded in the differential sensor cable. If differential channels are not electrically isolated, usually only one V_{CM,max} is permitted. If the channels are electrically isolated this limit should not apply, and the channels voltages may differ up to the specified separation limit.
 - Differential measurement in combination with correct sensor wiring has the special advantage that any interference affecting the sensor cable (ideally the feed and return line are arranged side by side, so that interference signals have the same effect on both wires) has very little effect on the measurement, since the potential of both lines varies jointly (hence the term common mode). In simple terms: Common-mode interference has the same effect on both wires in terms of amplitude and phasing.
 - Nevertheless, the suppression of common-mode interference within a channel or between channels is subject to technical limits, which are specified in the technical data.
- Single Ended
 - If the analog circuit is designed as SE, the input/reference wire is internally fixed to a certain
 potential that cannot be changed. This potential must be accessible from outside on at least one
 point for connecting the reference potential, e.g. via the power contacts.
 - In other words, in situations with several channels SE offers users the option to avoid returning at least one of the two sensor cables to the terminal/box (in contrast to DIFF). Instead, the reference wire can be consolidated at the sensors, e.g. in the system GND.
 - A disadvantage of this approach is that the separate feed and return line can result in voltage/ current variations, which a SE channel may no longer be able to handle. See common-mode interference. A V_{CM} effect cannot occur, since the module channels are internally always 'hardwired' through the input/reference potential.

Typification of the 2/3/4-wire connection of current sensors

Current transducers/sensors/field devices (referred to in the following simply as 'sensor') with the industrial 0/4-20 mA interface typically have internal transformation electronics for the physical measured variable (temperature, current, etc.) at the current control output. These internal electronics must be supplied with energy (voltage, current). The type of cable for this supply thus separates the sensors into *self-supplied or externally supplied sensors*:

· Self-supplied sensors

- The sensor draws the energy for its own operation via the sensor/signal cable + and -. So that enough energy is always available for the sensor's own operation and open-circuit detection is possible, a lower limit of 4 mA has been specified for the 4-20 mA interface; i.e. the sensor allows a minimum current of 4 mA and a maximum current of 20 mA to pass.
- For a 2-wire connection; see IEC60381-1
- Such current transducers generally represent a current sink and thus like to sit between + and as a 'variable load'. Refer also to the sensor manufacturer's information.

Therefore, they are to be connected according to the Beckhoff terminology as follows:

- preferably to 'single-ended' inputs if the +Supply connections of the terminal/box are also to be used connect to +Supply and Signal
- the sensor draws the energy/operating voltage for its own operation from 2 supply cables of its own. One or two further sensor cables are used for the signal transmission of the current loop:

Externally supplied sensors

- 3- and 4-wire connection see Fig. Connection of externally supplied sensors, cf. IEC60381-1
- the sensor draws the energy/operating voltage for its own operation from 2 supply cables of its own. One or two further sensor cables are used for the signal transmission of the current loop:
- 1. sensor cable: according to the Beckhoff terminology such sensors are to be connected to '**single-ended**' **inputs** in 3 cables with +/-/Signal lines and if necessary FE/shield
- 2. sensor cables: In the case of sensors with 4-wire connection according to +-/+Signal/-Signal, you must check whether +Signal may be connected to +Supply or –Signal to –Supply.
 - Yes: then you can connect accordingly to a Beckhoff 'single-ended' input.
 - the Beckhoff 'differential' input for +Signal and –Signal is to be selected; +Supply and –Supply are to be connected via additional cables.

Notice: expert organizations such as NAMUR demand a usable measuring range <4 mA/>20 mA for error detection and adjustment, see also NAMUR NE043.

The Beckhoff device documentation must be consulted in order to see whether the respective device supports such an extended signal range.

In general the polarity/direction of current is to be observed due to the internal diode!

BECKHOFF

Fig. 79: 2/3/4-wire connection as single-ended or differential connection technology

6.9 Voltage measurement

EL/EP3356 and special versions

Unless stated otherwise, the designation "EL/EP3356" always refers also to special versions such as the EL3356-0010 and EP3356-0022.

The EL/EP3356 principally offers a 2-channel voltage measurement on one terminal/box with 2 very different measuring ranges of ± 25 mV and ± 12 V nominal voltage. The load on the one connected strain gauge can be calculated from the two simultaneously measured voltages; the EL/EP3356 already performs this calculation in the terminal/box and thus represents a 1-channel terminal/box in the sense of load calculation.

The following applies to the individual channels:

- Channel 1:
 - Typical measuring range approx. -13.5 V to 0 to +13.5 V (equivalent to process value 0x80.00.00 to 0 to 0x7F.FF.FF.FF)
 - $\circ~$ Nominal measuring range: -12 V... 0 ... +12 V
 - max. permissible voltage -U_D vs. +U_D: ±13.5 V
 - Measuring error < ±0.1 % of the full scale value, 50 Hz filter active
- Channel 2:
 - Typical measuring range approx. -27 mV to 0 to +27 mV (equivalent to process value 0x80.00.00.00 to 0 to 0x7F.FF.FF.FF)
 - Nominal measuring range: -25 mV... 0 ... +25 mV
 - max. permissible voltage -U_{ref} vs. +U_{ref}: ±27 mV
 - Measuring error < ±0.1 % of the full scale value, 50 Hz filter active
- in strain gauge mode the connected strain gauge guarantees that no impermissibly high potential differences arise inside and outside the circuit.

In the standard setting the EL/EP3356 operates as a 1-channel strain gauge monitor with the <u>process image</u> [<u>92]</u>; the terminal/box can be switched to 2-channel voltage measurement by changing the process data. See the notes on the process image regarding this. If the EL/EP3356 is not used as a load measuring terminal/box, but rather as a 2-channel analog input measuring terminal/box, the following must be observed:

- The CoE settings are to be found for:
 - Channel 1: objects under <u>0x8010:xx</u> [▶ <u>102</u>]
 - Channel 2: objects under <u>0x8020:xx</u> [▶ <u>102</u>]
 - the strain gauge objects under x8000:xx have no function. Exception: the averager (0x8000:03
 [104]) can also be used in voltage measuring mode and applies to both channels simultaneously.
- · Self-calibration is not possible and useful.
- The two analog channels are not calibrated by the manufacturer, since this is not required for the relative measurement in strain gauge mode. This means, for example, for channel 1 with a nominal measuring range of ±12 V or a typical measuring range of ±13.5 V, that the maximum measured value 0x7F.FF.FF.can be output by one terminal/box for example as 13.4 V and by another as 13.6 V. If terminals/boxes output identical process values for identical applied voltages, meaning that they are exchangeable, each channel must be calibrated by the user by making settings for each channel in the CoE. The user calibration (CoE <u>0x80n0:17</u> [▶ 102] [offset], <u>0x80n0:18</u> [▶ 102] [gain]) or the user scaling (CoE <u>0x80n0:11</u> [▶ 102] [offset], <u>0x80n0:12</u> [▶ 102] [gain]) can be used for this.

Voltage measurement

In the voltage measuring mode the **EL**3356 is to be connected to external GND with a single-ended connection. In addition the internal GND reference is to be closed by the CoE switch *SymmetricReferencePotential*. The EP3356 "supply" is not usable because the box internally generated 10 V.

6.10 Distributed Clocks mode (EL3356-0010 and EP3356-0022 only)

In the Distributed Clocks mode (DC mode), the precise timestamp is recorded for each measured value and transmitted to the controller as cyclic process data. To this end

- DC must be activated. To do this, select DC-Synchron (input based) on the "DC" tab
- The PDO x1A03 in the Process data management [▶ 92] is to be activated in the SyncManager 3 "Inputs"

General EtherCAT D	C Process Data Startup CoE	- Online Online							
Operation Mode: DC-Synchron (input based) SM-Synchron DC-Synchron DC-Synchron (input based)									
Name	Online	Туре	Size	>Addr	In/Out	User ID			
Status	0x0048 (72)	Status_4096	2.0	77.1	Input	0			
♦↑ Overrange	0	BOOL	0.1	77.1	Input	0			
💊 🗘 Data invalid	1	BOOL	0.1	77.3	Input	0			
♦↑ Error	1	BOOL	0.1	77.6	Input	0			
♦↑ Calibration in	0	BOOL	0.1	77.7	Input	0			
♦↑ Steady state	0	BOOL	0.1	78.0	Input	0			
♦↑ Sync error	0	BOOL	0.1	78.5	Input	0			
♦↑ TxPDO Toggle	0	BOOL	0.1	78.7	Input	0			
<mark>_ ∳</mark> î Value	0×00000000 (0)	DINT	4.0	79.0	Input	0			
♦Î Timestamp	0x055FFE0F73C96A2C (3873	ULINT	8.0	83.0	Input	0			
♀ ↑ WcState	0	BOOL	0.1	1522.3	Input	0			
�़î State	0×0008 (8)	UINT	2.0	1560.0	Input	0			
<mark>.</mark> ∲↑ AdsAddr	CO A8 00 14 05 01 EB 03	AMSADDRESS	8.0	1562.0	Input	0			
A∳Î netId	C0 A8 00 14 05 01	ARRAY [0	6.0	1562.0	Input	0			
♦Î netId[0]	0xC0 (192)	USINT	1.0	1562.0	Input	0			
netId[1]	0×A8 (168)	USINT	1.0	1563.0	Input	0			
♦ netId[2]	0×00 (0)	USINT	1.0	1564.0	Input	0			
netId[3]	0x14 (20)	USINT	1.0	1565.0	Input	0			
♦ netId[4]	0x05 (5)	USINT	1.0	1566.0	Input	0			
♦ netId[5]	0x01 (1)	USINT	1.0	1567.0	Input	0			
♦T port	0×03EB (1003)	UINT	2.0	1568.0	Input	0			
© DcOutputShift	0×00000000 (0)	DINT	4.0	1570.0	Input	0			
QTDcInputShift	0×007A1200 (8000000)	DINT	4.0	1574.0	Input	0			
Strl	0×0000 (0)	Ctrl_4098	2.0	77.0	Output	0			
Start calibration	0	BOOL	0.1	77.0	Output	0			
♥↓Disable calibra	0	BOOL	0.1	77.1	Output	0			
♥↓ Input freeze	0	BOOL	0.1	77.2	Output	0			
Sample mode	0	BOOL	0.1	77.3	Output	0			
📔 🗣 Tara	0	BOOL	0.1	77.4	Output	0			

Fig. 80: Activation of DC and PDO timestamp in the TwinCAT System Manager

The EL3356-0010/EP3356-0022 operates free running with a cyclic, but not equidistant measurement; the time intervals between 2 measured values are therefore not constant. For this reason the 64-bit timestamp delivered with the process value must be evaluated by the user.

In order to suppress falsification of the measurement results by upstream filters, both the software filter and the averager are deactivated in this operating mode. The measurement/calculation and provision of the measured value in the process data therefore takes place at the conversion rate corresponding to the mode:

- EL3356: 10.5 kSps
- EL3356-0010/EP3356-0022: 10.5 or 105.5 kSps

The minimum permissible EtherCAT cycle time is 100 μs for the EL3356-0010/EP3356-0022 with and without DC mode.

Time stamp

See Notes on <u>latency regarding $[\bullet 67]$ </u> the time when the actual timestamp is acquired.

6.11 Process data

This section describes the individual PDOs and their content. A PDO (Process Data Object) is a unit on cyclically transmitted process values. Such a unit can be an individual variable (e.g. the weight as a 32-bit value) or a group/structure of variables. The individual PDOs can be activated or deactivated separately in the TwinCAT System Manager. The "Process data" tab is used for this (visible only if the terminal/box is selected on the left). A change in the composition of the process data in the TwinCAT System Manager becomes effective only after restarting the EtherCAT system.

The EL/EP3356 can be used in 2 basic operating modes

- 1-channel strain gauge evaluation (strain gauge, balance beam, load cell): Here, both analog input voltages are measured internally, they are calculated locally according to the internal settings in the terminal/box and the resulting load value is output to the controller as a cyclic process value. The terminal/box is to be regarded as a 1-channel terminal/box. The load value can be output as an integer or as a float/real representation.
- 2-channel voltage measurement: Both analog input voltages are output directly as process values; no load calculation takes place. The value and status information can be output for each channel.

The basic operating mode of the EL3356 terminal / EP3356 box is determined by the selection of the process data (PDO).

EL/EP3356 and special versions

EL/EP3356, EL3356-0010 and EP3356-0022 have the same process data except. EL3356: no mode switching in the *ControlWord*

Selection of process data

The process data of the EL/EP3356 are set up in the TwinCAT System Manager. The individual PDOs can be activated or deactivated separately. The "Process data" tab is used for this (visible only if the terminal/box is selected on the left).

SM

3

3

Fig. 81: EP3356 - process data selection in the TwinCAT System Manager

Tara

If the terminal/box is selected in the System Manager (A), the Process data tab (B) shows the PDO selection. The two SyncManagers of the inputs (SM3) and outputs (SM2) can be changed (C). If one of the two is clicked on, the PDO possible for this SyncManager appears underneath it (D). PDOs that are already activated have an activated checkbox in front of them; this is activated by clicking on it.

BIT

0.1

39.4

Output 0

The process data which then belong to the device are listed underneath it (G). So that the individual bit meanings are visible, e.g. in the Status status word, and can be separately linked (G), ShowSubVariables must be activated in the System Manager (F). The bit position at which the subvariables are located in the status or control word Ctrl) can be taken from the address overview (H) or the following information.

Predefined PDO Assignment

In order to simplify the configuration, typical configuration combinations of process data are stored in the device description. The predefined configurations can be selected in the process data overview. Therefore the function is available only if the ESI/XML files are saved in the system (downloadable from the Beckhoff website).

The following combinations are possible (see also previous figure, E):

	Predefined PDO Assignment: 'Standard (INT32)'
	Predefined PDO Assignment: (none)
	Predefined PDO Assignment: 'Standard (INT32)'
	Predefined PDO Assignment: 'Standard (REAL)'
	Predefined PDO Assignment: '2x AnalogIn (Standard)'
	Predefined PDO Assignment: '2x AnalogIn (Compact)'
1	

- Standard (INT32): [Default setting] load calculation; 32-bit integer load value as final value according to the calculation specifications in the CoE, no further conversion necessary in the PLC
- Standard (REAL): Load calculation; 32-bit floating-point load value as final value according to the calculation specifications in the CoE, no further conversion necessary in the PLC
- 2x AnalogIn (Standard): 2-channel voltage measurement, 32-bit integer voltage value with additional information (under-range, over-range, error, TxPdoToggle)
- 2x AnalogIn (Compact): 2-channel voltage measurement, 32-bit integer voltage value only

Default process image

The default process image is standard (INT32).

Name	Online	Туре	Size	>Addr	In/Out	User ID
status €	0x8100 (33024)	Status_4096	2.0	45.0	Input	0
♦↑ Overrange	0	BOOL	0.1	45.1	Input	0
♦↑ Data invalid	0	BOOL	0.1	45.3	Input	0
♦↑ Error	0	BOOL	0.1	45.6	Input	0
♦↑ Calibration in progress	0	BOOL	0.1	45.7	Input	0
♦↑ Steady state	1	BOOL	0.1	46.0	Input	0
♦↑ Sync error	0	BOOL	0.1	46.5	Input	0
♦↑ TxPDO Toggle	1	BOOL	0.1	46.7	Input	0
♦ ↑ Value	0×00000097 (151)	DINT	4.0	47.0	Input	0
♦↑ WcState	0	BOOL	0.1	1522.1	Input	0
♦ ↑ State	0×0008 (8)	UINT	2.0	1560.0	Input	0
\$ ♦↑ AdsAddr	C0 A8 00 14 05 01 EB 03	AMSADDRESS	8.0	1562.0	Input	0
al all and a set the set of the	C0 A8 00 14 05 01	ARRAY [0	6.0	1562.0	Input	0
♦î netId[0]	0xC0 (192)	USINT	1.0	1562.0	Input	0
♦↑ netId[1]	0×A8 (168)	USINT	1.0	1563.0	Input	0
♦↑netId[2]	0×00 (0)	USINT	1.0	1564.0	Input	0
♦î netId[3]	0×14 (20)	USINT	1.0	1565.0	Input	0
♦ÎnetId[4]	0×05 (5)	USINT	1.0	1566.0	Input	0
♦î netId[5]	0×01 (1)	USINT	1.0	1567.0	Input	0
♦↑ port	0×03EB (1003)	UINT	2.0	1568.0	Input	0
🕵 Ctrl	0×0000 (0)	Ctrl_4098	2.0	45.0	Output	0
♦↓ Start calibration	0	BOOL	0.1	45.0	Output	0
♦↓ Disable calibration	0	BOOL	0.1	45.1	Output	0
♦↓ Input freeze	0	BOOL	0.1	45.2	Output	0
♦↓ Sample mode	0	BOOL	0.1	45.3	Output	0
♦ ↓ Tara	0	BOOL	0.1	45.4	Output	0

Fig. 82: Default process image, EL3356-0010 / EP3356-0022

Note regarding EL/EP3356: No switching of SampleMode in the Ctrl word

Function of the variables

Variable: Status

Meaning: The status word (SW) is located in the input process image, and is transmitted from terminal/box to the controller.

Bit	SW. 15	SW.	SW. 13	SW.	SW.	SW.	SW.	SW. 8	SW. 7	SW. 6	SW.	SW.	SW. 3	SW.	SW. 1	SW.
		14		12	11	10	9				5	4		2		0
Name	TxPDO Tog-	-	Sync Er-	-	-	-	-	Steady	Calibra-	Error	-	-	Data in-	-	Overrange	-
	gle		ror					State	tion in				valid		-	
									progress							
Mean-	Toggles	-	Syn-					Idlina	Calibra-	Col-	-	-	Input	-	Measuring	-
ing	0→1->0		chroni-					recogni-	tion	lective			data are		range ex-	
	with each		sation					tion	[▶ 801 in	error			invalid		ceeded	
	updated		error					[▶ 77]	progress	dis-						
	data set									play						

Variable: Value

Meaning: Calculated 32-bit DINT load value in unit [1], with sign

Variable: Value (Real)

Meaning: Calculated 32-bit fixed point REAL load value with mantissa and exponent in unit [1]

The format matches the REAL format of IEC 61131-3, which in turn is based on the REAL format of IEC 559. A REAL number (single precision) is defined as follows (See also Beckhoff InfoSys: <u>TwinCAT PLC Control:</u> <u>standard data types</u>). In accordance with IEC 61131 this 32-bit variable can be directly linked with a FLOAT variable of the PLC.

Bitposition (from the left)	1	8	23 (+1 "hidden bit", see IE559)
Function	Sign	Exponent	Mantissa

Variable: WcState

Meaning: Cyclic diagnostic variable; "0" indicates correct data transmission

Variable: Status

Meaning: State of the EtherCAT device; State.3 = TRUE indicates correct operation in OP

Variable: AdsAddr

Meaning: AmsNet address of the EtherCAT device from AmsNetId (in this case: 192.168.0.20.5.1) and port (in this case: 1003)

Variable: Ctrl

Meaning: The control word (CW) is located in the output process image, and is transmitted from the controller to the terminal/box.

Bit	CW. 15	CW. 14	CW. 13	CW. 12	CW. 11	CW. 10	CW. 9	CW. 8	CW. 7	CW. 6	CW. 5	CW. 4	CW. 3	CW. 2	CW. 1	CW. 0
Name					-							Tara	Sample Mode	Input Freeze	Disable Calibra- tion	Start Cali- bration
Mean- ing					-							start s <u>tare</u> [▶ <u>100</u>]	mode [▶_80] switching (EL3356-0 010 and EP3356-0 022only)	stops the <u>measure-</u> <u>ment</u> [▶_77]	Switches the auto- matic <u>self-</u> <u>calibration</u> [▶ <u>80]</u> off	Starts the <u>self-cali-</u> <u>bration</u> [▶ <u>80</u>] im- mediately

See also the example program [113] for the dissection of the Status and CTRL variable.

Variants (Predefined PDO)

Fixed-point representation of the load

The display of the load value can also be converted already in the terminal/box into a point representation. To do this the input PDOs are to be changed as follows:

 Image: RMB Status RMB Value (Real) Image: RMB Control RMB Control Image: WcState Image: InfoData 	♥ 0x1600 Download	Index 0x6000:02 0x6000:04 Predefined I	Size Offs 0.1 0.0 0.1 0.1 0.1 0.1 0.1 0.2 0.1 0.3 0.2 0.4 PDD Assignment: 'Star	Name Status_Overrange Status_Data invalid ndard (REAL)'			
	Name	Online	Type	Size	>Addr	In/Out	Use
	♦↑ Status	0x0148 (328)	Status_4096	2.0	39.1	Input	0
	Value (Real)	0.000000 (2.802597e-045	i) REAL	4.0	41.0	Input	0
	♀ †WcState	0	BOOL	0.1	1522.1	Input	0
	\$ †State	0x0008 (8)	UINT	2.0	1550.0	Input	0
	🔊 AdsAddr	C0 A8 00 14 05 01 EA 03	AMSADDRESS	8.0	1552.0	Input	0
	🔶 Ctrl	0×0000 (0)	Ctrl_4097	2.0	39.0	Output	0

Fig. 83: Load value in fixed-point representation

Variable: Value (Real)

Meaning: Calculated 32-bit fixed point REAL load value with mantissa and exponent in unit [1]

The format matches the REAL format of IEC 61131-3, which in turn is based on the REAL format of IEC 559. A REAL number (single precision) is defined as follows (See also Beckhoff InfoSys: <u>TwinCAT PLC Control:</u> <u>standard data types</u>). This 32-bit variable can be linked directly with a FLOAT variable of the PLC according to IEC61131.

Bit position (from left)	1	8	23 (+1 "hidden bit", see IEC 559)
Function	Sign	Exponent	Mantissa

Voltage measurement

The EL/EP3356 can also be used as a 2-channel analog input terminal/box for voltage measurement, see <u>Notes [> 89]</u>.

$\land \land \land \land$	 Image Image-Info SyncUnits Inputs Outputs InfoData Box 1 (EP3356-0022) Al Standard Channel 1 	PDO Assignment (0x1C1	Index Size Offs Name 0.1 0.0 0x6000:02 0.1 0.1 Status_Overrange 0.1 0.2 Predefined PDO Assignment: '2x AnalogIn (Standard)'						
	 Underrange Overrange Error TxPDO Toggle 	PDO Assignment	Load PDO info from device Sync Unit Assignment						
	Value	Name	Online		Туре	Size	>Addr	In/Out	User ID
	 Al Standard Channel 2 RMB Control Fred Ctrl 	 Underrange Overrange 	0		BIT BIT	0.1 0.1	39.0 39.1	Input Input	0
	 Start calibration Disable calibration Input freeze 	 Error TxPDO Toggle Value 	0 1 1534251392		BIT DINT	0.1 0.1 4.0	40.7 41.0	Input Input Input	0
A	 Sample mode Tara WcState InfoData 	 Underrange Overrange Error TxPDO Toggle Value 	0 0 0 1		BIT BIT BIT BIT	0.1 0.1 0.1 0.1	45.0 45.1 45.6 46.7	Input Input Input Input	0 0 0 0 0 0
	appings	 Value WcState InputToggle State AdsAddr netId port 	0 1 8 172.17.214.2 172.17.214.2 0x03e9	53.3.1: 53.3.1	BIT BIT UINT AMSADDR AMSNETID WORD	4.0 0.1 0.1 2.0 8.0 0 6.0 2.0	47.0 1522.1 1524.1 1548.0 1550.0 1550.0 1556.0	Input Input Input Input Input Input	0 0 0 0 0 0
		Ctrl Start calibrati Disable calibr Input freeze Sample mode	0x0000 (0) 0 0 0 0		Ctrl_BCBE. BIT BIT BIT BIT BIT BIT	2.0 0.1 0.1 0.1 0.1 0.1 0.1	39.0 39.0 39.1 39.2 39.3 39.4	Output Output Output Output Output	0 0 0 0 0

Fig. 84: Voltage measurement

BECKHOFF

Variable	Meaning
Underrange	Measurement is below range
Overrange	Measuring range exceeded
Error	Collective error display
TxPDO Toggle	Toggles $0 \rightarrow 1 \rightarrow 0$ with each updated data set
Value	Right-justified voltage value over the respective measuring range (Range of values 0x80.00.00.0000x7F.FF.FF.FF)
	Channel 1: supply voltage
	Channel 2: bridge voltage

Distributed Clocks

In DC mode (Distributed Clocks) the process data x1A03 *Timestamp* must be activated.

0	General	EtherCA	T DC	Process	Data	Startup	C₀E - O	Inline 🗍 Onlir	ne			
	Sync M	anager:			PD	0 List:						
	SM	Size	Туре	Flags		ndex	Size	Name				
	0	128	МБхОс	ıt.)x1A00	2.0	us				
	1	128	MbxIn)x1A01	4.0	RMB Valu	ie (INT3)	2)		
	2	2	Output	s)x1A02	4.0	RMB Valu	ie (Real)			
	3	14	Inputs)x1A03	8.0	RMB Tim	estamp			
				-)x1A04	6.0	Al Standa	ird Chani	nel 1		
)x1A05	4.0	Al Compa	ct Chanr	nel 1		
)x1A06	6.0	Al Standa	ird Chani	nel 2		
)x1A07	4.0	Al Compa	ct Chanr	nel 2		
							20	DMDTan	hol			
	PD0 Assignment (0x1C13): PD0 Content (0x1A00):											
	🕑 0x1/	400				ndex	Size	Offs	Name			
	🕑 0x1/	401					0.1	0.0				
	0x1/	A02 (excli	uded by I	0x1A01))x6000:02	0.1	0.1	Status_	_Overrang	je	
	V 1/	403	-				0.1	0.2				
	D 0x1/	A04 (excli	uded hu l	1x1A03))x6000:04	0.1	0.3	Status_	_Data inva	alid	
		io i (onor					0.2	0.4				
	⊟Down	iload —			P	redefined F	PDO Assid	anment: (nor	e)			
Na	me			Online					Туре		Size	
<u></u>	Status			0x0100 (25	6)				Statu	ıs_4096	2.0	
Q 1	Value			0x0000005	C (92))			DINT		4.0	
\$ 1	Timesta	mp		0x055A218	52408	36120 (385	56577799	71121440)	ULIN	Т	8.0	
Ŷ	WcStat	е		0					BOOI	L	0.1	
Q 1	State			0x0054 (84)				UINT		2.0	
<u></u>	AdsAdd	lr		C0 A8 00 1	4 OS C)1 EB 03			AMSA	ADDRESS	8.0	
♦↑DcOutputShift 0xFFF6D840 ()0000)			DINT	DINT 4		
\	DcInput	tShift		0x004630C	0 (46)	00000)			DINT		4.0	
۹	.Ctrl			0x0000 (0)					Ctrl	4098	2.0	

Also, the variables *DcOutputShift* and *DcInputShift* are displayed in the process data in DC mode. Upon activation of the configuration these are calculated once in the unit [ns] on the basis of the set EtherCAT cycle time (observe assigned task!) and DC shift times from the EtherCAT master settings. In the *InputBased* operating mode, *DcInputShift* indicates by how many nanoseconds [ns] before or after the global Sync the terminal/box determines your process data. For further information on this, see the <u>EtherCAT system</u> description.

Since the EL3356-0010/EP3356-0022 is not DC-triggered but determines the timestamp itself, these values have no meaning in the EL3356-0010/EP3356-0022.

Sync Manager (SM)

PDO Assignment

Inputs: SM3, PDO Assignment 0x1C13

Index	Index of ex- cluded PDOs	Size (byte.bit)	Name	PDO content Index - Name
0x1A00 (de- fault)	-	2.0	RMB Status (Resistor Measure- ment Bridge)	0x6000:02 [▶ 103] - Overrange 0x6000:04 [▶ 103] - Data invalid 0x6000:07 [▶ 103] - Error 0x6000:08 [▶ 103] - Calibration in progress 0x6000:09 [▶ 103] - Steady State 0x1C32:20 [▶ 100] - Sync Error 0x1800:09 [▶ 100] - TxPDO Toggle
0x1A01 (de- fault)	0x1A02 0x1A04 0x1A05 0x1A06 0x1A07	4.0	RMB Value (INT 32)	<u>0x6000:11 [▶ 103]</u> - Value
0x1A02	0x1A01 0x1A04 0x1A05 0x1A06 0x1A07	4.0	RMB Value (Real)	<u>0x6000:12 [▶ 103]</u> - Value
0x1A03	0x1A04 0x1A05 0x1A06 0x1A07	8.0	RMB Timestamp	<u>0x6000:13 [▶ 103]</u> - Value
0x1A04	0x1A00 0x1A01 0x1A02 0x1A03 0x1A05	6.0	Al Standard Channel 1 (Analog Input)	0x6010:01 [▶ 103] - Underrange 0x6010:02 [▶ 103] - Overrange 0x6010:07 [▶ 103] - Error 0x6010:10 [▶ 103] - TxPDO Toggle 0x6010:11 [▶ 103] - Value
0x1A05	0x1A00 0x1A01 0x1A02 0x1A03 0x1A04	4.0	Al Standard Channel 1 (Analog Input)	<u>0x6010:11 [▶ 103]</u> - Value
0x1A06	0x1A00 0x1A01 0x1A02 0x1A03 0x1A03	6.0	Al Standard Channel 2 (Analog Input)	0x6020:01 [▶ 103] - Underrange 0x6020:02 [▶ 103] - Overrange 0x6020:07 [▶ 103] - Error 0x6020:10 [▶ 103] - TxPDO Toggle 0x6020:11 [▶ 103] - Value
0x1A07	0x1A00 0x1A01 0x1A02 0x1A03 0x1A03	4.0	AI Standard Channel 2 (Analog Input)	<u>0x6020:11 [▶ 103]</u> - Value

Outputs: SM2, PDO-Zuordnung 0x1C12

Index	Index aus- geschlossener PDOs	Größe (Byte.Bit)	Name	PDO Inhalt
0x1600 (de- fault)	-	2.0	RMB Control (Resistor Measure- ment bridge)	0x7000:01 [▶ 103] - Start calibration 0x7000:02 [▶ 103] - Disable calibration 0x7000:03 [▶ 103] - Input freeze 0x7000:04 [▶ 103] - Sample Mode (only EL3356-0010/EP3356-0022) 0x7000:05 [▶ 103] - Tara

6.12 Object description and parameterization

EtherCAT XML Device Description

The display matches that of the CoE objects from the EtherCAT <u>XML</u> Device Description. We recommend downloading the latest XML file from the download area of the Beckhoff website and installing it according to installation instructions.

Parameterization via the CoE list (CAN over EtherCAT)

The EtherCAT device is parameterized via the <u>CoE - Online tab [\blacktriangleright 63]</u> (double-click on the respective object) or via the <u>Process Data [\blacktriangleright 60]</u> tab (allocation of PDOs).

Index 1011 Restore default parameters

Index (hex)	Name	Meaning	Data type	Flags	Default
1011:0	Restore default parameters [▶_118]	Restore the default settings in the EtherCAT slave	UINT8	RO	0x01 (1 _{dec})
1011:01	SubIndex 001	If this object is set to "0x64616F6C" ("Set Value Dialog") all terminal/box-specific objects are reset to their delivery state.	UINT32	RW	0x0000000 (0 _{dec})

Index 8000 RMB Settings

Index (hex)	Name	Meaning	Data type	Flags	Default
8000:0	RMB Settings	Max. subindex	UINT8	RO	0x32 (50 _{dec})
8000:01	Mode0 enable filter	0: No filters active. The terminal/box operates cy-	BOOLEAN	RW	0x01 (1 _{dec})
8000:02	Mode1 enable filter (Only EL3356-0010, EP3356-0022)	cle synchronous 1: The filter settings of subindex 0x8000:11 or 0x8000:12 are active.	BOOLEAN	RW	0x01 (1 _{dec})
8000:03	Mode0 enable averager	Activates hardware averager	BOOLEAN	RW	0x01 (1 _{dec})
8000:04	Mode1 enable averager (Only EL3356-0010, EP3356-0022)		BOOLEAN	RW	0x01 (1 _{dec})
8000:05	Symmetric reference potential	Activates symmetric measurement [> 67]	BOOLEAN	RW	0x01 (1 _{dec})
8000:11	Mode0 filter settings	0: FIR 50 Hz	UINT16	RW	0x0000 (0 _{dec})
8000:12	Mode1 filter settings (Only EL3356-0010, EP3356-0022)	1: FIR 60 Hz 2: IIR 1 3: IIR 2 4: IIR 3 5: IIR 4 6: IIR 5 7: IIR 6 8: IIR 7 9: IIR 8 10: Dynamic IIR 11: PDO Filter frequency see <u>filters [▶ 67]</u>	UINT16	RW	0x0000 (0 _{dec})
8000:13	Dynamic filter change time	Sampling rate of dynamic filter switching Scaling 0.01 ms (100 = 1 s) (only if <u>filters [▶ 67]</u> are active and "dynamic IIR" is selected)	UINT16	RW	0x000A (10 _{dec})
8000:14	Dynamic filter delta	Limit value of dynamic filter switching (only if <u>filters [▶ 67]</u> are active and "dynamic IIR" is selected)	REAL32	RW	0x41A00000 (1101004800 _{dec}) = 20.0
8000:21	Gain	Scaling factor	REAL32	RW	0x3F800000 (1065353216 _{dec}) = 1.0
8000:22	Tara	Offset of process data value	REAL32	RW	$0 \times 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0$

Index (hex)	Name	Meaning	Data type	Flags	Default
8000:23	Rated output	Nominal sensitivity of sensor element in mV/V	REAL32	RW	0x4000000 (1073741824 _{dec}) = 2.0
8000:24	Nominal load	Nominal load of force transducer/load cell/etc. (e.g. in kg or N,)	REAL32	RW	0x40A00000 (1084227584 _{dec}) = 5.0
8000:25	Zero balance	Zero point offset in mV/V	REAL32	RW	0x0000000 (0 _{dec}) = 0.0
8000:26	Gravity of earth	Current gravity of earth (default 9.806650)	REAL32	RW	0x411CE80A (1092413450 _{dec}) = 9.806650
8000:27	Scale factor	This factor is for rescaling of the process data, e.g. for changing the indication from "kg" to "g", you shall enter the factor "1000" here.	REAL32	RW	0x447A0000 (1148846080 _{dec}) = 1000.0
8000:28	Reference load	Reference weight for manual calibration	REAL32	RW	0x40A00000 (1084227584 _{dec}) = 5.0
8000:29	Steady state window	Time constant for the "steady state" bit (Idling recognition [▶ 77])	UINT16	RW	0x03E8 (1000 _{dec})
8000:2A	Steady state tolerance	Tolerance window for the "steady state" bit	UINT32	RW	0x0000005 (5 _{dec})
8000:31	Calibration interval	Calibration interval for the automatic calibration of the terminal/box (unit: 100 ms) The automatic calibration can be prevented by setting the process data bit "Disable calibration"	UINT16	RW	0x0708 (1800 _{dec})
8000:32	Test interval	This object contains the testing interval for the cyclic self test of the terminal/box	UINT16	RW	0x000A (10 _{dec})
		This interval is always a multiple (default: 10_{dec}) of the calibration interval (0x8000:31So the delivery state of the testing interval result from 10 x 180 s = 1800 s.			
		The self test can be prevented by setting the process data bit "Disable calibration"			

Index 8010, 8020 AI Settings

Index (hex)	Name	Meaning	Data type	Flags	Default
80n0:0	AI Settings	Max. subindex	UINT8	RO	0x18 (24 _{dec})
80n0:01	Enable user scale	User scale is enabled, if bit is set	BOOLEAN	RW	0x00 (0 _{dec})
80n0:06	Enable filter	Activates filter	BOOLEAN	RW	0x01 (1 _{dec})
80n0:0A	Enable user calibration	User calibration is enabled, if bit is set	BOOLEAN	RW	0x00 (0 _{dec})
80n0:0B	Enable vendor calibration	Vendor calibration is enabled, if bit is set	BOOLEAN	RW	0x01 (1 _{dec})
80n0:11	User scale offset	User scale offset	INT32	RW	0x0000000 (0 _{dec})
80n0:12	User scale gain	User scale gain The gain is represented in fixed-point format, with the factor 2^{-16} . A value of 1 for the gain factor therefore corre- sponds to 65535_{dec} (0x00010000 _{hex}) and is limited to 0x7FFFF.	INT32	RW	0x00010000 (65536 _{dec})
80n0:15	Filter settings	This object defines the digital filter settings, if it is activated with index <u>0x80n0:06 [▶ 102]</u> . The possible settings are numbered consecu- tively 0: 50 Hz FIR 1: 60 Hz FIR 2: IIR 1 3: IIR 2 4: IIR 3 5: IIR 4 6: IIR 5 7: IIR 6 8: IIR 7 9: IIR 8	UINT16	RW	0x0000 (0 _{dec})
80n0:17	User calibration offset	User calibration offset	INT32	RW	0x00000000 (0 _{dec})
80n0:18	User calibration gain	User calibration gain	INT16	RW	0x4000 (16384 _{dec})

Command object, Index FB00 RMB Command

Index (hex)	Name	Meaning	Data type	Flags	Default
FB00:0	RMB Command	Max. subindex	UINT8	RO	0x03 (3 _{dec})
FB00:01	Request	Via the request object, commands can be sent to the terminal/box Command:	OCTET- STRING[2]	RW	{0}
		- 0x0101: Zero adjustment			
		- 0x0102: Calibration			
		- 0x0001 Tara setting			
		- 0x0002 Tara setting (Data are saved into the EEPROM)			
		see <u>commands [] 67]</u>			
FB00:02	Status	State of the current executed command	UINT8	RO	0x00 (0 _{dec})
		0: Command executed without errors			
		255: Execution of command			
FB00:03	Response	Optional return value of the command	OCTET- STRING[4]	RO	{0}

Input data, Index 6000 RMB Inputs

Index (hex)	Name	Meaning	Data type	Flags	Default
6000:0	RMB Inputs	Max. subindex	UINT8	RO	0x13 (19 _{dec})
6000:02	Overrange	The measuring value has reached its terminal/ box value	BOOLEAN	RO	0x00 (0 _{dec})
6000:04	Data invalid	The indicated process data are not valid, e.g. dur- ing calibration	BOOLEAN	RO	0x00 (0 _{dec})
6000:07	Error	An error has occurred	BOOLEAN	RO	0x00 (0 _{dec})
6000:08	Calibration in progress	Calibration in progress. The process data indicate the last valid measuring value	BOOLEAN	RO	0x00 (0 _{dec})
6000:09	Steady state		BOOLEAN	RO	0x00 (0 _{dec})
6000:0E	Sync error	TRUE: In the last cycle the synchronization was not correct (only in DC-Mode)	BOOLEAN	RO	0x00 (0 _{dec})
6000:10	TxPDO Toggle	The TxPDO Toggle is toggled by the slave, if the data of the corresponding PDO was updated.	BOOLEAN	RO	0x00 (0 _{dec})
6000:11	Value	Measuring value as 32 Bit SIGNED INTEGER	INT32	RO	0x61746144 (1635017028 _{dec})
6000:12	Value (Real)	Measuring value as REAL	REAL32	RO	0x0000000 (0 _{dec})
6000:13	Timestamp	Timestamp of current measuring value (only EL3356-0010/EP3356-0022 in DC-Mode)	UINT64	RO	

Input data Index 6010, 6020 AI Inputs

Index (hex)	Name	Meaning	Data type	Flags	Default
60n0:0	AI Inputs	Max. subindex	UINT8	RO	0x11 (17 _{dec})
60n0:01	Underrange	Value falls below the measuring range	BOOLEAN	RO	0x00 (0 _{dec})
60n0:02	Overrange	Measurement range is exceeded.	BOOLEAN	RO	0x00 (0 _{dec})
60n0:07	Error	An error has occurred, e.g.: - Over- / underrange U_{dif} - Over- / underrange U_{ref} - the external U_{ref} is too low (between-1 V and +1 V) - Data invalid	BOOLEAN	RO	0x00 (0 _{dec})
60n0:10	TxPDO Toggle	The TxPDO Toggle is toggled by the slave, if the data of the corresponding PDO was updated.	BOOLEAN	RO	0x00 (0 _{dec})
60n0:11	Value	32 Bit measuring value	INT32	RO	0x0000000 (0 _{dec})

Output data, Index 7000 RMB Outputs

Index (hex)	Name	Meaning	Data type	Flags	Default
7000:0	RMB Outputs	Max. subindex	UINT8	RO	0x05 (5 _{dec})
7000:01	Start calibration	The calibration can be started manually with a ris- ing edge. Therefore, an automatic start of the calibration at an inappropriate point of time can be prevented.	BOOLEAN	RO	0x00 (0 _{dec})
7000:02	Disable calibration	0: The automatic calibration is active	BOOLEAN	RO	0x00 (0 _{dec})
		1: The automatic calibration is inactive			
7000:03	Input freeze	The process data and the digital filter will be frozen	BOOLEAN	RO	0x00 (0 _{dec})
7000:04	Sample mode	Selection of the sampling mode: 0: 10.5 kHz High precision 1: 105 kHz Low latency	BOOLEAN	RO	0x00 (0 _{dec})
7000:05	Tara	The process data can be set to zero with a rising edge. The tara value is not stored in the EEPROM and is lost after a reset of the terminal/box	BOOLEAN	RO	0x00 (0 _{dec})
7000:11	Filter frequency	Filter frequency of the variable PDO filter in 0.1 Hz, see <u>filter [) 67]</u>	UINT16	RO	0x00 (0 _{dec})
		Wertebereich: value range: 1 2000 (equates to 0,1 200 Hz)			
		From a value 0 or >2000, the filter behaves like a 50 Hz FIR filter			

Information-/diagnostic data, Index 801E, 802E AI Internal data

Index (hex)	Name	Meaning	Data type	Flags	Default
801E:0	AI Internal data	Max. subindex	UINT8	RO	0x01 (1 _{dec})
801E:01	ADC raw value 1	ADC raw value	INT32	RO	0x0000000 (0 _{dec})

Index 9000 RMB Info data

Index (hex)	Name	Meaning	Data type	Flags	Default
9000:0	RMB Info data	Max. subindex	UINT8	RO	0x11 (17 _{dec})
9000:11	mV/V	Current mV/V value	REAL32	RO	0x0000000 (0 _{dec})

Index A000 RMB Diag data

Index (hex)	Name	Meaning	Data type	Flags	Default
A000:0	RMB Diag data	Max. subindex	UINT8	RO	0x18 (24 _{dec})
A000:11	No internal referecnce supply	No internal reference voltage at ADC input (U_{Ref} channel)	BOOLEAN	RO	0x00 (0 _{dec})
A000:12	No internal referecnce bridge	No internal reference voltage at ADC input $(U_{\text{Dif}}$ channel	BOOLEAN	RO	0x00 (0 _{dec})
A000:13	No external reference supply	The external reference voltage is below ±1 V	BOOLEAN	RO	0x00 (0 _{dec})
A000:15	Overrange bridge	Overranged measuring value in the bridge sec- tion	BOOLEAN	RO	0x00 (0 _{dec})
A000:16	Underrange bridge	Underranged measuring value in the bridge sec- tion	BOOLEAN	RO	0x00 (0 _{dec})
A000:17	Overrange supply	Overranged measuring value of the reference voltage	BOOLEAN	RO	0x00 (0 _{dec})
A000:18	Underrange supply	Underranged measuring value of the reference voltage	BOOLEAN	RO	0x00 (0 _{dec})

Vendor configuration data, Index 801F, 802F AI Vendor data

Index (hex)	Name	Meaning	Data type	Flags	Default
801F:0	Al Vendor data	Max. subindex	UINT8	RO	0x02 (2 _{dec})
801F:01	Calibration offset	Offset (vendor calibration))	INT32	RW	0x01E10000 (31522816 _{dec})
801F:02	Calibration gain	Gain (vendor calibration))	INT16	RW	0x4000 (16384 _{dec})

Standard objects, Index 1000 Device type

Index (hex)	Name	Meaning	Data type	Flags	Default
1000:0	Device type	Device type of the EtherCAT slave: The low word contains the CoE profile used (5001). The high word contains the module profile according to the modular device profile.	UINT32	RO	0x01681389 (23597961 _{dec})

Index 1008 Device name

Index (hex)	Name	Meaning	Data type	Flags	Default
1008:0	Device name	Device name of the EtherCAT slave	STRING	RO	EL3356 / EP3356

Index 1009 Hardware version

Index (hex)	Name	Meaning	Data type	Flags	Default
1009:0	Hardware version	Hardware version of the EtherCAT slave	STRING	RO	00

Index 100A Software version

Index (hex)	Name	Meaning	Data type	Flags	Default
100A:0	Software version	Firmware version of the EtherCAT slave	STRING	RO	01

Index 1018 Identity

Index (hex)	Name	Meaning	Data type	Flags	Default
1018:0	Identity	Information for identifying the slave	UINT8	RO	0x04 (4 _{dec})
1018:01	Vendor ID	Vendor ID of the EtherCAT slave	UINT32	RO	0x0000002 (2 _{dec})
1018:02	Product code	Product code of the EtherCAT slave	UINT32	RO	0x0D1C3052 (219951186 _{dec})
1018:03	Revision	Revision number of the EtherCAT slave; the low word (bit 0-15) indicates the special terminal/box number, the high word (bit 16-31) refers to the device description	UINT32	RO	0x00100000 (1048576 _{dec})
1018:04	Serial number	Serial number of the EtherCAT slave; the low byte (bit 0-7) of the low word contains the year of production, the high byte (bit 8-15) of the low word contains the week of production, the high word (bit 16-31) is 0	UINT32	RO	0x0000000 (0 _{dec})

Index 10F0 Backup parameter handling

Index (hex)	Name	Meaning	Data type	Flags	Default
10F0:0	Backup parameter handling	Information for standardized loading and saving of backup entries	UINT8	RO	0x01 (1 _{dec})
10F0:01	Checksum	Checksum across all backup entries of the Ether- CAT slave	UINT32	RO	0x0000000 (0 _{dec})

Index 1600 RMB RxPDO-Map Control

Index (hex)	Name	Meaning	Data type	Flags	Default
1600:0	RMB RxPDO-Map Control	PDO Mapping RxPDO-Map control	UINT8	RO	0x07 (7 _{dec})
1600:01	Subindex 001	1. PDO Mapping entry (object 0x7000 (RMB outputs), entry 0x01 (Start calibration))	OCTET- STRING[10]	RO	0x7000:01, 1
1600:02	Subindex 002	2. PDO Mapping entry (object 0x7000 (RMB outputs), entry 0x02 (Disable calibration))	OCTET- STRING[10]	RO	0x7000:02, 1
1600:03	Subindex 003	3. PDO Mapping entry (object 0x7000 (RMB outputs), entry 0x03 (Input freeze))	OCTET- STRING[10]	RO	0x7000:03, 1
1600:04	Subindex 004	4. PDO Mapping entry (1 bits align)	OCTET- STRING[10]	RO	0x0000:00, 1
1600:05	Subindex 005	5. PDO Mapping entry (object 0x7000 (RMB outputs), entry 0x05 (Tara))	OCTET- STRING[10]	RO	0x7000:05, 1
1600:06	Subindex 006	6. PDO Mapping entry (3 bits align)	OCTET- STRING[10]	RO	0x0000:00, 3
1600:07	Subindex 007	7. PDO Mapping entry (8 bits align)	OCTET- STRING[10]	RO	0x0000:00, 8

Index 1601 RMB RxPDO-Map-Filter frequency

Index (hex)	Name	Meaning	Data type	Flags	Default
1601:0	RMB RxPDO-Map Filter fre- quency	PDO Mapping RxPDO-Map Filter frequency	UINT8	RO	0x01 (1 _{dec})
1601:01	Subindex 001	1. PDO Mapping entry (object 0x7000 (RMB ouputs), entry 0x11 (Start calibration))	OCTET- STRING[10]	RO	0x7000:11, 16

Index 1800 RMB TxPDO-Par Status

Index (hex)	Name	Meaning	Data type	Flags	Default
1800:0	RMB TxPDO-Par Status	PDO Parameter TxPDO 1	UINT8	RO	0x06 (6 _{dec})
1800:06	Exclude TxPDOs	This entry contains the TxPDOs (Index of the Tx- PDO Mapping objects) which shall not be trans- mitted with TxPDO 1	OCTET- STRING[10]	RO	04 1A 05 1A 06 1A 07 1A 00 00

Index 1801 RMB TxPDO-Par Value (INT 32)

Index (hex)	Name	Meaning	Data type	Flags	Default
1801:0	RMB TxPDO-Par Value (INT32)	PDO Parameter TxPDO 2	UINT8	RO	0x06 (6 _{dec})
1801:06	Exclude TxPDOs	This entry contains the TxPDOs (Index of the Tx- PDO Mapping objects) which shall not be trans- mitted with TxPDO 2	OCTET- STRING[10]	RO	02 1A 04 1A 05 1A 06 1A 07 1A

Index 1802 RMB TxPDO-Par Value (Real)

Index (hex)	Name	Meaning	Data type	Flags	Default
1802:0	RMB TxPDO-Par Value (Real)	PDO Parameter TxPDO 3	UINT8	RO	0x06 (6 _{dec})
1802:06	Exclude TxPDOs	This entry contains the TxPDOs (Index of the Tx- PDO Mapping objects) which shall not be trans- mitted with TxPDO 3	OCTET- STRING[10]	RO	01 1A 04 1A 05 1A 06 1A 07 1A

Index 1803 RMB TxPDO-Par Timestamp

Index (hex)	Name	Meaning	Data type	Flags	Default
1803:0	RMB TxPDO-Par Timestamp	PDO Parameter TxPDO 4	UINT8	RO	0x06 (6 _{dec})
1803:06	Exclude TxPDOs	This entry contains the TxPDOs (Index of the Tx- PDO Mapping objects) which shall not be trans- mitted with TxPDO 4	OCTET- STRING[10]	RO	04 1A 05 1A 06 1A 07 1A 00 00

Index 1804 AI TxPDO-Par Standard Ch. 1

Index (hex)	Name	Meaning	Data type	Flags	Default
1804:0	AI TxPDO-Par Standard Ch.1	PDO Parameter TxPDO 5	UINT8	RO	0x06 (6 _{dec})
1804:06	Exclude TxPDOs	This entry contains the TxPDOs (Index of the Tx- PDO Mapping objects) which shall not be trans- mitted with TxPDO 5	OCTET- STRING[10]	RO	05 1A 00 1A 01 1A 02 1A 03 1A

Index 1805 AI TxPDO-Par Compact Ch.1

Index (hex)	Name	Meaning	Data type	Flags	Default
1805:0	AI TxPDO-Par Compact Ch.1	PDO Parameter TxPDO 6	UINT8	RO	0x06 (6 _{dec})
1805:06	Exclude TxPDOs	This entry contains the TxPDOs (Index of the Tx- PDO Mapping objects) which shall not be trans- mitted with TxPDO 6	OCTET- STRING[10]	RO	04 1A 00 1A 01 1A 02 1A 03 1A

Index 1806 AI TxPDO-Par Standard Ch.2

Index (hex)	Name	Meaning	Data type	Flags	Default
1806:0	AI TxPDO-Par Standard Ch.2	PDO Parameter TxPDO 7	UINT8	RO	0x06 (6 _{dec})
1806:06	Exclude TxPDOs	This entry contains the TxPDOs (Index of the Tx- PDO Mapping objects) which shall not be trans- mitted with TxPDO 7	OCTET- STRING[10]	RO	07 1A 00 1A 01 1A 02 1A 03 1A

Index 1807 AI TxPDO-Par Compact Ch.2

Index (hex)	Name	Meaning	Data type	Flags	Default
1807:0	AI TxPDO-Par Compact Ch.2	PDO Parameter TxPDO 8	UINT8	RO	0x06 (6 _{dec})
1807:06	Exclude TxPDOs	This entry contains the TxPDOs (Index of the Tx- PDO Mapping objects) which shall not be trans- mitted with TxPDO 8	OCTET- STRING[10]	RO	06 1A 00 1A 01 1A 02 1A 03 1A

Index 1A00 RMB TxPDO-Map Status

Index (hex)	Name	Meaning	Data type	Flags	Default
1A00:0	RMB TxPDO-Map Status	PDO Mapping RxPDO-Map Status	UINT8	RO	0x0C (12 _{dec})
1A00:01	Subindex 001	1. PDO Mapping entry (1 bits align)	OCTET- STRING[10]	RO	0x0000:00, 1
1A00:02	Subindex 002	2. PDO Mapping entry (object 0x6000 (RMB in- puts), entry 0x02 (Overrange))	OCTET- STRING[10]	RO	0x6000:02, 1
1A00:03	Subindex 003	3. PDO Mapping entry (1 bits align)	OCTET- STRING[10]	RO	0x0000:00, 1
1A00:04	Subindex 004	4. PDO Mapping entry (object 0x6000 (RMB in- puts), entry 0x04 (Data invalid))	OCTET- STRING[10]	RO	0x6000:04, 1
1A00:05	Subindex 005	5. PDO Mapping entry (2 bits align)	OCTET- STRING[10]	RO	0x0000:00, 2
1A00:06	Subindex 006	6. PDO Mapping entry (object 0x6000 (RMB in- puts), entry 0x07 (Error))	OCTET- STRING[10]	RO	0x6000:07, 1
1A00:07	Subindex 007	7. PDO Mapping entry (object 0x6000 (RMB in- puts), entry 0x08 (Calibration in progress))	OCTET- STRING[10]	RO	0x6000:08, 1
1A00:08	Subindex 008	8. PDO Mapping entry (object 0x6000 (RMB in- puts), entry 0x09 (Steady state))	OCTET- STRING[10]	RO	0x6000:09, 1
1A00:09	Subindex 009	9. PDO Mapping entry (4 bits align)	OCTET- STRING[10]	RO	0x0000:00, 4
1A00:0A	Subindex 010	10. PDO Mapping entry (object 0x6000 (RMB in- puts), entry 0x0E (Sync error))	OCTET- STRING[10]	RO	0x6000:0E, 1
1A00:0B	Subindex 011	11. PDO Mapping entry (1 bits align)	OCTET- STRING[10]	RO	0x0000:00, 1
1A00:0C	Subindex 012	12. PDO Mapping entry (object 0x6000 (RMB in- puts), entry 0x10 (TxPDO Toggle))	OCTET- STRING[10]	RO	0x6000:10, 1

Index 1A01 RMB TxPDO-Map Value (INT32)

Index (hex)	Name	Meaning	Data type	Flags	Default
1A01:0	RMB TxPDO-Map Value (INT32)	PDO Mapping Value (INT32)	UINT8	RW	0x01 (1 _{dec})
1A01:01	SubIndex 001	1. PDO Mapping entry (object 0x6000 (RMB in- puts), entry 0x11 (Value))	UINT32	RW	0x6000:11, 32

Index 1A02 RMB TxPDO-Map Value (Real)

Index (hex)	Name	Meaning	Data type	Flags	Default
1A02:0	RMB TxPDO-Map Value (real)	PDO Mapping Value (real)	UINT8	RW	0x01 (1 _{dec})
1A02:01	SubIndex 001	1. PDO Mapping entry (object 0x6000 (RMB in- puts), entry 0x12 (Value (real)))	UINT32	RW	0x6000:12, 32

Index 1A03 RMB TxPDO-Map Timestamp

Index (hex)	Name	Meaning	Data type	Flags	Default
1A03:0	RMB TxPDO-Map Timestamp	PDO Mapping Value Timestamp	UINT8	RW	0x01 (1 _{dec})
1A03:01	SubIndex 001	1. PDO Mapping entry (object 0x0000, entry 0x00)	UINT64	RW	0x0000:00, 64

Index 1A04 AI TxPDO-Map Standard Ch.1

Index (hex)	Name	Meaning	Data type	Flags	Default
1A04:0	AI supply TxPDO-Map Stan- dard Ch. 1	PDO Mapping TxPDO Standard Ch. 1	UINT8	RW	0x07 (7 _{dec})
1A04:01	SubIndex 001	1. PDO Mapping entry (object 0x6010 (Al supply Inputs), entry 0x01 (Underrange))	UINT32	RW	0x6010:01, 1
1A04:02	SubIndex 002	2. PDO Mapping entry (object 0x6010 (Al supply Inputs), entry 0x02 (Overrange))	UINT32	RW	0x6010:02, 1
1A04:03	SubIndex 003	3. PDO Mapping entry (4 bits align)	UINT32	RW	0x0000:00, 4
1A04:04	SubIndex 004	4. PDO Mapping entry (object 0x6010 (Al supply Inputs), entry 0x04 (Error))	UINT32	RW	0x6010:07, 1
1A04:05	SubIndex 005	5. PDO Mapping entry (8 bits align)	UINT32	RW	0x0000:00, 8
1A04:06	SubIndex 006	6. PDO Mapping entry (object 0x6010, entry 0x10 (TxPDO Toggle))	UINT32	RW	0x6010:10, 1
1A04:07	SubIndex 007	7. PDO Mapping entry (object 0x6010, entry 0x11 (Value))	UINT32	RW	0x6010:11, 32

Index 1A05 AI TxPDO-Map Compact Ch.1

Index (hex)	Name	Meaning	Data type	Flags	Default
1A05:0	AI supply TxPDO-Map Com- pact Ch. 1	PDO Mapping TxPDO Compact Ch. 1	UINT8	RW	0x01 (1 _{dec})
1A05:01	SubIndex 001	1. PDO Mapping entry (object 0x6010, entry 0x11 (Value))	UINT32	RW	0x6010:11, 32

Index 1A06 AI TxPDO-Map Standard Ch.2

Index (hex)	Name	Meaning	Data type	Flags	Default
1A06:0	AI supply TxPDO-Map Stan- dard Ch. 2	PDO Mapping TxPDO Standard Ch. 2	UINT8	RW	0x07 (7 _{dec})
1A06:01	SubIndex 001	1. PDO Mapping entry (object 0x6020 (Al supply Inputs), entry 0x01 (Underrange))	UINT32	RW	0x6020:01, 1
1A06:02	SubIndex 002	2. PDO Mapping entry (object 0x6020 (Al supply Inputs), entry 0x02 (Overrange))	UINT32	RW	0x6020:02, 1
1A06:03	SubIndex 003	3. PDO Mapping entry (4 bits align)	UINT32	RW	0x0000:00, 4
1A06:04	SubIndex 004	4. PDO Mapping entry (object 0x6020 (Al supply Inputs), entry 0x04 (Error))	UINT32	RW	0x6020:07, 1
1A06:05	SubIndex 005	5. PDO Mapping entry (8 bits align)	UINT32	RW	0x0000:00, 8
1A06:06	SubIndex 006	6. PDO Mapping entry (object 0x6020, entry 0x10 (TxPDO Toggle))	UINT32	RW	0x6020:10, 1
1A06:07	SubIndex 007	7. PDO Mapping entry (object 0x6020, entry 0x11 (Value))	UINT32	RW	0x6020:11, 32

Index 1A07 AI TxPDO-Map Compact Ch.2

Index (hex)	Name	Meaning	Data type	Flags	Default
1A07:0	AI supply TxPDO-Map Com- pact Ch. 2	PDO Mapping TxPDO Compact Ch. 2	UINT8	RW	0x01 (1 _{dec})
1A07:01	SubIndex 001	1. PDO Mapping entry (object 0x6020, entry 0x11 (Value))	UINT32	RW	0x6020:11, 32

Index 1C00 Sync manager type

Index (hex)	Name	Meaning	Data type	Flags	Default
1C00:0	Sync manager type	Usage of the Sync Manager channels	UINT8	RO	0x04 (4 _{dec})
1C00:01	SubIndex 001	Sync-Manager Type Channel 1: Mailbox Write	UINT8	RO	0x01 (1 _{dec})
1C00:02	SubIndex 002	Sync-Manager Type Channel 2: Mailbox Read	UINT8	RO	0x02 (2 _{dec})
1C00:03	SubIndex 003	Sync-Manager Type Channel 3: Process Data Write (Outputs)	UINT8	RO	0x03 (3 _{dec})
1C00:04	SubIndex 004	Sync-Manager Type Channel 4: Process Data Read (Inputs)	UINT8	RO	0x04 (4 _{dec})
Index 1C12 RxPDO assign

Index (hex)	Name	Meaning	Data type	Flags	Default
1C12:0	RxPDO assign	PDO Assign Inputs	UINT8	RW	0x01 (1 _{dec})
1C12:01	Subindex 001	1. assigned TxPDO (contains the index of the corresponding TxPDO Mapping object)	UINT16	RW	0x1600 (5632 _{dec})
1C12:02	Subindex 002	2. assigned TxPDO (contains the index of the corresponding TxPDO Mapping object)	UINT16	RW	-

Index 1C13 TxPDO assign

Index (hex)	Name	Meaning	Data type	Flags	Default
1C13:0	TxPDO assign	PDO Assign Inputs	UINT8	RW	0x01 (1 _{dec})
1C13:01	Subindex 001	1. assigned TxPDO (contains the index of the corresponding TxPDO Mapping object)	UINT16	RW	0x1A00 (6656 _{dec})
1C13:02	Subindex 002	2. assigned TxPDO (contains the index of the corresponding TxPDO Mapping object)	UINT16	RW	0x1A01 (6657 _{dec})
1C13:03	Subindex 003	3. assigned TxPDO (contains the index of the corresponding TxPDO Mapping object)	UINT16	RW	-

Index 1C32 SM output parameter

Index (hex)	Name	Meaning	Data type	Flags	Default
1C32:0	SM output parameter	Synchronization parameter of the outputs	UINT8	RO	0x20 (32 _{dec})
1C32:01	Sync mode	Actual synchronization mode:	UINT16	RW	0x0001 (1 _{dec})
		0: Free Run			
		 1: Synchron with SM 3 Event (no Outputs available) 			
		2: DC - Synchron with SYNC0 Event			
		3: DC - Synchron with SYNC1 Event			
1C32:02	Cycle time	Cycle time (in ns):	UINT32	RW	0x000C65D4
		Free Run: cycle time of the local timer			(812500 _{dec})
		Synchron with SM 2 Event: Cycle time of the master			
		DC-Mode: SYNC0/SYNC1 Cycle time			
1C32:03	Shift time	Time between SYNC0-Event and Input Latch (in	UINT32	RO	0x0000000
		ns, only in DC-Mode)			(0 _{dec})
1C32:04	Sync modes supported	Supported synchronization modes:	UINT16	RO	0xC007
		• Bit 0 = 1: Free Run is supported			(49159 _{dec})
		 Bit 1 = 1: Synchron with SM 2 Event is supported 			
		• Bit 2-3 = 01: DC-Mode is supported			
		 Bit 4-5 = 01: Input Shift with local event (Outputs available) 			
		 Bit 4-5 = 10: Output Shift with SYNC1 Event (only DC mode) 			
		 Bit 14 = 1: dynamic times (could be measured by writing 0x1C32:08) 			
1C32:05	Minimum cycle time	Minimum cycle time supported (in ns)	UINT32	RO	0x0000C350 (50000 _{dec})
1C32:06	Calc and copy time	Minimum time between SYNC0 and SYNC1 event (in ns, only DC mode)	UINT32	RO	0x0000000 (0 _{dec})
1C32:07	Minimum delay time		UINT32	RO	0x0000000 (0 _{dec})
1C32:08	Command	O: Measurement of the times will be stopped	UINT16	RW	0x0000 (0 _{dec})
		 1: Measurement of the times will be started 			
		The Entries 0x1C32:03, 0x1C32:05, 0x1C32:06, 0x1C32:09, <u>0x1C33:03</u> [▶ <u>111]</u> , <u>0x1C33:06</u> [▶ <u>111]</u> , <u>0x1C33:09</u> [▶ <u>111]</u> will be updated with the maximum measured values.			
		The measured valued well be reset, if measured again			
1C32:09	Maximum Delay time	Time between SYNC1-Event and output latch (in ns, only in DC mode)	UINT32	RO	0x0000000 (0 _{dec})
1C32:0B	SM event missed counter	Number of the missed SM-Events in state OPER- ATIONAL (only in DC Mode)	UINT16	RO	0x0000 (0 _{dec})
1C32:0C	Cycle exceeded counter	Number of the exceeded cycles in state OPERA- TIONAL	UINT16	RO	0x0000 (0 _{dec})
1C32:0D	Shift too short counter	Number of the too short distances between SYNC0 and SYNC1 Event (only in DC Mode)	UINT16	RO	0x0000 (0 _{dec})
1C32:20	Sync error	TRUE: In the last cycle the synchronization was	BOOLEAN	RO	0x00 (0 _{dec})

Index 1C33 SM input parameter

Index (hex)	Name	Meaning	Data type	Flags	Default
1C33:0	SM input parameter	Synchronization parameter of the outputs	UINT8	RO	0x20 (32 _{dec})
1C33:01	Sync mode	Actual synchronization mode:	UINT16	RW	0x0022 (34 _{dec})
		0: Free Run			
	 1: Synchron with SM 3 Event (no Outputs available) 				
		2: DC - Synchron with SYNC0 Event			
		3: DC - Synchron with SYNC1 Event			
		34: synchronous with SM 2 event (outputs available)			
1C33:02	Cycle time	same as <u>0x1C32:02 [▶ 110]</u>	UINT32	RW	0x000C65D4 (812500 _{dec})
1C33:03	Shift time	Time between SYNC0 event and reading of the inputs (in ns, only DC mode)	UINT32	RO	0x0000000 (0 _{dec})
1C33:04	Sync modes supported	Supported synchronization modes:	UINT16	RO	0xC007
		Bit 0: free run is supported			(49159 _{dec})
		 Bit 1: synchronous with SM 2 event is supported (outputs available) 			
		 Bit 1: synchronous with SM 3 event is supported (no outputs available) 			
		• Bit 2-3 = 01: DC mode is supported			
		 Bit 4-5 = 01: input shift through local event (outputs available) 			
		 Bit 4-5 = 10: input shift with SYNC1 event (no outputs available) 			
		 Bit 14 = 1: dynamic times (measurement through writing of <u>0x1C32:08 [▶ 110]</u> or 1C33:08) 			
1C33:05	Minimum cycle time	same as <u>0x1C32:05 [▶ 110]</u>	UINT32	RO	0x0000C350 (50000 _{dec})
1C33:06	Calc and copy time	Time between reading of the inputs and availabil- ity of the inputs for the master (in ns, only DC mode)	UINT32	RO	0x0000000 (0 _{dec})
1C33:07	Minimum delay time		UINT32	RO	0x0000000 (0 _{dec})
1C33:08	Command	same as 0x1C32:08 [▶ 110]	UINT16	RW	0x0000 (0 _{dec})
1C33:09	Maximum Delay time	Time between SYNC1 event and reading of the inputs (in ns, only DC mode)	UINT32	RO	0x0000000 (0 _{dec})
1C33:0B	SM event missed counter	same as 0x1C32:11 [▶ 110]	UINT16	RO	0x0000 (0 _{dec})
1C33:0C	Cycle exceeded counter	same as 0x1C32:12 [▶ 110]	UINT16	RO	0x0000 (0 _{dec})
1C33:0D	Shift too short counter	same as 0x1C32:13 [▶ 110]	UINT16	RO	0x0000 (0 _{dec})
1C33:20	Sync error	same as 0x1C32:32 [110]	BOOLEAN	RO	0x00 (0 _{dec})

Index F000 Modular device profile

Index (hex)	Name	Meaning	Data type	Flags	Default
F000:0	Modular device profile	General information for the modular device profile	UINT8	RO	0x02 (2 _{dec})
F000:01	Module index distance	Index spacing of the objects of the individual channels	UINT16	RO	0x0010 (16 _{dec})
F000:02	Maximum number of modules	Number of channels	UINT16	RO	0x0001 (1 _{dec})

Index F008 Code word

Index (hex)	Name	Meaning	Data type	Flags	Default
F008:0	Code word	reserved	UINT32	RW	0x0000000 (0 _{dec})

Index F010 Module list

Index (hex)	Name	Meaning	Data type	Flags	Default
F010:0	Module list	Max. subindex	UINT8	RW	0x03 (3 _{dec})
F010:01	SubIndex 001	RMB	UINT32	RW	0x00000172 (370 _{dec})
F010:02	SubIndex 002	AI	UINT32	RW	0x0000012C (300 _{dec})
F010:03	SubIndex 003	AI	UINT32	RW	0x0000012C (300 _{dec})

6.13 Example program

• Using the example programs

This document contains sample applications of our products for certain areas of application. The application notes provided here are based on typical features of our products and only serve as examples. The notes contained in this document explicitly do not refer to specific applications. The customer is therefore responsible for assessing and deciding whether the product is suitable for a particular application. We accept no responsibility for the completeness and correctness of the source code contained in this document. We reserve the right to modify the content of this document at any time and accept no responsibility for errors and missing information.

In this example program an EP3356 is addressed by a PLC program (for TwinCAT 2). The Zip-file (https:// infosys.beckhoff.com/content/1033/ep3356/Resources/zip/1856737419.zip) contains the PLC*.pro and the System Manager*.tsm. The terminal can be operated via simple visualization; the function *InputFreeze* is programmed out by way of example.

example program EP3356-0022							
Status: ok							
	157.	. 00 g					
PDO	PDI	comands					
Start selfcalibration	O∨errange	Sensor: zero calibration					
Disable selfcalibration	Data invalid	Sensor: full calibrationf					
lucut for and	Error	Tara					
Inputfreeze	Calibrations: 1	Tara EEProm					
freeze time: T#50ms	Steady state						
freeze threshold: 10.00	TxPDOToggle						
cur diff: 0.00 counter freezes: 0							
Sample mode: 0							
Tara							

Fig. 85: Use of the example program

The EL3356 terminal is to be connected as shown below:

Fig. 86: EL3356: Connection of the load sensor/full bridge

An EL9510 power supply terminal is used here to feed the strain gauge with 10 V.

The EP3356 box is to be connected as shown below:

Fig. 87: EP3356: Connection of the load sensor/full bridge The sensor power supply of 10 V is produced in EP3356.

Procedure for starting the program

File Edit Actions View Ontions Hele

- After clicking the Download button, save the zip file locally on your hard disk, and unzip the *.TSM (configuration) and the *.PRO (PLC program) files into a temporary working folder
- Run the *.TSM file and the *.PRO file; the TwinCAT System Manger and TwinCAT PLC will open
- Connect the hardware in accordance with one of the two previous figures and connect the Ethernet adapter of your PC to the EtherCAT coupler / EtherCAT box (further information on this can be found in the corresponding coupler manuals)
- Select the local Ethernet adapter (with real-time driver, if one) under System configuration, I/O configuration, I/O devices, Device (EtherCAT); on the "Adapter" tab choose "Search...", select the appropriate adapter and confirm (see the following two figures)

0 🖆 📽 🖬 🎒 🗛 🕺 🖿 🛍 🙈 🗛	8 🖳 🏦 🗸	💣 🙆 👧 🗞	× 🎯 🗣 🛙	i Q. # (& Q. 9)	
SYSTEM - Configuration	Adapter Et				
Be PLC - Configuration	neral Adapter Eth	erCAT Online Co	oE - Online		
🛓 🛃 I/O - Configuration	Network Adapter				
🗄 📲 I/O Devices	_		O PCI		
🖃 🔫 Device 2 (EtherCAT)		© 03 (NDI3)	0 TGI		
	Description: unten (TwinCAT-Intel PCI Ethemet Ad			dapter (Gigabit))	
	Device Name:		7249-2445-41D6-B3	29-943B000E0257}	
			12102100410000	23 31 35 30 30 4 2 3 7 1	
	PCI Bus/Slot:			Search	
🖽 💀 InfoData	MAC Address:	00 01 05 11 ee a	2	Compatible Devices	
Box 1 (EP3356-0022)			-		
🗄 😺 TRMB Status	IP Address:	169.254.1.112 (2	55.255.0.0)		
⊕ Status		Promiscuous N	Node (use with Netmo	on/Wireshark only)	
			N	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
		virtual Device	Names		

Fig. 88: Searching the Ethernet adapter

Fig. 89: Selection and confirmation of the Ethernet adapter

• Activation of the configuration and confirmation (see the following two figures)

Fig. 90: Activation of the configuration

Fig. 91: Confirming the activation of the configuration

• Confirming new variable mapping, restart in RUN mode (see the following two figures)

TwinCAT System Manager 🛛 🗙							
?	Document is modified! Generate mapping before activate configuration						
	Yes	No	Cancel				

Fig. 92: Generating variable mapping

TwinCAT System Manager 🛛 🗙							
Restart TwinCAT System in Run Mod							
	ок	Cancel					

Fig. 93: Restarting TwinCAT in RUN mode

• In TwinCAT PLC, under the "Project" menu, select "Rebuild all" to compile the project (see following figure)

Fig. 94: Compile project

In TwinCAT PLC: log in with the "F11" button, confirm loading the program (see following figure), run the program with the "F5" button

BECKHOFF

Fig. 95: Confirming program start

6.14 Restoring the delivery state

To restore the delivery state for backup objects in ELxxxx terminals / EPxxxx boxes, the CoE object *Restore default parameters, SubIndex 001* can be selected in the TwinCAT System Manager (Config mode).

General EtherCAT	DC Process Da	ita Startu	ip CoE - Or	nline Onli	ne		
Update Li Advanced Add to Start	st Auto I	Jpdate [Single Up	idate 🔽 S	how Offline	e Data	
Index	Name		Fla	ags	Value		
1000	Device type		R)	0x00001	389 (5001)	
1008	Device name		R)	EL5101		
1009	Hardware version		R)	09		
100A	Software version		R)	10		
Ē~ 10 <u>11:0</u>	Restore default param	ieters	R)	>1<		
<u>1011:01</u>	SubIndex 001		R\	N	0x00000	000 (0)	
· 1 018:0	Identity 🐴		R)	>4<		
Name	Туре	Size	>Addr	In/Out	User ID	Linked to	
♦ † Status	USINT	1.0	26.0	Input	0		
\$ †Value	UINT	2.0	27.0	Input	0		
\$ †Latch	UINT	2.0	29.0	Input	0		
♦ † WcState	BOOL	0.1	1522.0	Input	0		
\$ †State	UINT	2.0	1550.0	Input	0		
🔊 AdsAddr	AMSADDRESS	8.0	1552.0	Input	0		
💁 petid	01 VA QQA	6.0	1552.0	Innut	0		

Fig. 96: Selecting the Restore default parameters PDO

Double-click on *SubIndex 001* to enter the Set Value dialog. Enter the value **1684107116** in field *Dec* or the value **0x64616F6C** in field *Hex* and confirm with OK.

All backup objects are reset to the delivery state.

Set Value Dia	alog	×
Dec:	1684107116	ок
Hex:	0x64616F6C	Cancel
Float:	1684107116	
Bool:	0 1	Hex Edit
Binary:	6C 6F 61 64	4
Bit Size:	○1 ○8 ○16 ○32	C 64 C ?

Fig. 97: Entering a restore value in the Set Value dialog

Alternative restore value

In some older terminals / boxes the backup objects can be switched with an alternative restore value: Decimal value: 1819238756

Hexadecimal value: 0x6C6F6164

An incorrect entry for the restore value has no effect.

7 Appendix

7.1 General operating conditions

Protection degrees (IP-Code)

The standard IEC 60529 (DIN EN 60529) defines the degrees of protection in different classes.

1. Number: dust protection and touch guard	Definition
0	Non-protected
1	Protected against access to hazardous parts with the back of a hand. Protected against solid foreign objects of \emptyset 50 mm
2	Protected against access to hazardous parts with a finger. Protected against solid foreign objects of Ø 12.5 mm.
3	Protected against access to hazardous parts with a tool. Protected against solid foreign objects Ø 2.5 mm.
4	Protected against access to hazardous parts with a wire. Protected against solid foreign objects Ø 1 mm.
5	Protected against access to hazardous parts with a wire. Dust-protected. Intrusion of dust is not totally prevented, but dust shall not penetrate in a quantity to interfere with satisfactory operation of the device or to impair safety.
6	Protected against access to hazardous parts with a wire. Dust-tight. No intrusion of dust.

2. Number: water* protection	Definition
0	Non-protected
1	Protected against water drops
2	Protected against water drops when enclosure tilted up to 15°.
3	Protected against spraying water. Water sprayed at an angle up to 60° on either side of the ver- tical shall have no harmful effects.
4	Protected against splashing water. Water splashed against the disclosure from any direction shall have no harmful effects
5	Protected against water jets
6	Protected against powerful water jets
7	Protected against the effects of temporary immersion in water. Intrusion of water in quantities causing harmful effects shall not be possible when the enclosure is temporarily immersed in water for 30 min. in 1 m depth.

*) These protection classes define only protection against water!

Chemical Resistance

The Resistance relates to the Housing of the Fieldbus/EtherCAT Box and the used metal parts. In the table below you will find some typical resistance.

Character	Resistance
Steam	at temperatures >100°C: not resistant
Sodium base liquor (ph-Value > 12)	at room temperature: resistant > 40°C: not resistant
Acetic acid	not resistant
Argon (technical clean)	resistant

Key

- resistant: Lifetime several months
- · non inherently resistant: Lifetime several weeks
- · not resistant: Lifetime several hours resp. early decomposition

7.2 EtherCAT Box- / EtherCAT P Box - Accessories

Fixing

Ordering information	Description
ZS5300-0001	Mounting rail (500 mm x 129 mm)

Marking material, plugs

Ordering information	Description
ZS5000-0000	Fieldbus Box set M8 (contact labels, plugs)
ZS5000-0002	Fieldbus Box set M12 (contact labels, plugs)
ZS5000-0010	plugs M8, IP67 (50 pieces)
ZS5000-0020	plugs M12, IP67 (50 pieces)
ZS5100-0000	marking labels, not printed, 4 stripes at 10 pieces
ZS5100-xxxx	printed marking labels, on request

Tools

Ordering information	Description
ZB8800	torque wrench for M8 cables with knurl, incl. ratchet
ZB8800-0001	M12 ratchet for torque wrench ZB8800
ZB8800-0002	M8 ratchet (field assembly) for torque wrench ZB8800
ZB8801-0000	torque wrench for hexagonal plugs, adjustable
ZB8801-0001	torque cable key, M8/wrench size 9, for torque wrench ZB8801-0000
ZB8801-0002	torque cable key, M12/wrench size 13, for torque wrench ZB8801-0000
ZB8801-0003	torque cable key, M12 field assembly/wrench size 13, for torque wrench ZB8801-0000

Further accessories

Further accessories may be found at the price list for Beckhoff fieldbus components and at the internet under <u>https://www.beckhoff.com</u>

7.3 Support and Service

Beckhoff and their partners around the world offer comprehensive support and service, making available fast and competent assistance with all questions related to Beckhoff products and system solutions.

Beckhoff's branch offices and representatives

Please contact your Beckhoff branch office or representative for <u>local support and service</u> on Beckhoff products!

The addresses of Beckhoff's branch offices and representatives round the world can be found on her internet pages:

http://www.beckhoff.com

You will also find further documentation for Beckhoff components there.

Beckhoff Headquarters

Beckhoff Automation GmbH & Co. KG

Huelshorstweg 20 33415 Verl Germany

Phone: Fax: e-mail: +49(0)5246/963-0 +49(0)5246/963-198 info@beckhoff.com

Beckhoff Support

Support offers you comprehensive technical assistance, helping you not only with the application of individual Beckhoff products, but also with other, wide-ranging services:

- support
- design, programming and commissioning of complex automation systems
- · and extensive training program for Beckhoff system components

Hotline:	+49(0)5246/963-157
Fax:	+49(0)5246/963-9157
e-mail:	support@beckhoff.com

Beckhoff Service

The Beckhoff Service Center supports you in all matters of after-sales service:

- · on-site service
- repair service
- · spare parts service
- hotline service

Hotline:+49(0)5246/963-460Fax:+49(0)5246/963-479e-mail:service@beckhoff.com

Table of figures

Fig. 1	EP3356-0022	8
Fig. 2	Strain gauge	10
Fig. 3	quarter, half and full bridge	11
Fig. 4	4-conductor connection	12
Fig. 5	6-conductor connection	12
Fig. 6	Example of a load cell	13
Fig. 7	Parallel connection of strain gauges	15
Fig. 8	EtherCAT tab> Advanced settings> Behavior> Watchdog	18
Fig. 9	EtherCAT State Machine	20
Fig. 10	CoE-Online tab	23
Fig. 11	Startup list in the TwinCAT System Manager	24
Fig. 12	Offline list	25
Fig. 13	Online list	25
Fig. 14	Dimensions of the EtherCAT Box Modules	27
Fig. 15	Mounting Rail ZS5300-000	28
Fig. 16	EtherCAT Box with M8 connectors	29
Fig. 17	EtherCAT Box with M8 and M12 connectors	29
Fig. 18	7/8" plug connectors	30
Fig. 19	ZB8801 torque socket wrench	30
Fig. 20	EtherCAT Box: M8, 30 mm housing	31
Fig. 21	EtherCAT Box: M860 mm housing (example: EP9214)	31
Fig. 22	Coupler Box: M12	31
Fig. 23	EtherCAT-LEDs	32
Fig. 24	EtherCAT Box, Connectors for power supply	34
Fig. 25	Pin assignment M8, Power In and Power Out	34
Fig. 26	EP92x4-0023, Connectors for Power In and Power Out	36
Fig. 27	Pin assignment 7/8", Power In and Power Out	36
Fig. 28	Status LEDs for power supply	37
Fig. 29	Power cable conductor losses	38
Fig. 30	ZK2030-xxxx-yyy - Conductor losses	39
Fig. 31	ZK1090-3131-0xxx	40
Fig. 32	ZK2020-3132-0xxx	41
Fig. 33	Selection of Beckhoff sensor cables	41
Fig. 34	UL label	42
Fig. 35	BG2000-0000, putting the cables	44
Fig. 36	BG2000-0000, fixing the cables	44
Fig. 37	BG2000-0000, mounting the protection enclosure	45
Fig. 38	Analog volatge input M12, resistor bridge	46
Fig. 39	LEDs EP3356-0022	47
Fig. 40	Appending a new I/O device (I/O Devices-> right-click -> Append Device)	49
Fig. 41	Selecting the device (EtherCAT)	49
Fig. 42	Appending a new box (Device -> right-click -> Append Box)	50
Fig. 43	Selecting a Box (e.g. EP6224-2022)	50
	TwinCAT Config mode display	52
0		

BECKHOFF

Fig. 45	Scan Devices	53
Fig. 46	Note for automatic device scan	53
Fig. 47	detected Ethernet devices	53
Fig. 48	scan query after automatic creation of an EtherCAT device	54
Fig. 49	online display example	54
Fig. 50	Master display after "Scan for boxes"	55
Fig. 51	Identical configuration	55
Fig. 52	Example correction dialog	56
Fig. 53	Example correction dialog with modifications	57
Fig. 54	Configuring the process data	58
Fig. 55	Branch of the EtherCAT box to be configured	59
Fig. 56	General tab	59
Fig. 57	EtherCAT tab	60
Fig. 58	Process Data tab	61
Fig. 59	Startup tab	63
Fig. 60	CoE - Online tab	64
Fig. 61	Advanced settings	65
Fig. 62	Online tab	65
Fig. 63	Max. input voltages	68
Fig. 64	Parallel connection with EL3356	68
Fig. 65	Parallel connection with EP3356	69
Fig. 66	Block diagram of EP3356-0022	69
Fig. 67	Notch characteristic/amplitude curve and step response of the FIR filter	70
Fig. 68	Step response and Bode diagramm of the IIR filter	71
Fig. 69	Effect of dynamic IIR filters	73
Fig. 70	Latency of the Analog-to-Digital converter	75
Fig. 71	Setting parameters in CoE belonging to the individual modes	75
Fig. 72	Sample mode switching	76
Fig. 73	Internal switch for increasing the measuring accuracy	77
Fig. 74	Impulses on a load cell with and without InputFreeze	78
Fig. 75	Load cell loaded and unloaded	79
Fig. 76	Adaptation to the sensor curve	80
Fig. 77	Measuring range	84
Fig. 78	Single-ended/differential typification	85
Fig. 79	2/3/4-wire connection as single-ended or differential connection technology	88
Fig. 80	Activation of DC and PDO timestamp in the TwinCAT System Manager	91
Fig. 81	EP3356 - process data selection in the TwinCAT System Manager	93
Fig. 82	Default process image, EL3356-0010 / EP3356-0022	94
Fig. 83	Load value in fixed-point representation	96
Fig. 84	Voltage measurement	97
Fig. 85	Use of the example program	113
Fig. 86	EL3356: Connection of the load sensor/full bridge	114
Fig. 87	EP3356: Connection of the load sensor/full bridge	114
Fig. 88	Searching the Ethernet adapter	115
Fig. 89	Selection and confirmation of the Ethernet adapter	115
Fig. 90	Activation of the configuration	115

BECKHOFF

Fig. 91	Confirming the activation of the configuration	116
Fig. 92	Generating variable mapping	116
Fig. 93	Restarting TwinCAT in RUN mode	116
Fig. 94	Compile project	116
Fig. 95	Confirming program start	117
Fig. 96	Selecting the Restore default parameters PDO	118
Fig. 97	Entering a restore value in the Set Value dialog	118