MAGNOSENS
MPL 12475 DE
Magnetostrictive Displacement Transducers
Model series MPL: Analogue output or start/stop

- Measuring strokes from 50 to 2500 mm (analog.) respectively 3000 mm (start/stop)
- Contactless, robust system
- Infinite resolution
- Unique reproducibility
- Measurement signals $4 \ldots 20 \mathrm{~mA}, 0 \ldots 10 \mathrm{~V}$ or start/stop signal
- Protection type IP 67
- Operating temperature range $-40^{\circ} \mathrm{C} \ldots+75^{\circ} \mathrm{C}$

Structure and operation

The displacement transducers operate according to the principle of run time measurement between two points of a magnetostrictive waveguide. One point is determined by a moveable position magnet, whose distance from the null point corresponds to the section to be measured. The run time of an emitted impulse is directly proportionate to this section. Conversion to an analogue measuring signal takes place in the downstream electronics.

Standard measuring strokes:

(Other measuring strokes on request)
ㅁ $\leq 500 \mathrm{~mm}$ in 50 mm steps
ㅁ > 500- $\leq 2500 \mathrm{~mm}$ in 50 mm steps
ㅁ $>2500 \mathrm{~mm}$ in 50 mm steps
(only for output start/stop)

Standard designs

Output signal	Mean at
$4-20 \mathrm{~mA} / 20-4 \mathrm{~mA}$	12 mA
$0-10 \mathrm{~V} / 10-0 \mathrm{~V}$	5 V
Start / stop	

The direction of the measurement signal must be specified on ordering. Subsequent changes to the direction of the measurement signal and setting the starting and end points are not possible.

Technical data

- Operating voltage range V_{s} : $24 \mathrm{VDC}(+20 \% /-15 \%)$ (protection against reverse polarity)
- Operating current I_{s} :
- Linearity:

50-140 mA (depending on length and output)
<0.02\% (minimum $60 \mu \mathrm{~m}$)

- Repeatability:

The waveguide is housed in an extruded aluminium profile. The electronics is housed in a die-cast aluminium sensor head. Electrical connection is implemented via a circular connector.

The position magnet is located either in a slider, which is linked to the moving part of the machine via a ball joint, or it moves as a liftable position magnet, without wear, over the profile.

- Hysteresis:
- Measuring frequency:
- Temperature drift:
- Op. temperature range:
- Shock test:
- Vibration test:
- Protection type:
- Current output:
- Output signal:
$<4 \mu \mathrm{~m}$
- Apparent ohmic resistance:
- Voltage output:
- Output signal:
- Permissible load:
- Start/stop output:
- Mating connector:
- Housing:
- Contacts:
- Cable diameter:
- Wire connection:
- Cable cross-section:

Analogue: < 3 kHz , digital:
depending on evaluation electronics
$<40 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
$-40^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
100 g to IEC Standard 68-2-27
$15 \mathrm{~g} / 10$ to 2000 Hz to
IEC Standard 68-2-6
IP 67 (with proper installed connector)
4... $20 \mathrm{~mA} / 20 . . .4 \mathrm{~mA}$

0-500 Ω
0... 10 VDC / 10... 0 VDC
$\geq 5 \mathrm{~K} \Omega$
RS422 differential signal

Metal (straight or angled 90°)
Socket, gold plated
6 -8 mm
Screws
max. $0.75 \mathrm{~mm}^{2}$

Purchase order codes

- Displacement transducer

MPL 1 / 1000 S B M 01

Electrical and mechanical variants (assigned by TWK)
$01=$ standard
Connection M = connector M12
Output signals:
$B=4-20 \mathrm{~mA}$
$C=0-10 \mathrm{VDC}$ *
D = start/stop
Signal curve: *
S = Positively ascending on movement from the flange towards rod end
$\mathrm{N}=$ Descending on movement from the flange towards rod end
Measuring stroke in mm
Position sender:
1 = Position slider, central ball joint
2 = Position slider, lateral ball joint
3 = Liftable position magnet
Model

* Output signal C always supplies $0-10 \mathrm{~V}$ and $10-0 \mathrm{~V}$. Please specify signal curve „S" on ordering. (Pin assignment, see below)

Scope of delivery:

Displacement sensor with position magnet or position slider and 2 mounting feet up to a measuring length of 1250 mm . 1 additional mounting foot every 500 mm .

Accessories: (Please order separately)

- Position magnets

PS01
Position slider, central ball joint
PS02 Position slider, ball joint at side
PR03 Liftable position magnet

- Mounting connector
\square Analogue:
- Start / Stop:
- Mounting foot

MB-MPX

- Adapter cable
- M12 to M16

KABEL-0,3-162

Electrical connections

- Analogue output

connection side of connector

pin	voltage / current
1	+24 VDC
2	signal
3	GND (PWR)
4	2. signal
5	GND (Signal)

Electrical connections

- Start/stop output

connection side of connector

pin	start / stop	pin	start/stop
1	start +	5	n.c.
2	start -	6	n.c.
3	stop +	7	+24 DC
4	stop -	8	GND

Notes: On installation of the MAGNOSENS, careful shielding from magnetic and electromagnetic fields must be ensured.
The cable shield must be mounted on the connector and connected to ground at the evaluation electronics.
Wherever possible, use non-magnetisable material to fasten the liftable position magnet. If magnetisable material is used, the position magnet must be mounted via a non-magnetisable spacer washer with a minimum thickness of 5 mm using nonmagnetisable bolts.

Attention!

The EP sensor is now fixed isolated from machine ground. It is now necessary that the sensor housing is grounded with the flat pin terminal of the sensor head

Further documentation:

On www.twk.de:
ㅁ MWA 10318 installation instructions

- Available position magnets MXX 11469

Dimensions in mm

Mating connector (angled 90°)

