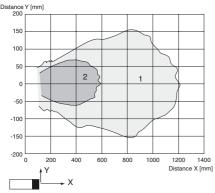


Model Number

UB800-18GM40-U-V1


Single head system

Features

- Short design, 40 mm
- Function indicators visible from all directions
- Analog output 0 ... 10 V
- · Measuring window adjustable
- · Program input
- · Temperature compensation

Diagrams

Characteristic response curve

Curve 1: flat surface 100 mm x 100 mm Curve 2: round bar, Ø 25 mm

Technical data

activitat opcomoduono	
Sensing range	50 800 mm
Adjustment range	70 800 mm
Dead band	0 50 mm
Standard target plate	100 mm x 100 mm
Transducer frequency	approx. 255 kHz
Response delay	approx. 100 ms

Indicators/operating means

LED green Power on
LED yellow solid yellow: object in the evaluation range yellow, flashing: program function, object detected

LED red solid red: Error red, flashing: program function, object not detected

Electrical specifications

Operating voltage U_B 15 ... 30 V DC , ripple 10 $\%_{SS}$

No-load supply current $I_0 \le 20 \text{ mA}$

Input

Input type 1 program input lower evaluation limit A1: -U_B ... +1 V, upper evaluation limit

A2: +4 V ... +U_B input impedance: > 4.7 kΩ, pulse duration: \geq 1 s

Output

Output type 1 analog output 0 ... 10 V
Default setting evaluation limit A1: 70 mm evaluation limit A2: 800 mm

Resolution 0.4 mm at max. sensing range
Deviation of the characteristic curve ± 1 % of full-scale value
Repeat accuracy ± 0.5 % of full-scale value

Load impedance > 1 kOhm

Temperature influence \pm 1.5 % of full-scale value

 Ambient conditions

 Ambient temperature
 -25 ... 70 °C (-13 ... 158 °F)

 Storage temperature
 -40 ... 85 °C (-40 ... 185 °F)

Storage temperature $-40 \dots 85 \, ^{\circ}\text{C} \, (-40 \dots 185 \, ^{\circ}\text{F})$ **Mechanical specifications**

Connection type Connector M12 x 1 , 4-pin

Degree of protection IP6

Material
Housing brass, nickel-plated

Transducer epoxy resin/hollow glass sphere mixture; foam polyurethane,

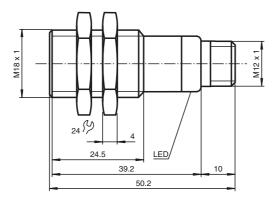
cover PBT

Mass
Compliance with standards and

directives

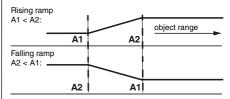
Standard conformity

Standards EN 60947-5-2:2007 + A1:2012 IEC 60947-5-2:2007 + A1:2012


EN 60947-5-7:2003 IEC 60947-5-7:2003

Approvals and certificates

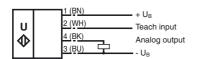
UL approval cULus Listed, General Purpose
CSA approval cCSAus Listed, General Purpose


CCS approval CCS approval CCC approval CCC approval CCC approval CCC approval / marking not required for products rated ≤36 V

Dimensions

Additional Information

Programming the analog output mode



A1 -> ∞ , A2 -> ∞ : Detection of object presence

Object detected: 10 V No object detected: 0 V

Electrical Connection

Standard symbol/Connections: (version U)

Core colors in accordance with EN 60947-5-2.

Pinout

Wire colors in accordance with EN 60947-5-2

1	BN	(brown
2	WH	(white)
3	BU	(blue)
4	RK	(black)

FPEPPERL+FUCHS

Accessories

UB-PROG2

Programming unit

OMH-04

Mounting aid for round steel ø 12 mm or sheet 1.5 mm ... 3 mm

BF 18

Mounting flange, 18 mm

RF 18-F

Mounting flange with dead stop, 18 mm

BF 5-30

Universal mounting bracket for cylindrical sensors with a diameter of 5 ... 30 mm

V1-G-2M-PVC

Female cordset, M12, 4-pin, PVC cable

V1-W-2M-PUR

Female cordset, M12, 4-pin, PUR cable

Adjusting the evaluation limits

The ultrasonic sensor features an analogue output with two teachable evaluation limits. These are set by applying the supply voltage $-U_B$ or $+U_B$ to the TEACH-IN input. The supply voltage must be applied to the TEACH-IN input for at least 1 s. LEDs indicate whether the sensor has recognised the target during the TEACH-IN procedure. The lower evaluation limit A1 is taught with $-U_B$, A2 with $+U_B$.

Two different output functions can be set:

- 1. Analogue value increases with rising distance to object (rising ramp)
- 2. Analogue value falls with rising distance to object (falling ramp)

TEACH-IN rising ramp (A2 > A1)

- Position object at lower evaluation limit
- TEACH-IN lower limit A1 with U_B
- Position object at upper evaluation limit
- TEACH-IN upper limit A2 with + UB

TEACH-IN falling ramp (A1 > A2):

- Position object at lower evaluation limit
- TEACH-IN lower limit A2 with + U_B
- Position object at upper evaluation limit
- TEACH-IN upper limit A1 with UR

Default setting

A1: unusable area

A2: nominal sensing range

Mode of operation: rising ramp

LED Displays

Displays in dependence on operating mode	Red LED	Yellow LED
TEACH-IN evaluation limit		
Object detected	off	flashes
No object detected	flashes	off
Object uncertain (TEACH-IN invalid)	on	off
Normal mode (evaluation range)	off	on
Fault	on	previous state

Installation conditions

If the sensor is installed at places, where the environment temperature can fall below 0 °C, for the sensors fixation, one of the mounting flanges BF18, BF18-F or BF 5-30 must be used.

In case of direct mounting of the sensor in a through hole using the steel nuts, it has to be fixed at the middle of the housing thread. If a fixation at the front end of the threaded housing is required, plastic nuts with centering ring (accessories) must be used.