Electronic switching cam encoder
Absolute encoder
Models NOCN / S3 with SIL2 Certificate / CANopen

- 2 Versions SIL2:
- Cam switch with encoder and safety-cams SIL2
\square Encoder, singleturn or multiturn without cams (see NOC 13292)

Play-free version for use instead of electromechanical switching cam encoders

- For use in stationary and mobile machines and systems, particularly for wind turbines, power plants, cranes, etc.
- Up to four electronically controlled SIL2switching outputs: Normally open contacts
- Integrated absolute multiturn encoder with CANopen Safety / CANopen interface
- Parameterisable via CANopen bus
- Option: Special slewing ring software for non-reversing operation

Contents

Design 1
General functional principle 2
Safety parameters 2
Slewing ring functionality 3
Principle circuit diagram (Design of switching outputs) 4
Technical data. 4
Electrical data 4
Mechanical data 5
Environmental data 5
Switching output relay electrical data 5
System in general and Safety 5
Order code number 6
Interface CANopen / CANopen Safety 7
CANopen specifications. 7
CANopen / CANopen Safety data profile 7
Switching outputs 8
Function 8
Cam diagram 8
Parameterisation of the switching outputs (cams) 9
Connector assignment for standard version 10
Installation drawings 12
Accessories 24
Play-compensating toothed gear ZRS 25

Design

- Robust housing manufactured from seawater-proof aluminium (AIMgSi1) orstainless steel (material: 1.4305 optionally 1.4404).
- Shaft fitted with ball bearings bears the magnet for recording the angular position and the drive gear of the multiturn transmission for absolute revolution counting.
- Shaft and transmission are located in the prechamber. Sealed off from this, the main chamber contains all electronic components for position recording, evaluation and output.
- Available Versions:

Ø 58 mm with different flange and shaft designs. $2 \times$ relay NO contacts SIL2 at maximum.
$\varnothing 64 \mathrm{~mm}$ (standard) with clamping collar and M6 threaded holes plus two device connectors. 2 x relay NO contacts SIL2 at maximum.
Ø 79 mm (on request) with clamping collar, M6 threaded holes. $4 \times$ relays NO contacts SIL2 at maximum.

- Electrical connection for voltage supply, switching out puts and CANopen data via M12 connectors or cables. The number of connectors or cables varies (up to a maximum of three) depending on version or customer specifications.
- Output via SRDO and PDO possible. PDO is independently adjustable.

The two/four switching contacts are SIL2 certified safety contacts. They are suitable for the safety chain.

Description

General functional principle

This involves a play-free electronic switching cam encoder (abbreviated to: NOCN) with two (At version 79 four) galvanically separated switching outputs (cams), which can be set by the customer and which are activated or deactivated depending on the relevant position of the drive shaft. An absolute mulitturn encoder with CANopen interface, adjustable parameters and an electronic switching cam module is realized in the compact housing. A separate controller unit monitors the function of the cams.

The encoder's CANopen position signal and the switching outputs can be parameterised separately. The parameterisation (cam limits, resolution, measuring range a.s.o.) has to be verified to the NOCN via a checksum. This checksum can be calculated by a TWK program or the standard algorithm recommended by the CiA. After verification the device can be set operational.

Preset and resolution of the position signal also influence the cams which refer to the position signal.
Parameterisation is carried out via the relevant CANopen objects in accordance with the encoder profile according to CiA, DS 406, revision 4.01.

Absolute encoder
 The absolute encoder is equipped with a CANopen interface. Its resolution is 12 bits (= 4096 step) resp. 13 Bits (= 8192 step) per revolution (At version 79 are 32.768 steps possible). The measuring range set in the factory is 4096 revolutions. The absolute encoder's position data can be parameterised using CANopen objects.
 On request the maximum measuring range can be reduced to 256 or 16 revolutions.

Switching outputs (cams)

The electronically activated cams can be used to control potential-free, galvanically separated switching processes. The switching outputs are implemented using relays with long service lives.

The switching outputs are SIL2-certified, i.e. they represent safe switching outputs. This is implemented by internally wiring each switching output with two relays connected in series which switch with a slight time lag (about some ms). This eliminates the risk that a relay welds shut. Additionally each relay is monitored for proper operation. Ifone relay failes, an alarm will be generated by the NOCN and transmitted via CANopen to the customers controller.
The switching information for the cams is taken from the absolute encoder. In comparison with an electromechanical switching cam encoder, switching output activation and deactivation is carried out electronically without play or wear.
Each switching output represents a normally open logic contact which is routed out via an M12 connector.

In the specified operating status - without the limits having been triggered - the relays are picked up, i.e. the normally open contacts are closed. The relays open if the limits are reached or the NOCN's supply voltage fails / drops below the minimum limit. Also the relays open up in case of an internal device error. The connected circuit is interrupted and an alarm can be triggered.

The precise NOCN measuring range point at which each switching output is to switch (switching flanks) can be set using the relevant CANopen objects.
Within the measuring range, one on and off process is possible per switching output. Customer-specific switching procedures are also possible ex-works.
If operating voltage is missing, the cams do not switch.

Safety parameters for NOCN58/64

Due to the fact that the NOCN is an actor and a sensor combined in one device, the safety parameters are as well separated in Cam switch and Rotary encoder. Values for version NOCN79 will follow.

Norm EN 13849-1:2008

Cam switch

- Category:

2

- MTTFd (years): 175
- CCF
- DC [\%]:
- PL

Rotary encoder

- Category: 2

■ MTTFd (years): 151

- CCF: fulfilled

■ DC [\%]: 91.7

- PL:
d

Norm EN 61508:2010 and EN 62061

Cam switch

■ HFT: 0
■ T1[s]: 8760

- SFF [\%]: 95.7

■ PFH [1/h]: 4.51×10^{-8}
■ SIL: 2

Rotary encoder

■ HFT:	0
- T1[s]:	8760
- SFF [\%]:	95.1
- $\operatorname{\text {PFH[1/h]:}}$	6.24×10^{-8}
- SIL:	2

■ T1[s]: 8760
■ SFF [\%]: 95.1

- PFH [1/h]: 6.24×10^{-8}
- SIL: 2

Model NOCN / S3

Slewing ring functionality

(Code 'S' in order code number)

This slewing ring functionality is only valid for models NOCN without cams

In some applications it is necessary to get directly the angle of the slewing unit.
A rotary encoder is coupled via a gear to a toothed gear or with a worm gear / gear units mounted on the worm shaft.
This results in a certain ratio due to the number of teeth.
The software in the encoder can be set (by the factory or the customer) in a way that the output signal of the encoder is
the angle position of the slewing unit. The angle resolution can be set for example to 0.1° (i.e. 3600 steps per 360° of the encoder). Meaning if the slewing unite turns 360° the output of the encoder will also only turn by $360^{\circ}(3600 \rightarrow 0$ steps $)$.
In case the slewing unit turns constantly only in one direction the output will not be affected. Meaning the output signal will continue to give angle values between 0 and 360° even for infinite revolutions.

S makes the slewing ring functionality in the order code.

For this kind of code (S) a resolution of 8192 steps $/ 360^{\circ}(13 \mathrm{Bits})$ and a measuring range of 4096 revolutions is generally used ex works.

Note: When power supply of NOCN with code S is switched off it is not recommended to turn the shaft more than 500 turns in the same direction. Otherwise the safety slewing ring position may not be correct any more. In this case an error message is transmitted to the master by the NOCN for the user can recognize this issue.

Adjustable parameters	from	to
Code sequence	CW	CCW
Number of teeth - slewing ring	1	65536
Number of teeth - pinion of NOCN	1	65536
Resolution position	1	$8192^{*} \times$ i
Resolution for speed	1	$8192^{*} \times \mathrm{i}$
Gate time [ms] (for speed)	10	1000

* Maximum resolution of encoder
$\mathrm{i}=$ Gear ratio Number of teeth - slewing ring to Number of teeth - pinion of NOCN

Comparison of some characteristics when the encoder is coupled to the slewing ring.

Characteristic	Encoder	Slewing ring
Resolution	8192 steps	Adjustable, max. $8192 \times$ i steps
Accuracy	$\pm 0.25 \%$	$\pm 0.25 \% \times \frac{1}{\mathrm{i}}$
Measuring range	4096 revolutions	Revolution repeatable ∞ times
Reproducibility	$\pm 0.02 \%$	$\pm 0.02 \% \times \frac{1}{\mathrm{i}}$
Temperature drift	$<0.02^{\circ}$	$<0.02^{\circ} \times \frac{1}{\mathrm{i}}$

All of the values specified in this table (except the measuring range) refer to one sensor shaft or slewing ring revolution.

Model NOCN / S3

Principle circuit diagram (Design of switching outputs)

Technical data

Electrical data

- Sensor system:
- Operating voltage range:
- Power consumption:
- Resolution:
- Measuring range:
- Absolute accuracy:
- Position monitoring (2 systems):
- Temperature drift:
- Output code:
- Code path:
- Reference value:

ASIC with HALL elements
+9 VDC to +36 VDC
< 2.5 W
4096 steps / $360^{\circ}-12$-bit or 8192 steps / $360^{\circ}-13$-bit
At version NOCN79 up to 15 bits possible (32.768 steps / 360°)
4096 revolutions, (option 16 or 4096 revs.)
$\pm 0.25 \% / 360^{\circ}(\pm 0,1 \%$ at version NOCN79 possible)
± 3 \%
$\pm 0,02^{\circ}-40^{\circ} \mathrm{C}$ bis $85^{\circ} \mathrm{C}$
Binary
CW / CCW, parameterisable
0 - (total No. of steps -1)

■ Overvoltage protection and galvanic separation power supply - CANopen - housing

- CAN interface:

According to ISO/DIS 11898
Via LMT / LSS
To be implemented separately
200 m with no galvanic separation (also see CiA, DS 301)

- Max.transmission length:
- EMC standards:

Interference emission: Interference immunity:

- Electrical connection:
- CAN IC voltage rating:

■ Electrical supply circuit:
acc. to EN 61000-6-4
acc. to EN 61000-6-2
2 x connector M12-(Power supply / CANopen and switching outputs)
$3 x$ connector M12 - (In addition BUS OUT)
Optional: cable
Maximum common mode voltage -7 to +12 V
Maximum allowed voltage at pins $\pm 36 \mathrm{~V}$
Reverse battery protection and protection against too high volage Suppression of AC components in the DC power supply

Model NOCN / S3

Technical data

Mechanical data

- Operating speed:
- Angular acceleration:
- Moment of inertia (shaft):
- Operating torque:
- Starting torque:
- Perm. shaft load:
- Bearing service life:
- Weight:

Environmental data

- Operating temperature range:
- Storage temperature range:
- Maximum relative humidity:
- Resistance:
- To shock: (DIN EN 60068-2-27)
- To vibration:
(DIN EN 60068-2-6)
- Protection type:

1000 rpm (option 2000 rpm)
(Remark: Shaft with sealing ring: max. 1000 rpm . Else use Nilos ring)
$10^{5} \mathrm{rad} / \mathrm{s}^{2} \mathrm{max}$.
$20 \mathrm{gcm}^{2}$
$\leq 8 \mathrm{Ncm}$ (at speed 500 rpm)
$\leq 4 \mathrm{Ncm}$
250 N axial
250 N radia
10^{9} revolutions
Approx. 0.8 kg
(DIN EN 60529)

Switching output relay electrical data

- Maximum switching current:
- Maximum switching voltage:
- Response time:
- Maximum resistance ON
- Protection capacity at contact output:
0.5 A at $30 \mathrm{VDC} / \mathrm{VAC}$

60 VDC / VAC
20 ms (ON and OFF)
0.5 Ohms
$\mathrm{C}=47 \mathrm{nF}$ (other capacitors possible on request)
\rightarrow Time constant t for decay of voltage after opening contact: $\mathrm{T}=\mathrm{RC}$ with $\mathrm{R}=$ external Resiator connected

System in general and Safety

- Power on time due to power supply coming up:

500 ms (10 \% bis 90 \%)

- Rate of messages:
- Time of storage cycles:
- Setup Time:

3 s per storage cycle
~ 2 s @ $\mathrm{T} \geq+20^{\circ} \mathrm{C}$
$>20 \mathrm{~s} @ \mathrm{~T} \leq-30^{\circ} \mathrm{C}$

- Time between error recognition and alarm (emergency message):

100 ms (power supply)
300 ms (relay control)
5 s (RAM test, single bit error)
2 s (ROM test during setup time)

- Number of the certificate:

4479913172907
EN 61508, 1-7: 2010
EN 62061: 2005
EN ISO 13849-1: 2015
EN 60947-5-1: 2004 + A1: 2009

- Maximum service life:

20 years

Order code number

* The basic versions according to the data sheet bear the number 01. Deviations are identified with a variant number and are documented in the factory

Model NOCN / S3

Order Code format - mating connectors (to be ordered separately)

M12, 5-pin, female: STK5GS56
M12, 5-pin, male: STK5GP90
M12, 8-pin, female: STK8GS54
(EMC-resistant, metal version, straight)
Interface CANopen I CANopen Safety

Function

A CAN controller at the output enables integration into the CANopen network. According to "CANopenApplication Layer and Communication Profile, CiA Draft Standard 301, Version 4.1" and according to "Device Profile for Encoders CiA Draft Standard Proposal 406 Version 4.01" and "CANopen Layer Setting Services and Protocol (LSS), CiA DSP 305".

Parameters for the absolute encoder's position signal, which is output via the process data objects (PDO), can be parameterised via the bus in order to adapt the NOCN to the application. The details of the CANopen profile are exhaustively described in the NOC 13100 specifications.

The bootloader function can be used to update the NOCN's firmware at the customer's premises.

CANopen specifications

- NMT Master:
- NMT-Slave:
- Maximum Boot up:
- Minimum Boot up:
- COB ID Distribution:
- Node ID Distribution:
- No of PDOs:
- PDO-Modes:
- Variables PDO-Mapping:
- Emergency Message:

■ Heartbeat:

- No. of SDOs:
- Device Profile:

no

yes
no
yes
Default, SDO
via Index 2000 oder LSS
2 Tx
sync, async, cyclic, acyclic
no
yes
yes
1 Rx/1 Tx
CiA DSP 406 Version 4.01

Bus activation according to ISO / DIS 11898

*Terminating resistor (120 Ω)

Interface according to the following specifications

CiA DS301 CANopen Application Layer and Communication Profile, Version 4.1
EN 50325-5 CANopen Framework for safety-relevant communication, Version 1.0.1
CiA DS305 CANopen - Layer Setting Services and Protocol (LSS)
CiA DS406 CANopen - Device Profile for Encoders, Version 4.01

CANopen / CANopen Safety data profile

SRDO1 (position) - normal and bitinverted

Byte 3								Byte 2								Byte 1								Byte 0							
7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	0	MSB										Position data													SB

Byte 3								Byte 2								Byte 1								Byte 0							
7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
1	1	1	1	1	1	1	1	MSB									Position data inverted														SB

SRDO2 (speed) - normal and bitinverted

Byte 1								Byte 0							
7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
MS							Speed								SB

Model NOCN / S3

Interface CANopen / CANopen Safety

PDO - data format

Data byte 0								Data byte 1								Data byte 2								Data byte 3							
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
LSB																															SB
Data position																															

Note: SRDO is valid for CANopen Safety Profile. PDO is valid for CANopen Standard profile. When using PDO the NOCN behaviour is like a CANopen Standard device.
It depends on resolution and measuring range how many bits are significant data bits (i.e. 24 (bit 0 to 23) for 12 bits resolution and 12 bits measuring range).

Switching outputs

Function

The function of the switching outputs (cams) is implemented by means of relays. The relays have normally open contacts.

The contacts are galvanically separated in terms of operating voltage and the CANopen bus.
The switching outputs are SIL2-certified, i.e. they represent safe switching outputs. This is implemented by internally wiring each switching output with two relays connected in series which switch with a slight time lag (about some ms). This eliminates the risk that a relay welds shut. Additionally each relay is monitored for proper operation.

The information regarding when which relay is to pick up and drop off again is made available to the relay control system by the internal controller. If receives the shaft position data from the NOCN's absolute encoder.

The precise position of the switching flanks, i.e. calibration of the cams, can be carried out via the corresponding objects of the encoder profile according to CiA, DS 406, rev. 4.01.

The switching flanks of the switching outputs are set as follows in the factory as regards the angular position of the shaft (see cam diagram below for a NOCN with a measuring range of 16 revolutions):

The cams are picked-up/switched over 1 revolution (status '1') and are not picked-up/switched over the remainder of the measuring range (status ' 0 '). The default switching length L is therefore 1 revolution. All four cams each switch with an offset of 0.5 revolutions. Cam 1 switches on at revolution 0 , cam 2 at revolution 0.5 , cam 3 at revolution 1 , etc. The switching flanks of the cams, with reference to the absolute encoder's position signal, accordingly lie at (steps / revs.): cam 1 low limit: 0 (0 revs.), cam 1 high limit: 4096 (1 rev.), cam 2 low limit: 2048 (0.5 revs.), cam 2 high limit: 6144 (1.5 revs.), cam 3 low limit: 4096 (1 revs.), cam 3 high limit: 8192 (2 revs.), etc.

The switching output switching flanks refer to the CANopen output signal of the absolute encoder. If the position signal's preset function is used (CANopen output signal offset), the switching flanks are also accordingly shifted with reference to the shaft position.

To avoid undesired switching back and forth (flutter) on the part of the relays when the shaft is stationary or as a result of slight shaft vibrations on the switching flank, a switching hysteresis of 10 digits $\left(\sim 1^{\circ}\right)$ is pre-programmed. This can be changed via the CANopen bus.

Cam diagram

Setting ex works valid for resolution of 4096 steps $/ 360^{\circ}$ and measuring range of 4096 revolutions.

Model NOCN / S3

Switching outputs

Parameterisation of the switching outputs (cams)

Each of the switching outputs can be parameterised via the CANopen bus. To achieve this, a range of objects is assigned to each switching output in the CANopen profile according to CiA, DS 406 revision 4.01. These objects enable each switching output to be set individually:

Object 6310: Low limit	Cam $1>$ Cam 1 switches on in this position (relay picks up)
Object 6320: High limit	Cam $1>$ Cam 1 switches off in this position (relay drops off)
Object 6330: Hysteresis	Cam $1>$ Switching hysteresis of cam 1 in the case of the switching flanks (with low and high limit)
Object 6311: Low limit	Cam $2>$ Cam 2 switches on in this position (relay picks up)
Object 6321: High limit	Cam $2>$ Cam 2 switches off in this position (relay drops off)
Object 6331: Hysteresis	Cam $2>$ Switching hysteresis of cam 2 in the case of the switching flanks (with low and high limit)

$\left.\begin{array}{ll}\text { Object 6300: Status of all cams (read only) > } & \begin{array}{l}0 \times 0=\text { no cam picked up } \\ 0 \times 1=\text { only cam } 1 \text { picked up } \\ 0 \times 2=\text { only cam } 2 \text { picked up }\end{array} \\ & 0 \times 3=\text { cams } 1 \text { and } 2 \text { picked up }\end{array}\right]$

Object 6302h: Polarity of the cams (inversion option): > $0 \times 0=$ no cam inverted
$0 \times 1=$ only cam 1 inverted
0×2 = only cam 2 inverted
$0 \times 3=$ cams 1 and 2 inverted
The reference variable for parameterisation is the position signal output by the absolute encoder. The measuring range ranges from step 0 to step 16.777 .216 (in the version with 4096 revs. and 4096 steps $/ 360^{\circ}$). Each cam can be set within this range.

Due to the safety functionality all changings of parameters have to be verified via the correlated check sum, which is to send to the NOCN separately. This check sum can be calculated via a TWK program for PC/notebook. In this program the customer has to put in all relevant parameters (preset value, cam settings etc.) and the check sum will be calculated. When this check sum is send to the NOCN after changing one or more parameters, the NOCN can be set operational.

Before changing the position data (code sense and preset value) the data valid flag of the cam must be set to 0 . The same applies when changing parameters of the cam switch. Afterwards the data valid flags need to be enabled again. This procedure ensures that no accidental changes are made by the user, which have an impact on the SIL2 cam functions.
(See also: Recommended parameter settings for NOCN / S3 in specifications 13100 - chapter 11)

Model NOCN / S3

Connector assignment and versions of galvanic separation

 Example is valid for standard versionAttention: The description of the different versions of galvanic separation, V1 to V3, refers only to the relationships of the individual potentials (-UB, CAN_GND and housing/shield) to one another. l.e. whether they are galvanically connected or not. The connection plug pin assignments shown below are independent of this and only describe the standard pin assignment. Other variants may reveal a different pin assignment. The connection assignment (TYxxxx) which is enclosed with each device or can be requested must always be observed.

Note: The recommended version is V1 with full galvanic separation. This offers maximum EMC resistance, maximum CANopen data transfer security and thus maximum operating safety.
Versions V2 and V3 are special versions which must be compatible with the structure (topology) of the CANopen bus system in the customer application (\rightarrow control system and other CANopen subscribers). Operating safety or data transfer security may otherwise be affected.

Different M12 connector combinations or assignments are possible at the request of the customer.
For the following description and pictorials is valid:
Viewed looking at the PIN side of the connector installed in the NOCN.
There is one connector for Bus-In and Bus-Out each for the NOCN / S3.
If there is only Bus-In, the female connector Bus-Out is omitted.

V1: CAN_GND and U_{B} galvanically separated (\ddagger). Screening/housing galvanically separated (\ddagger)

This version is recommended and provides complete galvanic separation. Power supply and CAN_GND is galvanically separated. The housing and the screening of the cable is galvanically separated as well. The screening of the cable comes to the housing of the NOCN via the housing of the mating plug.

female

male

PIN	Function for standard version
1	CAN GND
2	Operating voltage $+\mathbf{U}_{\mathbf{B}}$
3	Operating voltage $-\mathbf{U}_{\mathbf{B}}$
4	CAN_H
5	CAN_L

V2: CAN_GND and U_{B} not galvanically separated (=). Screening/housing galvanically separated (\ddagger)

This version provides partly galvanic separation. Power supply and CAN_GND are not galvanically separated. The housing and the screening of the cable are galvanically separated from power supply and CAN_GND. The screening of the cable comes to the housing of the NOCN via the housing of the mating plug and/or Pin 1 of the connector. Please note the maximum voltage rating of the CAN interface IC on side 4.

female

male

PIN	Function for standard version
1	Screen (Cable / housing)
2	Operating voltage $+U_{B}$
3	Operating voltage $-U_{\mathbf{B}}$ and CAN_GND
4	CAN_H
5	CAN_L

Model NOCN / S3

Connector assignment and versions of galvanic separation

V3: CAN_GND and U_{B} not galvanically separated (=). Screening/housing not galvanically separated (=)

This version provides no galvanic separation. Power supply and CAN_GND are not galvanically separated. The housing and the screening of the cable are not galvanically separated from power supply and CAN_GND. The screening of the cable comes to the housing of the NOCN via the housing of the mating plug and/or Pin 1 of the connector. Please note the maximum voltage rating of the CAN interface IC on side 4.

female

male

PIN	Function for standard version
1	Screen (Cable / housing) - shorted to pin 3-
2	Operating voltage $+\mathbf{U}_{\mathbf{B}}$
3	Operating voltage $-\mathrm{U}_{\mathbf{B}}$ and CAN_GND -shorted to pin 1 -
4	CAN_H
5	CAN_L

Switching output connector assignment - valid for 2 switching outputs (NOCN58/64)
(Due to SIL functionality only normally open contacts (NO) are possible)

PIN	Function
1	n.c.
2	Safety contact 1 / (13)
3	n.c.
4	Safety contact 2 / (23)
5	Safety contact 1 / (14)
6	n.c.
7	Safety contact 2 / (24)
8	n.c.

Switching output connector assignment - valid for 4 switching outputs (NOCN79)
(Due to SIL functionality only normally open contacts (NO) are possible)

PIN	Function
1	Safety contact 1/(13)
2	Safety contact 1 / (14)
3	Safety contact 2 / (23)
4	Safety contact 2 / (24)
5	Safety contact 3 / (33)
6	Safety contact 3 / (34)
7	Safety contact 4 / (43)
8	Safety contact 4 / (44)

Model NOCN / S3

Installation drawings

Model NOCN58-KP (singleturn, 2 connectors)

Dimensions in mm

Materials used

Aluminium housing:	AlMgSi1
Stainless steel shaft:	1.4305
Connector:	Nickel-plated
Brass radial shaft seal:	NBR
Sealing rings:	NBR

Model NOCN / S3

Installation drawings

Model NOCN58-KP (multiturn, 2 connectors)

Dimensions in mm

Model NOCN / S3

Installation drawings

Modell NOCN58-ST (singleturn, 2 connectors)

Dimensions in mm

Model NOCN / S3

Installation drawings

Modell NOCN58-ST (multiturn, 2 connectors)

Dimensions in mm

Model NOCN / S3

Installation drawings

Modell NOCN58-SN (multiturn, 2 connectors)

Dimensions in mm

Model NOCN / S3

Installation drawings

Model NOCN64-KP with 12 mm shaft with feather key and 2 connectors

Dimensions in mm

Materials used

Aluminium housing:	AIMgSi1
Stainless steel shaft:	1.4305
Connector:	Nickel-plated
Brass radial shaft seal:	NBR
Sealing rings:	NBR

Model NOCN / S3

Installation drawings

Modell NOCN58-K (multiturn, 2 connectors axial)

Dimensions in mm

Materials used

Aluminium housing:	AlMgSi1
Stainless steel shaft:	1.4305
Connector:	Nickel-plated
Brass radial shaft seal:	NBR
Sealing rings:	NBR

Model NOCN / S3

Installation drawings

Model NOCN64-KP with 12 mm shaft with feather key and 3 connectors

Dimensions in mm

Materials used

Aluminium housing:	AlMgSi1
Stainless steel shaft:	1.4305
Connector:	Nickel-plated
Brass radial shaft seal:	NBR
Sealing rings:	NBR

Model NOCN / S3

Installation drawings

Model NOCN64-KZ with shaft for TWK play-compensating toothed gear ZRS
This version is also available with three connectors like shown on page 20.
Dimensions in mm

Materials used

Aluminium housing:	AlMgSi1
Stainless steel shaft:	1.4305
Connector:	Nickel-plated
Brass radial shaft seal:	NBR
Sealing rings:	NBR

Model NOCN / S3

Installation drawings - special designs

Model NOCN58-KP with short length design and connectors radial

This version is available on request.
Dimensions in mm

Materials used

Aluminium housing:	AIMgSi1
Stainless steel shaft:	1.4305
Connector:	Nickel-plated
Brass radial shaft seal:	NBR
Sealing rings:	NBR

Model NOCN / S3

Installation drawings - model 79

Model NOCN79-KZ (3 connectors, radial) \rightarrow standard version

Dimensions in mm

Connector selection exemplary

Materials used

Aluminium housing:	AlMgSi1
Stainless steel shaft:	1.4305
Connector:	Nickel-plated
Brass radial shaft seal:	NBR
Sealing rings:	NBR

Model NOCN / S3

Installation drawings - model 79

Model NOCE79-KZ (3 connectors, radial) \rightarrow version with extended shaft
Dimensions in mm

Model NOCN / S3

Accessories

Play free bellows coupling BKK 32 / x-y

x and y : bore diameter for shaft mounting
See data sheet BKK 11840

Play free clamp coupling KK14S / x-y (without notch)

x and y : bore diameter for shaft mounting
See data sheet KK 12301

Play free clamp coupling KK14N / x-y (with notch)

x and y : bore diameter for shaft mounting
With groove for keyway according to DIN 6885 BI. 1 - JS9.
See data sheet KK 12301

KL 66-2-S and others

Mounting brackets for mounting encoders.
See data sheet MZ 10111 for the appropriate model.

ZMS58

Torque arm / stator. Can be used as encoder shaft holder for version 'clamp shaft' to compensate for radial and axial play of the drive shaft.

See data sheet ZMS 12939

Model NOCN / S3

Play-compensating toothed gear ZRS

A 'play-compensating toothed gear' ZRS is available to mechanically drive the switching cam encoder shaft on a ring gear (slewing ring) or a rack without play. Different modules and numbers of teeth are available. ZRS material: polyamide. Also see data sheet ZRS 11877. Mechanical connection necessitates a specific shaft version.

Installation recommendation: tighten 6 mm bolt to a torque of 6 Nm and secure with Loctite (medium adhesive strength).

Order code number

$$
\text { ZRS - 12-10-A } 01
$$

Variants **:

A 01 Standard

Teeth:

10 No. of ZRS teeth *

Module:

125 to 24 *

Model:

ZRS toothed gear, play-compensating model
*: Other values on request
**: Please contact our technical support to select the required measuring gear.

