

CE

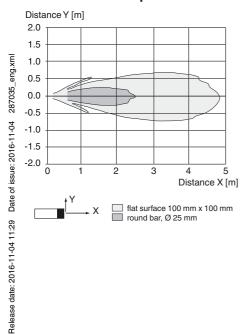
Model Number

UMC3000-30H-E5-5M-3G-3D

Single head system

Features

- ATEX-approval for zone 2 and zone 22
- Front of transducer and housing manufactured entirely from stainless steel
- Degree of protection IP68 / IP69K
- Programmable via DTM with
 PACTWARE


Description

Functional description

The enclosure and transducer of this ultrasonic sensor form a hermetically sealed unit. For reliable operation, due to the special design of this sensor, solely the enclosed mounting accessories must be used. If the sensor is used in a hazardous (classified) location, pay special attention to the notes of the instruction manual.

Diagrams

Characteristic response curve

Technical data
General specifications
Sensing range
Adjustment range
Dead band
Standard target plate
Transducer frequency
Response delay
Indicators/operating means
LED green
LED yellow
LED red
Electrical specifications
Operating voltage U _B
No-load supply current I0
Input/Output
Input/output type
0 Level
1 Level
Input impedance
Output rated operating curren
Pulse length
Pulse interval
Synchronization frequency
Common mode operation
Multiplex operation
Input
Input type
Level (switch point 1)
Level (switch point 2)
Input impedance
Pulse length
Output
Output type
Rated operating current le
Voltage drop U _d
Repeat accuracy
Switching frequency f
Range hysteresis H
Temperature influence
Ambient conditions
Ambient temperature
Storage temperature
Mechanical specifications
Connection type
Core cross-section
Degree of protection
Material
Housing
Transducer
Mass
Factory settings
Output
General information

General information Supplementary information

Compliance with standards and directives
Standard conformity

Standards

- Approvals and certificates CCC approval Equipment protection level Gc (nC)
- Certificate of Compliance CE marking

ATEX marking Directive conformity Standards Equipment protection level Dc (tc) Certificate of Compliance CE marking

ATEX marking Directive conformity Standards 10 ... 30 V DC \leq 50 mA 1 synchronization connection, bidirectional 0 ... 1 V 4 V ... U_B $> 12 \text{ k}\Omega$ < 12 mA ≥ 200 µs $\geq 2 \text{ ms}$ \leq 20 Hz \leq 20/n Hz, n = number of sensors n \leq 10 (factory setting: 5) 1 program input 0 ... 1 V 4 V ... U_B $> 10 \text{ k}\Omega$ 2...5s 1 switching output E5, PNP NO/NC, programmable 200 mA , short-circuit/overload protected \leq 2 V \leq 0.1 % of full-scale value ≤ 2.8 Hz programmable , preset to 1 mm < 1.5 % of full-scale value -25 ... 60 °C (-13 ... 140 °F) -40 ... 85 °C (-40 ... 185 °F) cable PUR , 5 m 5 x 0.5 mm²

200 ... 3000 mm 240 ... 3000 mm 0 ... 200 mm 100 mm x 100 mm approx. 100 kHz ≤ 200 ms

Operating display switching state error

IP68 / IP69K stainless steel 1.4404 / AISI 316L LED window: VMQ Elastosil LR 3003/Shore 50 A Stainless steel 1.4435 / AISI 316L

near switch point: 240 mm far switch point: 3000 mm output function: Window mode output behavior: NO contact

425 a

Switch settings of the external programming adapter: "output load": pull-down "output logic": inv

EN 60947-5-2:2007+A1:2012 IEC 60947-5-2:2007 + A1:2012

CCC approval / marking not required for products rated \leq 36 V

PF 17 CERT 3944 X C E

(☑) II 3G Ex nC IIC T6 Gc X
 2014/34/EU
 EN 60079-0:2012+A11:2013, EN 60079-15:2010

PF 17 CERT 3944 X

II 3D Ex tc IIIC T80°C Dc X
 2014/34/EU
 EN 60079-0:2012+A11:2013 , EN 60079-31:2014

Refer to "General Notes Relating to Pepperl+Fuchs Product Information"
Pepperl+Fuchs Group
USA: +1 330 486 0001
C

www.pepperl-fuchs.com

USA: +1 330 486 0001 fa-info@us.pepperl-fuchs.com Germany: +49 621 776 4411 fa-info@de.pepperl-fuchs.com Singapore: +65 6779 9091 fa-info@sg.pepperl-fuchs.com

1

UMC3000-30H-E5-5M-3G-3D

object distance

A1

Additional Information

Programmable output modes 1. Window mode, normally open mode

A 2. Window mode, normally closed mode

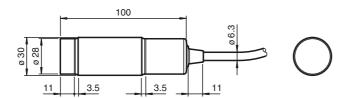
A2

3. One switch point, normally open mode

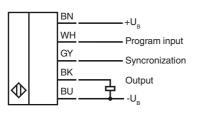
A2 4. One switch point, normally closed mode

A1

5. A1 -> ∞ , A2 -> ∞ : Object presence detection mode Object detected: Switch output closed No object detected: Switch output open


A1 < A2:

A2 < A1:


A1 -> ∞:

A2 -> ∞:

Dimensions

Electrical Connection

Accessories

UC-PROG1-USB Programming adapter

V15S-G-0.3M-PUR-WAGO

Male cordset, M12, 5-pin, PUR cable with WAGO terminals

Mounting

Comply with the minimum permissible bending radius of 70 mm, if you install the connecting cable!

For reliable operation, you must use the included sensor mounting aid.

Programming

The sensor can be adapted to the specific requirements of the application by means of programming. There are two methods of programming.

- Basic functions can be set using the teach-in process. These are the position of the switch points and the output function. 1. The teach-in process is connected either with $+U_B$ (1 level) or $-U_B$ (0 level).
- With a programming adapter (see Accessories) and the DTM module for PACTware, a comprehensive range of parameter-2. isable functions is available. A male cordset with WAGO terminals is needed for the connection to the programming adapter (see Accessories).

Note:

- The programming options are available in the first 5 minutes after switching on and are extended during programming. After 5 minutes without any programming activity, the sensor is locked to prevent programming.
- It is possible to exit programming without changing the sensor settings at any time. Simply stop any programming activity. After 10 seconds, the sensor exits programming mode and switches to normal operating mode with the last valid settings.

Programming the switch points

Note

2

A flashing red LED during the programming process indicates unreliable object detection. In this case, adjust the alignment of the object until the yellow LED flashes. Only then are the settings stored in the memory of the sensor.

Teach-in of A1 switch point

- Position the target object at the desired switch point A1
- 2
- 3.
- 4
- Connect the teach-in process. The yellow LED begins to flash after 2 secs and the sensor is ready for teach-in^{*}). Connect the teach-in process within 8 secs for > 2 sec with -UB. Disconnect the teach-in process within 8 secs. The green LED flashes three times briefly for confirmation. The switch point 5 A1 has now been taught in

Teach-in of switch point A2

- Position the target object at the desired switch point A2
- 2

www.pepperl-fuchs.com

- Connect the teach-in for > 2 sec with $+U_B$ or $-U_B$ Disconnect the teach-in process. The yellow LED begins to flash after 2 secs and the sensor is ready for teach-in^{*}). 3.
- 4. Connect the teach-in process within 8 secs for > 2 sec with +UB.
- 5 Disconnect the teach-in process within 8 secs. The green LED flashes three times briefly for confirmation. The switch point

fa-info@us.pepperl-fuchs.com

Germany: +49 621 776 4411 fa-info@de.pepperl-fuchs.com

Singapore: +65 6779 9091 fa-info@sg.pepperl-fuchs.com

A2 has now been taught in.

^{*)} If there are no objects within the sensor detection range while the sensor is ready for teach-in, this is indicated by fast flashing of the yellow LED. Teach-in is possible, however. In programming switch point A1, this is set to the end of the blind zone. In programming switch point A2, this is set to the detection range upper limit.

Programming the output function

You can choose between NC and NO function for the output function of the sensor. The position of the programmed switch points is critical here. If switch point A1 is closer to the sensor than A2, the switching output operates as NO."

If switch point A2 is closer to the sensor than A1, the switching output operates as NC.

LED indicators

The sensor has 3 display LEDs to indicate various operating modes

Operating state	Green LED	Yellow LED	Red LED
Normal operation	lights up	Object in evaluation range	Unreliable object
Programming the trip points Object reliably detected Unreliable object Confirmation for successful programming	Off Off Flashes 3x	Flashes Off Off	Off Flashes Off

Synchronisation

The sensor has a synchronisation input for suppressing mutual interefence by third-party ultrasonic signals. If this input is not connected, the sensor works with internally generated clock pulses. It can be synchronised by connecting external rectangular pulses and through corresponding parameterisation via the DTM module for PACTwareTM. Each falling pulse edge triggers the sending of an individual ultrasonic pulse. If the signal at the synchronisation input carries \geq 1 s low level, the sensor returns to normal, unsynchronised operating mode. This is also the case when the synchronisation input is disconnected from external signals (see note below).

If there is a high level > 1 s at the synchronisation input, the sensor enters standby mode. This is indicated by the flashing green LED. In this operating mode, the most recent output statuses are retained. For external synchronisation, please observe the software description.

Note:

- If the synchronisation option is not being used, the synchronisation input must be earthed (0 V).
- The synchronisation option is not available during programming, which means that the sensor cannot be programmed during synchronisation.

The following synchronisation methods are possible:

- 1. Multiple sensors (for max. number see Technical data) can be synchronised by simply connecting their synchronisation inputs. In this case, the sensors operate in a self-synchronised sequence in multiplex mode. Only one sensor transmits at any given time (see note below).
- Multiple sensors (for max. number see Technical data) can be synchronised by simply connecting their synchronisation inputs. As a result of parameterisation via the DTM module for PACTwareTM, one of the sensors operates as a master and the others as slaves (see Interface description). In this case, the sensors operate synchronously, i.e. simultaneously in master/slave mode, whereby the master sensor performs the role of an intelligent external clock pulse generator.
- Multiple sensors can be triggered jointly by an external signal. In this case, the sensors are triggered in parallel and operate synchronously, i.e. simultaneously. All sensors
 must be parameterised for external control by means of parameterisation via the DTM module for PACTwareTM (see Software description).
- 4. Multiple sensors are triggered with a delay by an external signal. In this case, only one sensor operates with external synchronisation at any given time (see note below). All sensors must be parameterised for external control by means of parameterisation via the DTM module for PACTwareTM (see Software description).
- 5. A high level (+U_B) or a low level (-U_B) at the synchronisation input puts the sensor in standby mode in the case of external parameterisation.

Note:

The response time of the sensors increases proportionally to the number of sensors in the synchronisation chain. Multiplexing means that the measurement cycles of the individual sensors run one after the other.

Note:

The synchronisation connection of the sensors delivers an output current at low level and an input impedance at high level. Please note that the synchronising device must have the following drive capability:

Drive current with $+U_B \ge n^*$ high level/input impedance (n = number of sensors to be synchronised) Drive current with 0 V: $\ge n^*$ output current (n = number of sensors to be synchronised)

Singapore: +65 6779 9091 fa-info@sg.pepperl-fuchs.com

