Operating manual

EA14M	Pressure indicator
with colour-changing LCD	

Table of Contents

1 Safety guidelines
2 Application purpose
3 Product and functional description
4 Installation and assembly
5 Commissioning
6 Maintenance
7 Transportation
8 Service
9 Accessories
10 Waste Disposal
11 Technical Data
12 Dimensional drawings
13 Order Codes
14 Manufacturer's Declarations and Certificates

1 Safety guidelines

1.1 General

This operating manual contains instructions fundamental to the installation, operation and maintenance of the device that must be observed unconditionally. It must be read by the assembler, operator and the specialized personnel in charge of the device before it is installed and put into operation.

This operating manual is an integral part of the product and therefore needs to be kept close to the instrument in a place that is accessible at all times to the responsible personnel.

The following sections, in particular instructions about the assembly, commissioning and maintenance, contain important information, nonobservance of which could pose a threat to humans, animals, the environment and property.

1.1 Personnel Qualification

The device may only be installed and commissioned by specialized personnel familiar with the installation, commissioning and operation of this product.
Specialized personnel are persons who can assess the work they have been assigned and recognize potential dangers by virtue of their specialized train-

ing, their skills and experience and their knowledge of the pertinent standards.

1.2 Risks due to Non-Observance of Safety Instructions

Non-observance of these safety instructions, the intended use of the device or the limit values given in the technical specifications can be hazardous or cause harm to persons, the environment or the plant itself.
The supplier of the equipment will not be liable for damage claims if this should happen.

1.3 Safety Instructions for the Operating Company and the Operator

The safety instructions governing correct operation of the instrument must be observed. The operating company must make them available to the installation, maintenance, inspection and operating personnel.

Dangers arising from electrical components, energy discharged by the medium, escaping medium and incorrect installation of the device must be eliminated. See the information in the applicable national and international regulations.

In Germany these are the DIN EN, UVV regulations, specific industrial guidelines such as DVGW, Ex, GL, etc., the VDE-
\square
regulations and the regulations of the local energy supply companies.

1.4 Unauthorised Modification

Modifications of or other technical alterations to the instrument by the customer are not permitted. This also applies to replacement parts. Any modifications / alterations required must be carried out by Fischer Mess- und Regeltechnik GmbH only.

1.5 Inadmissible Modes of Operation

The operational safety of this instrument can only be guaranteed if it is used as intended. The instrument model must be suitable for the medium used in the system. The limit values given in the technical data may not be exceeded.

1.6 Safe working practices for maintenance and installation work

The safety instructions given in this operating manual, any nationally applicable regulations on accident prevention and any of the operating company's internal work, operating and safety guidelines must be observed.
The operating company is responsible for ensuring that all required maintenance, inspection and installation work is carried out by qualified specialized personnel.

1.7 Explanation of symbols

WARNING!

... indicates a potentially dangerous situation, non-observance of which could endanger persons, animals, the environment or objects.

INFORMATION!

... highlights important information for efficient and smooth operation.

TIP!

... indicates recommendations that are not specifically necessary in certain situations but which could be useful.

2 Application purpose

The EA14A can be used as a transmitter and display unit for measuring pressure. The device analyses a signal (current or voltage) that originates from an external transmitter.

3 Product and functional description

3.1 Function diagram

1	Transmitter with input signal	2	Signal conversion
3	Micro-controller	4	Switch output
5	Keyboard	6	Display
7	Analogue output		

3.2 Design and mode of operation

This device is based on an electronic analysis switch that analyses the measuring signal of an external transmitter. The main task is to display and analyse the measured signal. Optionally, an output signal can be provided that is proportional to the input signal.

The external transmitter is connected to the analysis circuit using a flexible cable with plug connectors which also acts as the power supply. Only the supplied transmitters may be connected.

4 Installation and assembly

The device is designed for installation onto flat assembly plates. For screw connection to the assembly plate, the device features four assembly bores on its back, which can be used for $\varnothing 3.5 \mathrm{~mm}$ tapping screws. Optionally, the device can be delivered with a wall-mounting plate.
The enclosure protection type IP 65 is only guaranteed, if a suitable power supply cable is used.

If the device is intended for outdoor use, we recommend permanently protecting the membrane keypad against UV radiation and using a suitable enclosure or at least the erection of a sufficiently dimensioned canopy as a protection measure against constant rain or snow.

4.1 Process connection

Please note the installation instructions and safety information relating to the external transmitter.

4.2 Electrical connections

- By authorized and qualified specialized personnel only.
- When connecting the device, the relevant national and international electro-technical rules must be observed.
- Disconnect the system from the mains, before electrically connecting the device.
- Switch the consumer-adapted fuses.
- The following signals apply to the signals:

$$
\begin{aligned}
+U_{\mathrm{b}} & \text { Power supply to the unit } \\
-U_{\mathrm{b}} & \text { Power supply to the unit } \\
+ \text { Out } & \text { Analogue output } \\
- \text { Out } & \text { Analogue output } \\
\text { FE } & \text { Functional earth (low-external voltage earth) } \\
\text { SP1 } & \text { Switching output 1 } \\
\text { SP2 } & \text { Switching output } 2 \\
+U_{T} & \text { Supply ext. Transmitter (output) } \\
-U_{T} & \text { Supply ext. Transmitter (output) } \\
+ \text { Sig }_{T} & \text { Analogue input fir external transmitter signal } \\
- \text { Sig }_{T} & \text { Analogue input fir external transmitter signal } \\
\text { n.c. } & \text { not connected }
\end{aligned}
$$

4.2.1 Supply and output signal connection

Connector 1 Pin Signal name | Cable col- |
| :--- |
| our |

Pin 2 and Pin 4 on units without an output signal have no function (n.c.).

4.2.2 Connection of the switching outputs

4.2.3 Connection of the external transmitter

The external transmitter is connected with a 2 or 3line connection depending on the model.
$2 L$ connection standardised plug

Connector 3	Pin	Signal name		Cable col-
(2)	1	$+U_{T}$	$+\mathrm{Sig}_{\text {T }}$	brown
	2	- U_{T}	- Sig ${ }_{\text {T }}$	blue
\bigcirc	3	n.c.		black
	4	FE	$\stackrel{\text { N }}{=}$	green/yellow

3 connection standardised plug

5 Commissioning

All electrical supply, operating and measuring lines, and the pressure connections must have been correctly installed before commissioning. All supply lines are arranged so that there are no mechanical forces acting on the device.

5.1 Configuration

During commissioning there are a number of setting options that allow the device to be adapted to the measuring point and measuring task. To facilitate the input, the individual parameters are placed into groups in so-called menu levels.
Depending on the device model ${ }^{1}$ some menu items are not available. For instance, no switch points can be set on a device without contacts.

All the device settings can be made easily on the PC using the transmitter PC interface. Here, the parameters are directly visible and accessible. Also, it is possible to load and save the entire configuration; it can also be printed out for checking (see accessories).

5.2 Control Elements

5.2.1 LC display

$$
\begin{aligned}
& \text { LC display with back lighting } \\
& \text { Measurement display } 4 . .6 \text { digits } \\
& \text { Status display of the switch points } \\
& \text { Unit } \\
& \text { Bar chart display } \\
& \text { Keyboard }
\end{aligned}
$$

In normal mode, the current measured value is shown on a 4 -digit LC display. To show very large values, it is possible to switch to a 5 or 6 -digit

[^0]presentation (see Parameter MB decimal place in section 5.3.5).).
The unit is shown on the right of the display. If the device is equipped with contacts, a closed contact is always symbolised by an inverted text "SP1" or "SP2".
Various colours can be selected for the back lighting. Depending on the measured value, the colour of the back lighting can be automatically changed. This can be used e.g. to depict good/poor differences. The back lighting can also be deactivated.

The measured value can also be shown in a bar chart. The measured value is also shown in smaller pictures as a number.

During the programming, the menu items and the associated parameters are shown on the display. The device continues to function whilst the parameters are being set; apart from one exception, the changes come into effect instantly. The exception here is a change of switching times - here the previously valid time must have run down.

5.2.2 Keyboard

1 Menu downwards, reduce value
2 Call up menu, save value
3 Menu upwards, increase value

The individual menu items and parameters can be displayed using the buttons $\boldsymbol{\Delta}$ and $\boldsymbol{\nabla}$. The respective menu item is selected or the parameters for making changes are called up via the button $\widehat{\rightharpoonup}$.
If a parameter can be changed, the display flashes. The change is made via the buttons $\boldsymbol{\Delta}$ and $\boldsymbol{\nabla}$. The value is saved with the button \vec{v}.
To leave a menu level or the entire menu, select "Quit" and press $\widehat{\Delta}$.

Example: Setting the switch points

In normal mode, press the button û to enter the menu. Menu Level Switch points appears in the display; to change the switch points press the \Rightarrow button again and the parameter Switch point 1 on is shown.
The device jumps to the input:

- The parameter is stated in the first line.
- The value that is to be changed is shown in the second line, the display flashes.
- The input limits are displayed in the 3rd line (if there is one).
The required value is set with the buttons $\mathbf{\Delta}$ and $\boldsymbol{\nabla}$ and then confirmed with \vec{v}.

5.3 Menu

Description
Menu Level Switch points
Switch point 1:
Switch point 1 OnSP1 On
Switch point 1 Off............................SP1 Off
Switch point 1 Delay.......................SP1 Delay
Switch point 1 FunctionSP1 Function
Switch point 2:
Switch point 2 OnSP2 On
Switch point 2 Off...........................SP2 Off
Switch point 2 Delay........................SP2 Delay
Switch point 2 FunctionSP2 Function

Menu Level Input

Damping.	Damping
Offset correction.	Offset correctio
Zero-point window	Zero-point window

Menu Level Measuring

Menu Level Function

The menu will change depending on the entered value, linear, square rooted or table:

(a) Value = linear:	
Function:	linear
(b) Value = square rooted	
Function:Square rootedMeasuring range decimal places.....Decimal places MB	
Start of measuring range....MB-start	
End of measuring rangeMB-end	
Measuring	range unitUnit MB
(c) Value= Table	
Function:Table	
Measuring range decimal placesDecimal places MB	
Start of measuring range....MB-start	
End of measuring rangeMB-end	
Measuring range unitUnit MBNumber of pair(s).......................Number of pairs	
Depending on the input followed by	
Pair 1Value pair 1	
Pair 2Value pair 2	
Pair 3Value pair 3	
Pair n	Value pair n

5.3.1 Menu Level Switch points

The two switching outputs are configured by four parameters respectively.
For the switch point 1 these are
SP1 On
SP1 Off
SP1 Delay
SP1 Function
Accordingly for switch point 2:
SP2 On
SP2 Off
SP2 Delay

SP2 Function

SP1 On defines the activation point, SP1 Off the deactivation point of switch output 1. The values are shown in the valid unit and set accordingly. The values are shown in the valid unit and set accordingly.
Together, the two parameters determine the switch function of switch output 1:
If SP1 Off < SP1 ON, the output switches on, if the measured value exceeds SP1 ON. It is only switched off again if the measured value SP1 Off is undercut (hysteresis function).

If SP1 On = SP1 Off, the output switches on if the measured value exceeds SP1 On and off if the measured value undercuts SP1 Off.

If SP1 Off > SP1 ON, the output switches on, if SP1 On < Measured value < SP1 Off applies (window function).

Both parameters can be set independently over the entire range.
SP1 Delay allows the reaction of the switch output 1 to be delayed by between 0 and 1800 s . This value applies equally for switching on and off.
SP1 Function changes the function of the switch output. It is possible here to define whether the contact should work as an open contact (NO) or a break contact (NC).

5.3.2 Menu Level Input

Damping
Offset correction
Zero-point window
If there are unsteady pressure readings during operation, you can use the parameters Damping and Zero-point window to stabilise the reading (and the output signal).
The effect of parameter Damping (on the reading, output signal and switching points, if available, but not on the measuring cell!! corresponds to that of a capillary throttle. You can set the response time to pressure jumps in the range 0.0 to 100 s . But with maximum damping, it will take more than 2 minutes for the reading to also reach zero after a pressure jump from nominal pressure (100%) to zero!
In many cases, unsteady readings are not a problem during normal operating mode, but this is not true for the idle state, i.e. if a measured value of zero pressure is expected.
The parameter Zero-point window is designed to solve this. Its value defines a range around zero at which the measured value is set to zero (see fig.).
The display only stops showing zero when the pressure leaves the set window. When twice the window value is reached, the measuring pressure and the display correspond again. This avoids jumps in the display.

It makes sense to set the Offset (zero-point displacement) if, without pressure (remove measuring line), the display shows a value that is not zero. Be-
fore the offset correction, the zero-point window should be set to zero.
Select the Offset correction parameter and correct the reading using the buttons $\mathbf{\Delta}$ and ∇ until zero is shown.
When setting the offset, the current measured value is displayed. The zero-point window is not active during the offset setting.

5.3.3 Menu Level Measuring

Measuring range Start
Measuring range End
Unit
Limits

The transmitter output signal primarily depends on the sensed pressure. However, you have the option of adjusting the output signal to a large extent to suit your requirements.

Note: However the basic measuring range (indicated on the type label) and the type of output signal (voltage / current) are not variable.
The parameters Start of measuring range and End of measuring range initially define the two pressures between which the output signal will change at all. Both values are adjustable across the entire basic measuring range. The set values also refer to the pressure (in the respective unit). However, the signal values (current / voltage) for Start of measuring range and End of measuring range are fixed.
If Start of measuring range is smaller than End of measuring range, this is called an increasing characteristic curve; the output signal increases due to the increasing pressure.
If End of measuring range is smaller than Start of measuring range, this is a decreasing characteristic curve and the output signal decreases due to decreasing pressure.
The difference between the values Start of measuring range and End of measuring range must be at least 25% of the basic measuring range.
You can select a unit other than the unit of the basic measuring range with the parameter Unit. The user should remember however that not every unit is suitable. The conversion is automatic.
The parameter Limit allows the display to be limited to the range between Start of measuring range and End of measuring range.
This makes sense when content is measured to avoid "negative contents". If Limit is set to "no", those measured values that are greater or smaller than the end values are shown.

5.3.4 Menu Level Output

min. output
max. output
error signal
The parameters min. output, max. output and error signal define the limits of the output signal that may not be undercut or exceeded regardless of the pressure. The limit values take priority over the range defined by the Start of measuring range and End of measuring range!
These parameters primarily serve to prevent error messages in downstream systems caused by brief overstepping of measuring ranges.
The parameter Min. output is usually only used for devices with an output signal $4 \ldots 20 \mathrm{~mA}$ because frequently values of below 3.8 mA are evaluated as error signals. The Max. output value can be used for the voltage and current to limit the maximum value.
The value defined via the parameter Error signal is issued if the device detects an internal error and can no longer work correctly. It should be noted here that not all potential errors and faults can be detected by the device itself.

5.3.5 Menu Level Function

Decimal places MB
MB-start
MB-end
Unit MB

Number of pairs

Value pair 1
Value pair 2
Value pair 3

Value pair 30

The reading and the output signal can be modified in the Function menu to meet the special requirements.

There are the following functions:
LINEAR: Linear implementation of the input on the display and the output. The range defined in the menu "Measuring" serves as the measuring range. If the function LINEAR is active, the other menu items are cancelled.
SQUARE ROOTED: Here, the input signal is square rooted before being sent to the display and the output. This is necessary e.g. for flow measurements with differential pressure. A free unit can be defined for the display. To do this, the start and end of the display range and the number of decimal points are defined. It is also possible to define the unit with 4 characters.

TABLE: This function allows the input in the display and output to be freely adjusted via a table which has up to 30 support points. Pairs of values comprising the measured value and display value are issued for the support points.

今
Caution: When switching from TABLE to another function, the table is initialised again and the existing values are lost.
The display range is defined with the parameters Measuring range decimal points, Start of measuring range and End of measuring range. The user can select the configuration freely.
Using the parameter decimal place MB, it is possible to select between a 5 or 6 -digit presentation. The resolution is not increased. Only an extra zero (in the case of 6 digits, two zeros) are added.
This serves the correct display of larger values. The measuring range must be positive for the 6 digit presentation.
The Unit MB gives the user the option of using a completely independent unit. Letters, numbers or special characters can be used. The unit can be max. 4 characters long.
If the function TABLE is selected, then it is also necessary to state the Number of pairs. It is defined here how many pairs of values (support points) are used in the table. At least 3 , maximum 30 support points are allowed.

1
Caution: If the number of value pairs is changed, the table is initialised again and the existing values are deleted.

The individual value pairs can be seen and changed with Value pair 1 to (maximum) Value pair 30.

A value pair comprises a measured value (left side) and a display value (right side). The measured value must lie within the measuring range and the display value must lie within the defined "free unit". The respective limits are shown during input. The table must contain increasing values.

5.3.6 Menu Level Display

Colour
Lighting
Contrast

Bar chart

Menu change for colour = Auto1:

Red-green switcho.

Green-red switcho.
Hysteresis
Delay
Colour
Lighting
Contrast

Bar chart

Menu change for colour = Auto2:
Red-yellow switcho.
Yellow-green
switcho.
Green-yellow
switcho.
Yellow-red switcho.
Hysteresis
Delay
Colour
Lighting
Contrast

Bar chart

The parameters for influencing the display are summarised in this menu.

The most important parameter is Colour. A fixed background colour (red, green, yellow, blue, pink, and turquoise, white) can be selected here. There are also two auto-functions with colour switching available.

Auto1: red-green, Auto2: red-yellow-green.

Alternatively, the background illumination can be permanently deactivated.
In the mode with the automatic colour switchover, it is possible to enter the required switch thresholds "red-yellow switchover", "yellow-green switchover", green-yellow switchover, "yellow-red switchover" or "red-green switchover" and "green-red switchover".

The switching thresholds can be moved within the measuring range. The series of switch points cannot be altered.

Auto-function red-green (Auto1)

Parameter name		Description
A	MB-start	Measuring range start
F1	Red-green switcho.	Colour-change red to green
F2	Green-red switcho.	Colour-change green to red
E	MB-end	Measuring range end

Auto-function red-yellow-green (Auto2)

Parameter name		Description
A	MB-start	Measuring range start
F1	Red-yellow switcho.	Colour-change red to yellow
F2	Yellow-green switcho.	Colour-change yellow to green
F3	Green-yellow switcho.	Colour-change green to yellow
F4	Yellow-red switcho.	Colour-change yellow to red
E	MB-end	Measuring range end

Note: If a range cannot be used, the associated switch thresholds can be set to the same value.

Example:

The parameter Colour is set to Auto2. Only the green, yellow and red ranges are required here. To fade out the lower ranges red and yellow, the switch thresholds "red-yellow switching" and "yellow-green switching" are set to the start of the measuring range.

The parameter Hysteresis can be used to prevent fast and unwanted colour changes. The hysteresis is set in the range $0.1 \ldots 10 \%$.

Note: In the case of large hysteresis values, steps must be taken to ensure that the ranges of the individual colours do not overlap. Otherwise it is possible that the colour change may not function in the desired way.
The parameter Delay offers a further option to prevent unwanted colour changes.

The colour change here can be delayed between $0 . .1800 \mathrm{~s}$.

If permanent lighting is not required, the parameter Lighting can be used to define when the lighting should be switched off after the last time a button is pressed. In addition to permanent lighting, automatic shut-down after $10 \ldots 600 \mathrm{~s}$ is also possible. The set time is only valid if the parameter Background colour is not set to "off".
Amongst other things, the legibility of the display depends on the temperature and the reading angle. To ensure optimised legibility, this can be adjusted using the parameter Contrast. When the contrast is changed, it is possible that the display appears empty or almost completely black. In this case, the contrast must be turned up or down.
The parameter Bar chart is used to switch the display as follows. Either the measured value is displayed with large digits or the display uses small digits and an additional bar chart to show the measured value more quickly.

5.3.7 Menu Level System

Language

Software info

Config info
Statistics
Password
Load config.
Config. Save
The user menu can be switched to German, English, French, Spanish or Italian using the parameter Language.
The menu items Software - Info and Config - Info provide information about the device. This information helps to answer questions about the device quickly.

The device type, controller ID and the firmware version is shown in the software info.

The basic measuring range, the defined output signal and existing contacts are stated in the Config Info.
The Statistics provide information about the operating time and the relay switching cycles from the time of delivery. The operating time is shown in days (d) and hours (h)
In the menu item Password the menu can be protected with a password to prevent unauthorised changes. The password is a figure from 1 to 999. The input 0 means that no password is active.
The password needs to be set if the user presses the button in normal mode to enter the menu. If a wrong password is entered, the system automatically jumps back to normal mode again. If no password is active, the display immediately jumps to the menu.

θ
Caution: The user is not able to delete a forgotten password!

The user can load a saved configuration via the menu item Load config. This means that a functional set of parameters can be loaded after trying out various settings.

Note: If the user has not yet saved a configuration, the default values (status on delivery) are loaded. In this case, any measuring range spreads or switch points are reset and the device needs to be newly configured.

The menu item Save config. serves to save the existing parameters in a protected memory area. This is helpful if the settings of a functional device needs to be optimised. Save config. and Load config. can be used to quickly restore the initial status again.

6 Maintenance

The instrument is maintenance-free.
We recommend the following regular inspection to guarantee reliable operation and a long service life:

- Check the reading.
- Check the function in combination with downstream components.
- Check the leak-tightness of the pressure connection lines.
- Check the electrical connections.

The exact test cycles need to be adapted to the operating and environmental conditions. If various instrument components interact, the operating instructions of all the other instruments also need to be observed.

7 Transportation

The measuring device must be protected against impacts. It may only be transported in packaging specifically intended for transport.

8 Service

All defective or faulty devices should be sent directly to our repair department. Please coordinate all shipments with our sales department.
Process media residues in and on dismantled devices can be a hazard to people, animals and the environment. Take adequate preventive measures. If required, the devices must be cleaned thoroughly.

F'SCHER

9 Accessories

- Set of cables with M12 connectors (please enquire)

10 Waste Disposal

For the sake of the environment

Please help to protect our environment and dispose of or recycle used instruments as stipulated by the applicable regulations.

11 Technical Data

Input signal		0... 20 mA	4... 20 mA	0... 10 V
Max. characteristic curve deviation	\%FS	0.1		
Typ. characteristic curve deviation	\%FS	<0.05		
Tk span max. ${ }^{\circ}$	\%FS/10k	< 0.1		
Tk span typ. ${ }^{\circ}$	\%FS/10K	< 0.025		
Tk zero point max. ${ }^{\circ}$	\%FS/10K	< 0.1		
Tk zero point typ. ${ }^{\circ}$	\%FS/10K	< 0.025		

The stated values refer to the analysis unit and ds not take into account the property of the connecter filling level transmitter!
${ }^{\circ}$: Characteristic curve deviation (non-linearity and hysteresis) at $25^{\circ} \mathrm{C}$, and rated voltage, in reference to basic measuring range (linear characteristic curve, not spread)
${ }^{\circ}$: with reference to the basic measuring range (linear characteristic curve, not spread),

F'SCHER

11.1 Programming

Programmed via the membrane keyboard with menu navigation; locked with a password.

	Settings
Attenuation	$0.0 \ldots 0.0 \ldots 100.0$ s (jump response time $10 / 90 \%$) for signal output; separately also for display
Switch output 1 / 2	Switch-off point, switch-on point, response time ($0 . .100 \mathrm{~s}$); function (NO contact /NC contact)
Measuring range unit	mbar / Pa / "free unit", starting value, end value and decimal point for "free unit"
Zero-point stabilising	$0 \ldots 1 / 3$ of the basic measuring range (1)
Output signal	User-definable within the basic measuring range ${ }^{(2)}$
Zero point correction	$\pm 1 / 3$ of the basic measuring range (3)
Implementation of characteristic curve	linear, square rooted, table with $3 . .30$ support points
Password	$001 \ldots 999$ (000 = no password protection)

Comments:
(1) Measuring values (around zero) were set to zero. (e.g. to suppress seepage).
(2): Maximum effective spread 4:1. Only the output signal is influenced.

This in turn enables a decreasing characteristic curve, if the start of the measuring range > end of the measuring range.
(3): Zero point correction for compensation of various installation positions.

12 Dimensional drawings
(all dimensions in mm unless otherwise specified)

12.1 Assembly of the mounting rails

DIN attachment element for assembly of the mounting rails in compliance with EN 60715

12.2 Installation of front panel

F'SCHER

13 Order Codes

Pressure analysis unit with colour change LCD

14 Manufacturer's Declarations and Certificates

EG-Konformitätserklärung
Für das nachfolgend bezeichnete Erzeugnis

Druckauswerteeinheit mit Farbwechsel LCD

EC Declaration of Conformity
For the product described as follows

Pressure Indicator With Colour Changing LCD

EA14 M \# \# 0 \# \# \# KW \# M \#

gemäß gültigem Datenblatt DB_DE_EA14M_LCD
wird hiermit erklärt, dass es den grundlegenden Anforderungen entspricht, die in den nachfolgend bezeichneten Richtlinien festgelegt sind:

EG Richtlinien		
$2004 / 108 /$ EG	EMV Richtlinie	EMV
$2011 / 65 /$ EU	RoHS Richtlinie	RoHS
Die Produkte wurden entsprechend der folgenden		

EMV		EMC	
DIN EN 61326-1:2013-07	Elektrische Mess-, Steuer-, Regel- und Laborgeräte -EMV-Anforderungen - Teil 1: Allgemeine Anforderungen	EN 61326-1:2013	Electrical equipment for measurement, control and laboratory use - EMC requirements - Part 1: General requirements
DIN EN 61326-2-3:2013-07	Elektrische Mess-, Steuer-, Regel- und Laborgeräte -EMV-Anforderungen - Teil 2-3: Besondere Anforderungen - Prüfanordnung, Betriebsbedingungen und Leistungsmerkmale für Messgrößenumformer mit integrierter oder abgesetzter Signalaufbereitung	EN 61326-2-3:2013	Electrical equipment for measurement, control and laboratory use - EMC requirements - Part 2-3: Particular requirements - Test configuration, operational conditions and performance criteria for transducers with integrated or remote signal conditioning
RoHS		RoHS	
DIN EN 50581:2013-02	Technische Dokumentation zur Beufteilung von Elektro- und Elektronikgeräten hinsichtlich der Beschränkung gefähricher Stoffe	EN 50581:2012	Technical documentation for the assessment of electrical and electronic products with respect to the restriction of hazardous substances
Der oben beschriebene schriften der Richtlinie 201 und des Rates vom 8. Ju bestimmter gefährlicher	genstand der Erklärung erfüllt die Vor1/65/EU des Europäischen Parlaments 2011 zur Beschränkung der Verwendung offe in Elektro- und Elektronikgeräten.	The object of the declaration described above is in conformity with Directive 2011/65/EU of the European Parliament and of the Council of 8 June 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment	
Die Geräte werden geke	zeichnet mit:	The devices bear the following marking:	

in accordance with the valid data sheet DB_EN_EA14M_LCD it is hereby declared that it corresponds with the basic requirements specified in the following designated directives:

EC Directives

$2004 / 108 / E C$	EMC Directive	EMC
$2011 / 65 / E C$	RoHS Directive	RoHS

The products were tested in compliance with the following standards:

The object of the declaration described above is in conformity with Directive 2011/65/EU of the European Parliament and of the Council of 8 June 2011 on the restriction of the use of certain The devices bear the following marking

Die alleinige Verantwortung für die Ausstellung dieser Konformitätserklärung in Bezug auf die Erfüllung der grundlegenden Anforderungen und die Anfertigung der technischen Unterlagen trägt der Hersteller:

Sole responsibility for the issue of this declaration of conformity in relation to fulfilment of the fundamental requirements and the production of the technical documents is with the manufacturer:

Fischer Mess- und Regeltechnik GmbH
Bielefelderstr. 37a
32107 Bad Salzuflen, Germany
Tel. +4952229740

Bad Salzuflen, 02.02.15
(Ort, Datum / Place, date)

Diese Erklärung bescheinigt die Übereinstimmung mit den genannten Harmonisierungsrechtsvorschriften, beinhaltet jedoch keine Zusicherung von Eigenschaften.

This declaration certifies compliance with the specified harmonisation law regulations, but does not include assurance of specific properties.

[^0]: ${ }^{1}$ with regard to the transmitter signal, voltage output, current output, etc.

