Data sheet

KE \#\#

Additional electrical attachments for installation in Fischer analogue measurement devices

Limit switch

Application

Limit switches make or break circuits depending on the pointer setting of mechanical display measuring devices, such as pressure or differential pressure manometers or thermometers.

Switch amplifiers are required to adapt the limit switches to the various tasks.

Design and mode of operation

The limit switch is installed below the dial (see fig.). It is designed so that the actual value display can move freely across the entire scale.

There is an adjustment lock attached to the front pane. Using a detachable adjustment key, the contacts mounted to the target value displays can be set to every point of the scale range.

If the contact arm that is connected to the actual value display reaches the contact pin on the target display, the power circuit is closed.

An elastic connection between the contact arm and the actual value display keeps the contact closed until the actual value deviates from the set target value.

The actual value display can continue to move under a slight load exerted by the spring coupling.

The installation space required to install the limit switches is formed by a high bayonet ring that forms a liquid-tight unit together with the basic casing (protection class IP65).
The electrical connection is usually realised with a cable connection socket mounted to the side.

Limit measuring ranges for installing additional attachments

Fischer Series	Creep and magnetic spring contacts double		Single date	Inductive contacts	
		$\geq 1.6 \mathrm{bar}$	$\geq 1.6 \mathrm{bar}$	$\geq 1 \mathrm{bar}$	double

Creep contact

1 Ruby bearing jewels
2 Spiral springs
3 Protective earth connection
4 Contact foot
5 Electrical connection
6 Front plate
7 Type plate
8 Type plate screws
9 Adjustment pin
10 Red target value display
11 Contact pins
12 Carrier arm
13 Contact arm with leaf spring
14 Drive pin of the actual value display
In the case of creep contacts, the speed with which the contacts meet is only determined by the time change of the actual value display. Switching is realised when the target and actual value displays match. Creep contacts must be used if precise switching is required for small switching hystereses. A precondition for their use is vibration-free attachment of the measuring device (contact bounce).
The switching capacity is less than that of magnetic spring contacts. Creep contacts cannot be installed in devices with damping liquid.

Magnetic spring contact

Magnetic spring contacts can be used in almost all operating conditions.

There is a permanent magnet mounted to the target value display. To close the power circuit, the contact pin of the moving contact arm is jerked up through the magnet.

When opening the power circuit, the magnet holds the contact arm up until the reset force of the measuring element exceeds the effective magnetic force. The contact jerks open.

The jerky switching processes reduces the formation of light arcs, increases the contact pressure and suppresses contact bouncing.

Contact function

(1) Make contact Contact closes for increasing display in clockwise direction.
(2) Break contact

Contact opens for increasing display in clockwise direction.
(3) Change-over contact

Contact changes for increasing display in clockwise direction.

Contact material

Silver-nickel (AgNi 80/20) is used as a standard material due to its balanced properties. This material stands out by virtue of its resistance to oxidising media or media containing sulfur, its low loss of contact material and low contact resistance.
A $10 \mu \mathrm{~m}$ thick layer of gold is applied to the basic silver-nickel material. The external corrosionresistant gold layer allows high contact security, and even and low contact resistance. If used, steps must be taken to ensure that the switch voltage of 12 V is not exceeded and the switching current is < 10 mA , as otherwise the gold layer will be damaged.

Technical data

	Creep contacts
Max. switching voltage	250 V AC/DC
Max. switching current	0.5A (resistive load)
Max. switching output	$18 \mathrm{~W} / 30 \mathrm{VA}$
Max. no. of contacts	3
Switching function	Make contact / break contact
Permissible ambient temperature	$-20 \ldots+70^{\circ} \mathrm{C}$
Switch hysteresis ${ }^{1}$	approx.. 0.5% FS
Contact material	AgNi 80/20 10 μ hard gold plated
	Magnetic spring contact
Max. switching voltage	$250 \mathrm{~V} \mathrm{AC/DC}$
Max. switching current	1 A (resistive load)
Max. switching output	$30 \mathrm{~W} / 50 \mathrm{VA}$
Max. no. of contacts	3
Switching function	Make contact / break contact
Permissible ambient temperature	$-20 \ldots+70^{\circ} \mathrm{C}$
Switch hysteresis ${ }^{1}$	approx. $2 . . .4$ \%FS
Contact material	AgNi 80/20 10 μ hard gold plate

[^0]
Inductive contact

When the target value is exceeded, the metal flag moves in. The initiator is damped. The signal current drops to $\leq 1 \mathrm{~mA}$ and is therefore quasi interrupted.

When the target value is exceeded, the metal flag moves out. The initiator is undamped. A signal current of \geq 3 mA flows.

Technical data

	Inductive contact
Design	NAMUR (DIN EN 60947-5-2)
Ex identification	II 1 G Ex ia IIC T6
	II 2 G Ex ia IIC T6
EC type testing	PTB 99 ATEX 2219 X
Rated Voltage	8 V DC
Operating voltage U_{B}	$5 \ldots 25 \mathrm{~V}$
Insulation voltage	500 V
Admissible ambient temperature	$-20 \ldots+70^{\circ} \mathrm{C}$
Switching function	Make contact (DC pnp)
Initiator undamped	$\geq 3 \mathrm{~mA}$
Initiator damped	$\leq 1 \mathrm{~mA}$
Switching precision	approx.. 0.5 \%FS
Self-inductance	$29 \mu \mathrm{H}$
Self-capacitance	20 nF

Class precision

As the mobile parts of the limit switch need to be moved by the measuring system, this has a slight influence on the measuring accuracy despite careful selection of materials and correct storage.
In compliance with DIN 16085, this additional deviation of 50% caused by the limit switch may not exceed the defined class precision.

Use of contacts in devices filled with liquid

Creep contacts cannot be installed in devices with damping liquid.
It is technically possible to use magnetic spring contacts in devices filled with liquid; however, the light arc that is unavoidably created during switching burns some of the liquid every time a switch process is carried out, which in turn causes discoloration. Also, the liquid fosters contact burning and therefore impacts on the life span of the limit switch.
It is therefore advisable to only install inductive limit switches in measuring devices filled with liquid.

Electrical connection

All measuring devices with installed limit switches are wired in a cable socket attached to the side of the casing of the measuring device.

Number of terminals	$6+$ PE
Max. cable cross-section	$2.5 \mathrm{~mm}^{2}$
Protection class as per IEC 529	IP 65
Cable screw connection	M20 x1.5
Casing material	Polyamide 6
Number of terminals	$6+\mathrm{PE}$
Max. cable cross-section	$2.5 \mathrm{~mm}^{2}$
Protection class as per	IP 65
IEC 529	

Creep and magnetic spring contacts

KE \#\#						$\#$	\mathbf{H}	2

S Creep contacts
C Magnetic spring contact

Contact assignment

The contacts are assigned to the target value displays from left to right.
For 2 contacts:
Contact 1 left target value display
Contact 2 right target value display
For 3 contacts:
Contact 1 left target value display
Contact 2 middle target value display
Contact 3 right target value display
All information for increasing display in clockwise direction.

Type	Contact			Connections	
		No.	Function		
$\begin{aligned} & \text { S300A } \\ & \text { M300A } \end{aligned}$	1	1	Change-over contact		
$\begin{aligned} & \text { S110A } \\ & \text { M110A } \end{aligned}$	2	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	Make contact Make contact		

Type	Cont Qty	No.	Function	Connections Limit switch	Cable socket
$\begin{aligned} & \text { S122A } \\ & \text { M122A } \end{aligned}$	3	$\begin{aligned} & 2 \\ & 3 \end{aligned}$	Make contact Break contact Break contact		
$\begin{aligned} & \text { S211A } \\ & \text { M211A } \end{aligned}$	3	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	Break contact Make contact Make contact		

Type	Cont Qty	No.	Function	Connections Limit switch	Cable socket
$\begin{aligned} & \text { S120B } \\ & \text { M120B } \end{aligned}$	2	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	Break contact Break contact		
$\begin{aligned} & \text { S210B } \\ & \text { M210B } \end{aligned}$	2	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	Break contact Break contact		
$\begin{aligned} & \text { S220B } \\ & \text { M220B } \end{aligned}$	2	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	Break contact Break contact		

FISCHER
 MESS-UND REGELTECHNIK

Inductive contacts

Contact assignment

Contact 1 left target value display
Contact 2 right target value display
All information when target value is exceeded and increasing display in clockwise direction.

Type	Contact			Connections	Relay of the isolating unit			
	Qty	No.	Control rent	cur-	Metal flag	Cable socket		No. Switch behaviour (working current principle)
:---								

Connection of isolating unit amplifier TS500Ex

Accessories

Item no.
05003065 05003066

Designation
Isolating unit amplifier TS500Ex-ia-1R-5 Isolating unit amplifier TS500Ex-ia-2R-5

Delivery

1 Channel with relay output
2 Channel with relay output

Order Codes

Electrical auxiliary devices

[^0]: ${ }^{1}$ Depending on the stability of the measuring system

