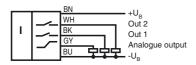


Model number


INX360D-F99-I2E2-8.5M

Features

- E1-Type approval
- Measuring range 0 ... 360°
- Analog output 4 mA ... 20 mA
- Evaluation limits can be taught-in
- 2 programmable switch outputs
- High shock resistance
- Increased noise immunity 100 V/m

Electrical connection

Standard symbol/Connection:

Technical Data

Conoral	specifications
General	Specifications

Туре	Inclination sensor, 1-axis
Measurement range	0 360 °
Absolute accuracy	≤ ± 0.5 °
Response delay	≤ 20 ms
Resolution	≤ 0.1 °
Repeat accuracy	≤ ± 0.1 °
Temperature influence	≤ 0.027 °/K
Functional safety related narameters	

 MTTF_d 300 a Mission Time (T_M) 20 a Diagnostic Coverage (DC) 0 %

Indicators/operating means

Operation indicator Teach-In indicator 2 LEDs yellow (switching status), flashing

Button 2 push-buttons (Switch points programming , Evaluation

range programming) Switching state 2 yellow LEDs: Switching status (each output)

Electrical specifications

Operating voltage U_B 10 ... 30 V DC No-load supply current In \leq 25 mA Time delay before availability t, ≤ 200 ms

Switching output

Output type 2 switch outputs PNP, NO , reverse polarity protected ,

short-circuit protected Operating current IL

Voltage drop < 3 V

Analog output

Output type 1 current output 4 ... 20 mA 0 ... 200 Ω at U_B = 10 ... 18 VLoad resistor 0 ... 500 Ω at U_B = 18 ... 30 V

Ambient conditions

Ambient temperature -40 ... 85 °C (-40 ... 185 °F) -40 ... 85 °C (-40 ... 185 °F) Storage temperature

Mechanical specifications

Connection type $8.5 \, \text{m}$, PUR cable , $5 \, \text{x} \, 0.5 \, \text{mm}^2$

Housing material PA IP68 / IP69K Degree of protection

Mass 240 g

Factory settings -30 ° ... 30 ° Switching output 1

-30 ° ... 30 ° Switching output 2 -45 ° ... 45 ° Analog output

Compliance with standards and

directives

Standard conformity

Shock and impact resistance 100 g according to DIN EN 60068-2-27

EN 60947-5-2:2007 Standards IEC 60947-5-2:2007

Approvals and certificates

UL approval cULus Listed, Class 2 Power Source CSA approval cCSAus Listed, General Purpose, Class 2 Power Source CCC approval CCC approval / marking not required for products rated ≤36 V

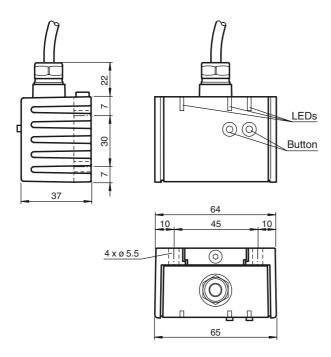
10R-04 E1 Type approval

EMC Properties

Interference immunity in accordance with DIN ISO 11452-2: 100 V/m

Frequency band 20 MHz up to 2 GHz Mains-borne interference in accordance with ISO 7637-2:

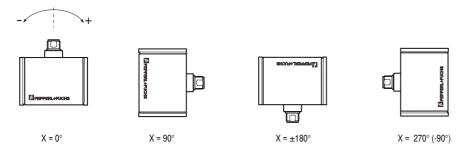
2a 2b 3a 3b Ш Ш Ш Severity level Ш Ш Ш Failure criterion C С Α Α C


EN 61000-4-2: CD: 8 kV / AD: 15 kV Severity level IV EN 61000-4-3: 30 V/m (80...2500 MHz)

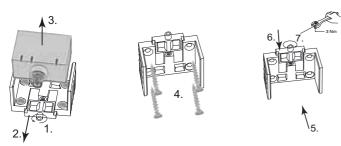
Severity level IV EN 61000-4-4: 2 kV Severity level

10 V (0.01...80 MHz) EN 61000-4-6:

Severity level EN 55011: Klasse A


Dimensions

Sensor Orientation


In the default setting the zero position of the sensor is reached, when the electrical connection faces straight upwards.

X Orientation

Mounting of the sensor

Sensors from the -F99 series consist of a sensor module and accompanying cast aluminum housing. Select a vertical surface with minimum dimensions of 70 mm x 50 mm to mount the sensor. Mount the sensor as follows:

- Loosen the central screw under the sensor connection.
- Slide back the clamping element until you are able to remove the sensor module from the housing. Remove the sensor module from the housing
- Position the housing at the required mounting location and secure using four countersunk screws. Make sure that the heads of the screws do not protrude.
- Place the sensor module in the housing.
 Slide the clamping element flush into the housing. Check that the sensor element is seated correctly.
 Finally tighten the central screw.
 The sensor is now mounted correctly.

LED display

Displays dependent on the operating state	LED green: Power	LED yellow out 1	LED yellow out 2
Teach-in of switching points (output S1):	off	flashes	off
Teach-in of switching points (output S2):	off	off	flashes
Activate teach-in mode for analog limits:	off	flashes	flashes
Teach-in of analog limits	off	flashes	off
Normal operation	on	switching- state	switching- state
Reset to factory settings:			
2 s 10 s	off	flashes	flashes
> 10 s end of reset process	flashes	off	off
Followed by normal operation			
Undervoltage	flashes	off	off

Axis definition

The definition of the X-axis is shown on the sensor housing by means of an imprinted and labeled double arrow. The figure shows the clockwise direction of rotation

Teach-in of switching points (output S1)

- Press key T1 > 2 s (see LED display)
- Move sensor to switching position 1
 Press key T1 briefly. LED "out 1" lights for 1.5 s as confirmation. Switching point 1 has been taught
 Move sensor to switching position 2
 Press key T1 briefly. LED "out 1" lights for 1.5 s as confirmation. Switching point 2 has been taught

- 6. Sensor returns to normal operation (see LED display)

The NC (active output state) is always defined in the range from the 1st configured position to 2nd configured position.

As an example :

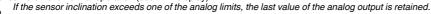
Case #1: configure position #1 at +45degree, configure position #2 at +90 degree; NC is from +45 ' +90 in the CW direction

Case #2: configure position #1 at +90degree; configure position #2 at +45 degree; NC is

from +90 ' +45 in the CW direction

Teach-in of switching points (output S2)

Similar to the process for "Teach-in of switching points (output S1)", but with key T2 instead of key T1.

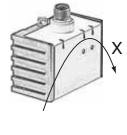

Teach-in of analog limits

- Activate the teach-in mode for the analog limits by simultaneously pressing keys T1 and T2 until the green LED is extinguished and the two yellow LEDs flash. Then release the keys

- Press key T1 > for 2 s (see LED display)

 Move the sensor into the position of minimum evaluation limit

 Press key T1 briefly. LED "out 1" lights for 1.5 s as confirmation. The minimum evaluation limit has been taught. In this position the analog output will provide its minimum output value.
- Move the sensor into the position of maximum evaluation limit
- Press key T1 briefly. LED "out 1" lights for 1.5 s as confirmation. The maximum evaluation limit has been taught. In this position the analog output will provide its maximum output value
- 7. Sensor returns to normal operation (see LED display)



Resetting the sensor to factory settings

- 1. Press keys T1 and T2 > 10 s (see LED display)
- 2. The sensor has been reset when the green LED "Power" lights again after approx. 10 s.

Undervoltage detection

If the supply voltage falls below a value of approx. 7 V, all outputs and yellow LEDs are deactivated. The green "power" LED flashes rapidly. If the supply voltage falls below a value of approx. 8 V, the sensor continues with normal operation.

